

Meeting Minutes: NRRA Intelligent Construction Technologies (ICT) Team

(Agency & Associate Member Meeting)

Date: July 8, 2021

Minutes prepared by: Rebecca Embacher Location: Microsoft Teams

NRRA Team Webpage: http://www.dot.state.mn.us/mnroad/nrra/structure-teams/intelligent-

construction/index.html

Attendance

Agency Members

Participated	Affiliation	State Contact	e-mail
\boxtimes	California	Deepak Maskey	deepak.maskey@dot.ca.gov
\boxtimes	California	Ragu Thangavelautham	raguparan.thangavelautham@dot.ca.gov
\boxtimes	Illinois	Brian Hill	Brian.Hill@illinois.gov
	Illinois Tollway	Cindy Williams	cmwilliams@getipass.com
\boxtimes	Illinois Tollway	Supraja Reddy	sreddy@interraservices.com
	Illinois Tollway	Signe Reichelt	smreichelt@behnkematerialsengineering.com
\boxtimes	Illinois Tollway	Jake Sumeraj	jmsumeraj@behnkematerialsengineering.com
	Iowa	Chris Brakke	<u>Chris.Brakke@iowadot.us</u>
\boxtimes	Iowa	Jeff De Vries	Jeff.DeVries@iowadot.us
\boxtimes	Michigan	Matthew Bellgowan	BellgowanM@michigan.gov
	Michigan	Jason Clark	ClarkJ25@michigan.gov
\boxtimes	Minnesota	Rebecca Embacher	rebecca.embacher@state.mn.us
\boxtimes	Minnesota	Kyle Hoegh	kyle.hoegh@state.mn.us
	Mississippi	Alex Middleton	middleton@mdot.ms.gov
	Missouri	Jen Harper	Jennifer.Harper@modot.mo.gov
	Missouri	Dan Oesch	Daniel.Oesch@modot.mo.gov
	New York	Michael Heim	Michael.Heim@dot.ny.gov
	New York	Brett Dean	Brett.Dean@dot.ny.gov
	New York	Edward Collins	Edward.Collins@dot.ny.gov
	North Dakota	Curt Dunn	cdunn@nd.gov
\boxtimes	North Dakota	Amy Beise	abeise@nd.gov
\boxtimes	Wisconsin	Drew Kottke	<u>Drew.Kottke@dot.wi.gov</u>

Associate Members

Participated	Affiliation	Contact	e-mail
	American Engineering and Testing, Inc.	Derek Tompkins	dtompkins@amengtest.com
\boxtimes	Braun Intertec	Mohammad Sabouri	msabouri@braunintertec.com
	Braun Intertec	Heidi Olson	holson@braunintertec.com
	California State University, Los Angeles	Mehran Mazari	mmazari2@calstatela.edu
	Caterpillar Global Paving	Brian Nagel	Nagel Brian D@cat.com
\boxtimes	Caterpillar Global Paving	Todd Mansell	mansell_todd_w@cat.com
	Concrete Paving Association	Matt Zeller	mjzeller@cpamn.com
	GSSI	Roger Roberts	roger@geophysical.com
	GSSI	Rob Sommerfeldt	sommerfeldtr@geophysical.com
	Infrasense	Ken Maser	kmaser@infrasense.com
	Leica Geosystems	Brad Adams	brad.adams@leicaus.com
\boxtimes	Consultant	Erv Dukatz	flyereld@gmail.com
	Mathy Construction	Matt Oman	matt.oman@mathy.com
	Midstate Reclamation & Trucking, Inc.	Dan Schellhammer	dans@midstatecompanies.com
	Midstate Reclamation & Trucking, Inc.	John Peterson	johnp@midstatecompanies.com
	Minnesota Asphalt Paving Association	Brandon Brever	bbrever@mnapa.org
\boxtimes	Moba	Paul Angerhofer	pangerhofer@moba.de
	Moba	David Shelstad	dshelstad@moba.de
	National Asphalt Pavement Association	Brett Williams	bwilliams@asphaltpavement.org
	Surface Tech	Steve Santa Cruz	steve@surface-tech.com
	Syracuse University	Baris Salman	bsalman@syr.edu
	Terracon	Andrea Blanchette	Andrea.Blanchette@terracon.com
	Terracon	Sheue Torng Lee	Sheue.Lee@terracon.com
\boxtimes	The Transtec Group, Inc.	George Change	GKChang@TheTranstecGroup.com
	Topcon Positioning Systems, Inc.	Evan Monroe	emonroe@topcon.com
	Topcon Positioning Systems, Inc.	Jim Preston	jpreston@topcon.com
	Trimble	Kevin Garcia	kevin garcia@trimble.com
	Trimble	Devin Laubhan	devin laubhan@trimble.com
\boxtimes	The University of Texas at El Paso	Nazarian Soheil	nazarian@utep.edu
\boxtimes	Wirtgen Group	Tim Kowalski	Tim.Kowalski@wirtgen-group.com
\boxtimes	Wirtgen Group	Nars Laikram	Laikram.Narsingh@wirtgen- group.com
	WSB & Associates	Mike Rief	mrief@wsbeng.com
	1135 & 7133001ate3	THIRE ITIES	milete wascing.com

