RAP Management Best Practices

- RAP Needs Analysis
- Milling for Success
- Multiple-source RAP piles
- Crushing Considerations
- Screening Options
- Best Practices for Stockpiling
- Sampling and Testing of RAP Stockpiles
- Production of Recycled Asphalt Mixes
Disclaimer

• This presentation represents opinions and ideas of Randy West
• The purpose of the presentation is to get feedback (positive and negative) from the audience
• After vetting this through several committees and refining the information, it is expected to become a published best practices document
Barriers to Increasing RAP

- Stockpile Management: 34%
- Long-term Performance: 18%
- Binder Issues: 13%
- Availability of RAP: 24%
- Other: 11%
Principles of RAP Management

- Good materials management practices should always be part of the quality control program for any asphalt mix production operation.
- As RAP contents increase, it becomes more important to accurately determine properties of RAP and control its consistency.
RAP Needs Assessment

One of the first steps to be considered in RAP management is to determine the maximum percentage of RAP that is likely to be used at the particular asphalt plant. That percentage may be controlled by one or more factors such as...

- the supply of RAP at the plant
- agency specifications
- consistency (uniformity) of the RAP
- plant type or other limitations
1. Inventory RAP on-site: determine the quantity of:
 - Ready to be used RAP
 - Unprocessed RAP
 - Typical amount of RAP received per year

2. Annual HMA Production by Mix Type
3. Use a simple worksheet to...

- Determine the quantity of RAP needed for each mix type based on the target RAP and maximum RAP contents. These are the “RAP demand target” and “RAP demand maximum”

- Compare the supply quantities of RAP from the inventory analysis to the demand quantities
RAP Inventory Analysis

<table>
<thead>
<tr>
<th></th>
<th>Current</th>
<th>Scenario 1</th>
<th>Scenario 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tons of HMA produced per year</td>
<td>150000</td>
<td>150000</td>
<td>150000</td>
</tr>
<tr>
<td>Typical percentage of surface mix produced</td>
<td>70%</td>
<td>70%</td>
<td>70%</td>
</tr>
<tr>
<td>Typical percentage of non-surface mix produced</td>
<td>30%</td>
<td>30%</td>
<td>30%</td>
</tr>
<tr>
<td>Tons of Surface Mix produced per year</td>
<td>105000</td>
<td>105000</td>
<td>105000</td>
</tr>
<tr>
<td>Tons of Base & Binder Mix produced per year</td>
<td>45000</td>
<td>45000</td>
<td>45000</td>
</tr>
<tr>
<td>Tons of RAP stockpiled</td>
<td>50000</td>
<td>50000</td>
<td>50000</td>
</tr>
<tr>
<td>RAP income (tons)</td>
<td>10000</td>
<td>10000</td>
<td>10000</td>
</tr>
<tr>
<td>Average RAP content possible</td>
<td>33%</td>
<td>33%</td>
<td>33%</td>
</tr>
<tr>
<td>Current Avg. RAP content used in Surface</td>
<td>12%</td>
<td>15%</td>
<td>17%</td>
</tr>
<tr>
<td>Current Avg. RAP content used in Base & Binder</td>
<td>20%</td>
<td>25%</td>
<td>23%</td>
</tr>
<tr>
<td>Tons of RAP used per year in Surface</td>
<td>12600</td>
<td>15750</td>
<td>17850</td>
</tr>
<tr>
<td>Tons of RAP used per year in Base & Binder</td>
<td>9000</td>
<td>11250</td>
<td>10350</td>
</tr>
<tr>
<td>Total Tons of RAP used per year</td>
<td>21600</td>
<td>27000</td>
<td>28200</td>
</tr>
<tr>
<td>Years to deplete RAP reserve</td>
<td>4.3</td>
<td>2.9</td>
<td>3.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inventory</th>
<th>Now</th>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
<th>Year 4</th>
<th>Year 5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50000</td>
<td>50000</td>
<td>50000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year 1</td>
<td>38400</td>
<td>33000</td>
<td>39800</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year 2</td>
<td>26800</td>
<td>16000</td>
<td>23600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year 3</td>
<td>15200</td>
<td>-1000</td>
<td>10400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Year 4</td>
<td>3600</td>
<td>-18000</td>
<td>-28000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The graph shows the comparison of current usage and future scenarios from Year 1 to Year 5.
Collecting RAP

RAP will be collected from various sources over time. One decision is when should RAP from a new source be kept separate and when to combine materials from different sources. There is an advantage to keep millings from large jobs in separate stockpiles. Often these millings are very consistent and can be used straight in new mixes without further screening or crushing, saving processing costs.
Agency Requirements on RAP Sources

Some agencies only allow RAP obtained from their projects to be used in their mixes. This restriction hinders the use of RAP to its full advantage. The quality of materials (e.g. aggregate source properties and polishing characteristics) in the RAP can and should be verified with routine testing as part of mix design and quality control.
Milling for Success

- The primary reason for milling is to remove distressed pavement layers and restore a good profile for the overlay.
- Milling depth should therefore carefully the competency of existing layers and must avoid leaving thin layers that are likely to scab.
- It is important that milling be done such that the RAP is not contaminated.
Milled RAP

Keep millings from different projects in separate stockpiles.

