Connecting Oak Park Heights, Minn. and St. Joseph, Wis.
Design and construction
Learn more about the design and construction elements of the St. Croix Crossing project. Choose from the following table of contents, and stop back often. We will continually update this information and explain more activities as construction progresses. Read more about the project background, including summary of work, bidding and contracting info and more.
The Loop Trail is a 4.7-mile bicycle and pedestrian trail that is part of the St. Croix Crossing project. With the completion of the St. Croix Crossing Bridge on August 2, 2017, vehicle traffic has been re-routed from the existing Stillwater Lift Bridge, which is undergoing a transformation to a bicycle and pedestrian facility.
The Loop Trail will cross the St. Croix River at the Stillwater Lift Bridge and on the new St. Croix Crossing Bridge. Trails in Minnesota and Wisconsin will complete the loop and will connect to regional and local trail systems. Please note that the Lift Bridge will still need to accommodate boat navigation with lifts.
Loop Trail Construction
The St. Croix Crossing Bike/Pedestrian Loop Trail (Loop Trail) project includes the trail from the Stillwater Lift Bridge up existing WIS Hwy 64, through portions of Houlton, Wis. The trail continues along the new WIS Hwy 64 to the new St. Croix Crossing Bridge and along MN Hwy 95 north to the lift bridge. The two trailhead parking areas in Wisconsin provide parking for trail users.
Hwy 95 in Stillwater included construction of the Upper Loop Trail along Hwy 95 north of the new St. Croix Crossing. New drainage structures were built beneath Hwy 95 near the Oasis Café.
Landscaping began in 2015 and was completed in spring 2019. The trees, shrubs, perennial plants and grasses beautify the interchange of Highways 36 and 95 and along Hwy 95 between the city of Bayport and Chestnut St. in downtown Stillwater.
Close-up of prairie flowers surrounding new Minnesota sign
View of new St. Croix Crossing Bridge through new foliage
Trees planted along new sidewalk
Construction
Bridge deck
The bridge deck for the new St. Croix Crossing is constructed in several stages:
Crossbeam construction
Pier table construction
Driving surface construction
St. Croix Crossing bridge deck construction. Click image for larger PDF version.
Crossbeam
A crossbeam is a horizontal structure that connects an upstream pier column to a nearby downstream pier column. The new river crossing will be made up of five crossbeams, one at each pier location. The pre-cast concrete segments, which make up the driving surface, frame into each crossbeam and carry all of the bridge superstructure load back to the piers.
Construction process:
Crews install a temporary truss system to support construction efforts
Crews pour wet concrete on site into the forms and over the rebar and tendons
These steps are repeated three times – because of the size and detail of each crossbeam, they are constructed in three stages
Crews remove the forms once the concrete has cured to its desired strength
The steel bars and strands inside the structure are tensioned, or pulled like a rubber band, in both directions of the crossbeam
Quick facts:
Each crossbeam is 18.2 ft. tall, 15.2 ft. wide and 116.4 ft. long
The total rebar in each crossbeam weighs 478,000 lbs.
The total concrete in each crossbeam weighs 5,273,000 lbs. – that’s 130 truckloads!
Pier table
View of the Pier 8 pier table under construction. The pier table is poured on-site in the shape of a segment.
Constructing the pier table is the next linear step in the bridge deck construction process. Think of the pier table like a tabletop. Together with the crossbeam, it forms a large, flat surface above the pier columns. The top of the pier table will become the actual driving surface.
Construction process:
Pier table construction uses a cast-in-place design
Forms are fitted on each side of the crossbeam in the shape of a segment (see photo). Each side is 15 feet wide
Crews pour wet concrete on site into the forms and over the rebar and tendons
This process is repeated several times to construct the bottom, top and side walls of the pier table – the structure has hollow space in its center, similar to the pre-cast segments that are made off-site
Crews remove the forms once the concrete has cured to its desired strength
Driving surface
The driving surface of the new river crossing and its approach ramps will be constructed in two ways, using both pre-cast segments and a cast-in-place approach.
Pre-cast segments
About 330 pre-cast concrete segments made at the on-site casting yard will become the driving surface for the bridge approach spans in Minn.
The new St. Croix Crossing will be made up of about 1,000 pre-cast segments. The segments are produced off-site at two casting yards:
Grey Cloud Island near Cottage Grove
About 650 segments constructed here for main river bridge
Average size of each segment is 48 ft. wide x 18 ft. tall x 10 ft. deep
Average weight of each segment is 180 tons
On-site near the Hwy 36/95 interchange
About 330 segments constructed here for approach/ramp bridges on Minn. land
These segments are smaller than the river bridge segments. Average size of each segment is 43 ft. wide x 10-14 ft. tall x 10 ft. deep
Cast-in-place sections
Portions of the bridge driving surface will be made up of cast-in-place box-shaped sections instead of pre-cast segments (see purple on above map).
Construction process:
Crews install falsework between Piers 5 and 7 that will carry Hwy 36 traffic and ramps onto the new river spans.
First, falsework goes up. Falsework is a series of temporary structures that support the bridge spans during construction until the bridge can support itself. The falsework is not a permanent part of the bridge
Forms are installed in the shape of a very long segment—this length varies depending on the approach span under construction
The new St. Croix Crossing is an extradosed bridge, or a cross between a box-girder and a cable-stayed design. They are located above the bridge’s driving surface. They anchor to the pier tower on one end and a stay segment on the opposite end. Stay cables help support the load, or weight, on the bridge and are necessary to have 600-foot spans between the river piers.
Construction process:
A crew strings a cable through the pipe.
An individual stay cable consists of 76 plastic-coated steel strands bunched together inside a pipe.
The upper part of the pipe is high density polyethylene and the lower part is stainless steel.
The pipes are assembled on the bridge deck then raised into position.
Crews string each strand through the pipe by hand.
Crews stress--pull tight like a rubber band--each strand after it is installed from inside the bridge using a hydraulic jack that applies 33,000 lbs. of force.
The cables and anchorages are sealed to prevent corrosion
Quick facts:
Eight stay cables will stick out from each side of the pier towers. Each pier location on the river will have 32 total stay cables.
Total length of stay cables: 5.2 miles (about 400 miles of cable strands)
Each cable has a total stressing force of 2.5 million lbs.
Pier 13
Pier 13 foundation pile driving on the Wisc. bluff. Photo from October 2015.
Pier 13 is the single pier location on the Wisconsin bluff. Like the river piers, this pier will consist of two columns to support eastbound and westbound traffic. The contractor is using a top-down construction approach to decrease the impact on the bluff. Construction crews have constructed a temporary trestle to allow them to get crews and necessary equipment out to the Pier 13 work site. Crews are also limited to 10 ft. of tree removal on each side of the bridge to prevent soil erosion and to help the bridge blend into its surrounding environment.
Bridge foundations
All of the bridge foundations/footings below the water surface were completed in 2013. There are two concrete footings at each of the five piers in the water. At the end of 2013, they raised up about 15 ft. above the water level. Today, they are much higher.