Friends

Participated Affiliation State Contact	e-mail
--	--------

	FHWA	Kevin Kliethermes	Kevin.Kliethermes@dot.gov
\boxtimes	FHWA	Stephen Cooper	stephen.j.cooper@dot.gov
\boxtimes	Minnesota	Emil Bautista	Emil.Bautista@state.mn.us
\boxtimes	Minnesota	Shongtao Dai	shongtao.dai@state.mn.us
\boxtimes	Minnesota	Lauren Dao	Lauren.Dao@state.mn.us
\boxtimes	Minnesota	John Siekmeier	john.siekmeier@state.mn.us
\boxtimes	Minnesota	Eyoab Zegeye Teshale	eyoab.zegeye.teshale@state.mn.us
\boxtimes	Minnesota	Curt Turgeon	curt.turgeon@state.mn.us
\boxtimes	Minnesota	Raul Velasquez	Raul.Velasquez@state.mn.us
	Minnesota	Michael Vrtis	Michael.Vrtis@state.mn.us
\boxtimes	Minnesota	Ben Worel	ben.worel@state.mn.us
	North Dakota	Jordan Nehls	jnehls@nd.gov
	North Dakota	Darin Lindblom	dlindblom@nd.gov
	North Dakota	Carey Schreiner	
	North Dakota	David Bruins	
	North Dakota	Nathan Haaland	

Other Attendees: Jake Sumeraj

Decisions Made

None

Action items

Continue working on contract paperwork for projects approved for funding.

Agenda

- Veta Web and Veta MDMS Contract
- Schedule
- ICT During MnROAD Reconstruction
- Round Robin

Next Meeting

Date: August 5, 2021

Time: 10:30-11:30AM Central Time

Location: Microsoft Teams

Agenda items: Complete Brainstorming of ICTs to use during MnROAD Reconstruction

Meeting Notes

ISIC Webinar Series - No. 004 (Chang)

See attached flyer for additional information. Reminder to register to join this webinar being held on July 29 from 9 to 11AM CDT.

ISIC 2022 Conference Call for Abstracts (Chang)

See attached flyer for additional information. Conference will be held in Portugal in September 2022. Discussions are occurring about featuring it also virtually for international participation.

Abstracts are due on October 15, 2021. Conference topics are everything under the sun for intelligent construction technologies. Accepted papers will be included in the ISIC 2022 Conference Proceedings being published by Springer Series Lecture notes in Civil Engineering.

Phase II Schedule (Worel)

Discussed construction schedule and need to get designs and plan development complete for February letting date.

Discussed RFP process and which projects are moving forward through this solicitation. See slides 6-8 for additional details.

Project Technical Advisory Panels (TAPs) (Worel)

Reminder that if you are interested in participating as a TAP member to go to the given team page on the NRRA website, select the project, and scroll to the bottom of the project page and select "Contact us to join this TAP".

ICT Phase II Veta Contracts (Embacher)

All needed paperwork has been submitted and MnDOT research services is currently working on putting together the contract for converting Veta from a desktop platform to a web-based platform and for creation of the Veta MDMS platform.