Milled RAP can typically be used “as is” in HMA without further crushing.
Multiple Source RAP
also known as GOK piles

God Only Knows what’s in there
Multiple-Source RAP

- GOK piles can be an agglomeration of materials from milled projects, pavement rubble, rejected mix, and plant waste.
- It should be obvious, but unprocessed GOK RAP stockpiles are not suitable for use in new mixes.
GOK RAP Stockpiles

- Can be processed to yield a uniform RAP material
- What are the necessary steps to process this materials?
RAP Processing Tips

- Avoid contamination from the beginning
- Mix it up while feeding the screen or crusher
- Don’t over crush
- Fractionation helps for design of high RAP mixes
- Watch the weather when processing
- Blend again when moving stockpiles
GOK RAP Stockpiles

- It is vital to prevent dumping of any deleterious materials in the GOK pile from the beginning.
- Clearly instruct all truck drivers hauling materials to the yard where to dump different types of materials

08/18/2006
Mix up the GOK material while feeding it into the Processing Unit
RAP Processing

• It is important to minimize crushing of RAP because it increases its dust (P200) content which often limits the amount of RAP that can be used and successfully meet mix design requirements.

• Choose crushing top size carefully

• Screening prior to crushing will help reduce unnecessary breakdown
Weather

- Cool weather helps minimize caking of RAP in crushers and blinding of screens

- Free moisture in the RAP can cause the same problems
Variability: RAP vs. Aggregate

Based on 74 RAP stockpiles in 14 states, and 60 Aggregate stockpiles in 6 states

- Standard Deviation for Median Sieve:
 - RAP: 4.39
 - Agg: 5.5

- Standard Deviation for Passing 0.075 mm Sieve:
 - RAP: 0.98
 - Agg: 1.1
Fractionated RAP

- Screening RAP into two or more sizes
- A huge advantage for mix design. Allows RAP to be used in practically any mix type
• However, the practice should not be mandated; it should be the contractor’s business decision if and when to fractionate RAP.
Stockpiling RAP

Building steep sided stockpiles will create segregation within the pile.
Stockpiling RAP

- Minimize Moisture in RAP
 - Covered Stockpiles
 - Sloped Pavement Underneath
Effect of RAP Moisture on Superheating Temperature

Assumes 10°F loss from dryer to pugmill, 70°F outside air temp.

Astec T-127
Sampling of RAP

- The goal of sampling RAP is to obtain representative samples for evaluating materials properties.
- Samples are needed from throughout the stockpile to assess variability. A minimum sampling frequency of 1 per 1000 tons with a minimum of 10 samples is strongly recommended.
Sampling of RAP

- The best method to sample RAP is to use a loader to create flat-topped miniature stockpiles.
- A good time to sample is when a stockpile is being built at its final location.
- Do not combine samples from different parts of the stockpile. Tests need to be performed on individual samples to assess uniformity.
Testing of RAP

• General properties:
 - asphalt content
 - aggregate gradation
 - aggregate bulk specific gravity
 - fine aggregate angularity
 - fractured face count
 - flat & elongated percentage
 - deleterious materials
Testing of RAP

• Depending on agency specifications, aggregate source properties may also need to be tested
 – LA Abrasion
 – Sulfate Soundness

• For use of RAP in friction courses, additional aggregate properties such as acid insoluble, loss on ignition, or petrographic analysis may be needed.
Testing of RAP

• Asphalt Content: ignition method is preferred. An aggregate correction factor must be assumed. For regions that utilize dolomite aggregates that have erratic correction factors, a solvent extraction method is recommended.
Testing of RAP

Aggregate bulk specific gravity: estimated from a three step process

1. Determine Gmm (w/ dryback) of RAP sample
2. Calculate Gse using the Gmm from step 1 and the asphalt content from the ignition method (or extraction test if ignition method is not reliable)
3. Estimate Gsb from Gse using a typical offset value or regression from historical mix designs with the aggregates in the region
Why Use This Process?

• Research has shown that this process is more accurate than recovering the aggregate from solvent extraction or ignition test and performing T84 and T85

• This process is much faster
Potential Errors with the Gse→Gsb Process

- The potential errors include...
 - Loss of RAP fines when using the bowl method for Gmm
 - The asphalt content (Pb) used in the Gse calculation could be wrong
 - The binder specific gravity (Gb) used in the Gse calculation could be wrong
 - The correction factor between Gse and Gsb could be wrong
Potential Errors with the Gse→Gsb Process

• Creates uncertainty with VMA, a very important property related to durability
• Thus, it is important to conduct durability performance tests for high RAP mixes
• Durability Tests
 – Moisture Susceptibility: T 283
 – Fatigue: Beam Fatigue (T 321), AMPT Continuum Damage, or DCSE
 – Thermal Cracking: IDT Creep & Strength (T 322) or other method
Testing of RAP

• Other RAP aggregate properties – tests can be performed on aggregate recovered from the ignition oven.
 – Gradations
 – Fine aggregate angularity
 – F&E
 – Fractured faces
 – LA Abrasion
 – Sulfate soundness
RAP Sampling & Testing Flowchart

At least 10 samples when building stockpile

Split each sample

Ignition method tests

Max. specific gravities

Combine samples for other aggregate tests

Gradations

asphalt contents

Gse → Gsb

100% RECYCLABLE
Summary & Analysis of RAP Data

• Calculate average and standard deviation of asphalt contents, gradations, and estimated Gsb

• Compare to the recommended tolerances

<table>
<thead>
<tr>
<th>RAP property</th>
<th>Max. Standard Deviation (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphalt Content</td>
<td>0.5</td>
</tr>
<tr>
<td>% Passing Median Sieve</td>
<td>5.0</td>
</tr>
<tr>
<td>% Passing 75 micron Sieve</td>
<td>1.0</td>
</tr>
</tbody>
</table>
Screening to Remove Oversized RAP Particles
Screening to Remove Oversized RAP Particles
In-Line Crushing of RAP

- Not a Good Idea
 - Gradation of RAP is altered and unknown going into the mix
Drum with Center Entry
Drum Plant Showing Center Entry

Virgin Aggregate RAP
Feedback

• What items do you disagree with?
• What items do you agree with?
• What seems unrealistic?
• What needs to be added?
Thank You