ICT During MnROAD Construction (All – Working Group Discussion)

(Please note that ICT ideas were written "live" on the slides during the meeting.)

Quickly reviewed discussions that were completed on Cells 16-23 (see slides 9-12).

Discussed studies for cells 12, 70-78, 96, 7-9, 506, 606, 706, 806 and generated listing of potential ICTs. (see slides 13-17).

Started discussions on cells 2-3, 4, 115, and 215, but ran out of time (slides 18-21). Will begin discussions with these cells during August meeting and try to complete the remaining cells shown on slides 22-26.

New Digital As-Built and Project Information Model

Time/Date 9AM to 11AM US CDT (2PM WET, 10PM Beijing Time), July 29, 2021

Venue GotoWebinar

Moderators

Dr. George K. Chang, PE, President of ISIC; Transtec Group, USA Todd Mansell, Vice-President of ISIC NA Chapter; Product Application

Specialist, Caterpillar, USA

Speakers

David Unkefer, PE, FHWA, USA

Lance Parve, WSP, USA
Becky Hjelm, Utah DOT, USA
Michael Cremin, MN DOT, USA
Ahmad Abu-Hawash, IA DOT, USA

Alexa Mitchell, HDR, USA

Description

The past highway as-built has been paper or image-based technology. This practice has limited as-constructed information gathering and cannot make the information readily accessible and geospatially located accurately. The new digital as-built or project information model (DAB/PIM) can overcome the above limitations. DAB/PIM uses modern digital delivery technologies to support construction management and eConstruction. DAB/PIM can also capture other critical project information beyond construction. This new approach to digital project delivery is proven successfully to integrate design-construction data during the stages of before, during, and after construction. Therefore, DAB/PIM can produce benefits, including improved efficiency, quality, and cost savings. Ultimately, project-level DAB/PIM will contribute to a Digital-Twin of our highway system, i.e., a system-wide lifecycle collection of inventory information, geometrics, and other valuable information. The Digital-Twin will then be used for agencies' business needs to manage maintenance, operations, assets, and future project scoping/design/construction. Digital-twin can also support future connected vehicle technologies such as accurately updated maps. This webinar will focus on the driving forces, benefits, challenges, and what can be done to lay out a practical road map to start implementing DAB/PIM using existing and emerging tools and technology. Speakers will share US agencies' real-world experience and provide a vision for the future DAB/PIM.

Registration

The registration is free. We will provide certificates of 0.2 PDH to participants upon request.

Agenda

Time	Topic	Speakers	
	US National Implementation – EDC-6	Unkefer	
	Overview on US National Technical State of Practice	Parve	
95 min.	Utah DOT's Implementation	Hjelm	
	Minnesota DOT's Implementation	Cremin	
	Iowa DOT's Implementation	Abu-Hawash	
		Unkefer, Parve, Hjelm,	
25 min.	Panel Discussion	Cremin, Abu-Hawash,	
		Mitchell	

Speakers' Bio

David Unkefer, PE, FHWA, USA (ISIC Technical Committee member)

Mr. Unkefer is a Senior Construction and Project Management Engineer providing US national technical assistance to FHWA and its partners. He is responsible for deploying innovative practices related to BIM for Infrastructure (aka civil integrated management or CIM), digital project delivery, and construction automation. He has led previous Every Day Counts initiatives for 3D engineered models and alternative contracting methods and currently is hosting post-EDC support for digital construction

inspection and BIM usage for lifecycle asset management. David has been with FHWA for 27 years holding various engineering and leadership positions in 9 states. He is a professional engineer with degrees in Civil Engineering from the University of Florida and Purdue University.

Lance Parve, WSP, USA (ISIC Steering Committee member)

Mr. Parve is the Director of BIM Services, Advisory Services, WSP USA. Before joining WSP, Lance worked at Wisconsin DOT to plan, design, and construct mega-major transportation civil infrastructure projects. He also provided CIM-CAD-GIS, 3D-4D-xD technologies, and LiDAR-UAS survey coordination support. Working for WisDOT for over ten years involving public sector work, with 15 years of involvement in private sector civil and environmental infrastructure work, he has been involved in numerous

successful planning, design, and construction mega-major transportation projects WisDOT. He has an MS Engineering degree, MS Certificate Urban Planning GIS degree, and a BS Geological Sciences degree from UW-Milwaukee. He serves as co-chairperson of the TRB AED80(1) subcommittee on BIM for Infrastructure and a member of the TRB AED80 Visualization in Transportation Committee.

Becky Hjelm, Utah DOT, USA

Ms. Hjelm has been a member of the Utah DOT team for over nine years and played an instrumental role in adopting GIS at UDOT. About three years ago, she left her role as the Data and Analytics Manager to move into preconstruction, focusing on advancing Digital Delivery. Becky has over twenty years of experience in GIS management, data analysis, project management, and IT development in government. She received her Bachelor's Degree from the University of Utah and her Master's Degree from

the University of North Texas.

Michael Cremin, MN DOT, USA

Mr. Cremin is a Statewide Project Engineer with Minnesota DOT Asset Management Program Office. He received a degree from the University of Minnesota. He has gained ten years (7 years of private consulting and three years of state DOT) of implementing asset management programs, including data-driven risk-based decision engineering support. He focuses on ancillary asset management maturity development for Transportation Asset

Management System software utilization (240 asset class codes), Transportation Asset Management Plan development (10 asset classes), Asset Management Strategic Implementation Plan development (72 asset classes), and Mobile Collection.

Ahmad Abu-Hawash, IA DOT, USA

Mr. Abu-Hawash is the Chief Structural Engineer for Iowa DOT, responsible for overseeing structural design activities on major bridge projects and reviewing design policies. He oversees research and coordinates the implementation of innovations in the Bridges and Structures Bureau. Ahmad received a BS degree from the University of Iowa and an MS degree from Iowa State University in Civil Engineering and Structures. Ahmad serves as

the Chair of AASHTO Bridge and Structures Technical Committee on Software and Technology and as the Vice-Chair of AASHTO Technical Committee on Construction. He is a member of the AASHTO Technical Committee on Electronic Engineering Standards (JTCEES).

Alexa Mitchell, HDR, USA

Ms. Mitchell is HDR's Transportation BIM Program Manager and a professional engineer registered in MO and AZ. Alexa provides strategic and technical leadership to expand HDR's building information modeling practice and its use on significant infrastructure projects. She brings over 20 years of experience in project delivery and demonstrated a history of working in the highway industry, providing leadership to implement innovative solutions that transform everyday workflows. For 16 years with MoDOT, she led the

agency by implementing 3D-engineered models for construction, electronic plans and signatures, and 3D surveys. She has spent the last six years working as a BIM consultant to help clients navigate the changing environment of BIM-enabled project delivery, from determining the proper approach to using the model as the legal document to construction and asset management. Her guidance adds value entire project life cycle.

Moderators' Bio

Dr. George K. Chang, PE, President of ISIC; Transtec Group, USA

Dr. Chang is a world expert on pavement smoothness and intelligent compaction/construction technologies. He has founded the International Society for Intelligent Construction - ISIC (www.IS-IC.org). His research, teaching, specification development, and software tools have helped make significant technological advancements in the above fields. The websites he develops and maintains, Profile Viewing and Analysis - ProVAL

(www.RoadProfile.com) and Intelligent Construction Technologies - Veta (www.IntelligentConstruction.com), have become a one-stop-shop for pavement smoothness and intelligent compaction (IC)/construction technologies (ICT). In the past 15 years, he has been leading the IC/ICT implementation efforts worldwide, including the US, China, and Australia.

Todd Mansell, Vice-President of ISIC North American Chapter; Product Application Specialist, Caterpillar, USA

Mr. Mansell has worked in the asphalt paving industry for over 30 years in different roles ranging from a transportation department, engineering consulting firms, a heavy highway & civil construction company, and two equipment manufacturers. For the past eight years, Todd has been with Caterpillar as a Product Application Specialist focusing on asphalt pavers,

soil and asphalt compaction, and new and emerging technologies.

July 29, 2021 ISIC Webinar No. 4

New Digital As-Built & Project Information Model (DAB/PIM)

David Unkefer

Construction/Project Management Engineer

Lance Parve
wsp
BIM Services, Advisory Service

Becky Hjelm Utah DOT GIS Manager

Michael Cremin

Minnesota DOT

Chief Structural Engineer

Ahmad Abu-Hawash

Iowa DOT

Chief Structural Engineer

Alexa Mitchell

HDR

Transportation BIM Program Manager

ISIC 2022 Conference Call-for-Abstracts

The <u>International Society for Intelligent Construction</u> 2022 Conference (<u>ISIC 2022</u>) will be held in Guimarães, Portugal, from September 6 to 9, 2022. The conference theme is "**Trends on Construction in the Post-Digital Era**." The city of Guimarães, Portugal, is also a UNESCO World Heritage site.

The conference topics cover everything under the sun for intelligent construction technologies. The abstracts submission will be due on October 15, 2021 (download <u>abstract template</u>). Accepted papers will be included in the ISIC 2022 Conference Proceedings that will be published by <u>Springer Series Lecture Notes in Civil Engineering</u> and further indexing by Scopus and Web of Science.

Recommend using Edge, Chrome, or a similar browser to visit the ISIC 2022 conference website (https://ICISIC2022.com) for further detail.

Intelligent Construction Technology Team

Meeting | 07/08/21 Microsoft Teams

Agenda

ISIC Webinar Series & ISIC 2022 Call for Abstracts

MnROAD 2022 Construction Schedule

2022 MnROAD Construction Designs/Special Provisions

Phase II Contract Development

Project Technical Advisory Panels (TAPs)

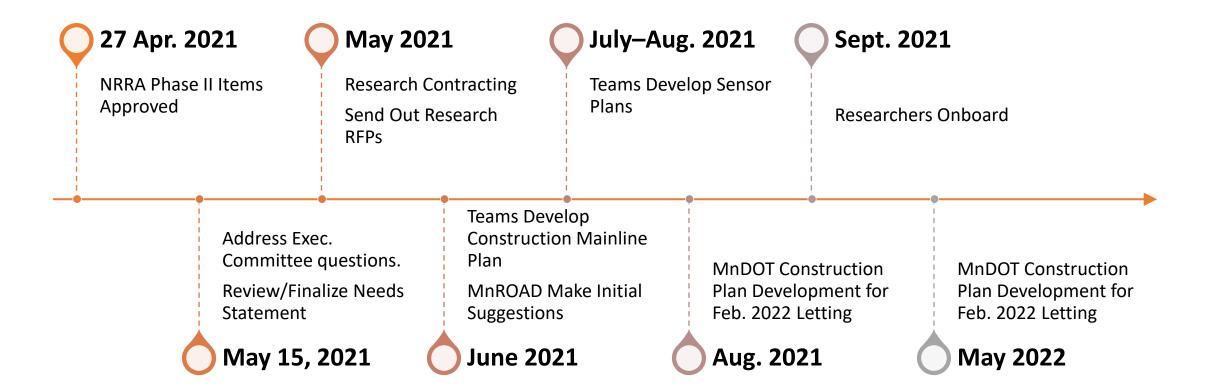
ICT During MnROAD Construction

ISIC Webinar Series – No. 004 New Digital As-Built and Project Information Model

• When:

- July 29, 2021
- 9AM to 11AM CDT (Goto Webinar)

- David Unkefer, PE, FHWA, USA (National Implementation EDC-6)
- Lance Parve, WSP, USA (Overview National Technical State of Practice)
- Becky Hjelm, Utah DOT, USA
- Michael Cremin, MN DOT, USA
- Ahmad Abu-Awash, IA DOT, USA (Bridges and Structures)
- Alexa Mitchell, HDR, USA



ISIC 2022 Conference Call for Abstracts

- Guimarães, Portugal
- September 6 to 9, 2022
- Conference theme
 - "Trends on Construction in the Post-Digital Era"
- Conference topics
 - everything "under the sun" for intelligent construction technologies
- Abstracts due on October 15, 2021 (download <u>abstract template</u>)
- Accepted papers
 - Included in the ISIC 2022 Conference Proceedings that will be published by <u>Springer Series Lecture Notes in Civil Engineering</u> and further indexing by Scopus and Web of Science.
- https://ICISIC2022.com

Schedule

Phase II Contract Development

NRRA Team	NRRA Contract Idea	Funding Approved	Changes Funding*	Update / Action Items
	MnROAD Reflective Cracking Challenge Tied to NCAT Additive Group Experiment Tied to Companion Sections in Missouri	225,000		RFP going into its final review with the flex TAP in July
Flex	Recycled Binder Availability	200,000		RFP going into its final review with the flex TAP in July
	Validation of Loose Mix Aging Procedures for Cracking Resistance Evaluation in Balanced Mix Design	100,000		RFP going into its final review with the flex TAP in July
	Perpetual Pavements in Wet Freeze Climate Tied to WI test section construction	200,000		Should these be combined to one RFP (ask each team)?
Flex-PM	Reclamation and Recycling Techniques to Achieve Perpetual Pavements Characteristics	150 000 RFP wi		Otherwise each RFP will be going into its final review with the TAPs in July

Phase II Contract Development (cont.)

NRRA Team	NRRA Contract Idea	Funding Approved	Changes Funding*	Update / Action Items
PM	Thinlays as a PM Treatment			PM final review of the tasks in this effort. Then PM team (state members) direct select contractor for this effort.
	Reduced Cement in Concrete	150,000		
	Use of Carbon Dioxide for Sustainable and Resilient Concrete Pavements Supported with FHWA for this contract 150K	150,000		Should these be combined to one 450K RFP? Otherwise each RFP will be going into its final review with the TAPs in July
Rigid	Alternative Cementitious Materials – Geopolymer Concrete	300,000	150,000	
	Technical Expert Guidance on PCC Mixes and Construction	Discuss	100,000	MnDOT working to develop this support needed and expect this to be a direct select contract – will report to the rigid team
	Sampling and Testing Contract (construction)	Discuss		Direct Select contract with AET – construction funding source might be possible at ~100K

Phase II Contract Development (cont.)

NRRA Team	NRRA Contract Idea	Funding Approved	Changes Funding*	Update / Action Items
All	EPD Development for 2022 MnROAD Construction	Discuss	150,000	Need to discuss with all teams – Use construction funding or NRRA to accomplish this effort. Estimated at 150K
PM-Geo	Flooded Pavements Assessment App–Phase 2	200,000		Contract with University of New Hampshire because they did phase-1 and can most efficiently accomplish phase-2 — working to develop this contract. Share team outline for university to develop contract and get TAP ok
Geo	Performance Evaluation of Wicking Geotextiles for Improving Drainage and Stiffness of Road Foundation	150,000		RFP going into its final review with the Geo TAP in July
ІСТ	Drainage and Stiffness of Road Foundation Convert Desktop Version of Veta to a WebBased Application and Standardized Material Delivery Management System Platform (Phase- 1 and 2) Support with FHWA			Transtec is in the process of being contracted under a sole source contract / Sole Source Contract due to Cross Licensing Agreement

^{*} Discuss the funding changes with Executive Committee

HMA Reflective Cracking Study

- tied to NCAT additive and Missouri test sections
- Existing Test Sections: 16-23 (4,487 feet)

• Construction:

- Remove 5" HMA Replace with 6" HMA mix on 12" class-6 granular base
- 10 test sections (400 feet with 25' before and after for coring ~450 feet total of each mix)

Action Needed:

- Flexible Team determine what 10 HMA mixes are needed?
- GeoTechnical Review (at a later time) base materials (we need a consistent base for study)
- ICT Team what technology could be utilized in this ~4,500 ft of granular base or HMA paving?

Reconstruction of Cells 16-23

2016 HMA Performance Testing Test Sections (tied to NCAT)

Replace: with 6" HMA 3, 2" Lifts

Remains: 12" Class 6

	23	22	21	20	19	18	17	16
	5" HMA	5" HMA	5" H MA	5" HMA				
	PG 64E-34	PG58H-34	PG 58H-34	PG 52S-34	PG 64S-22	PG 64S-22	PG 64S-22	PG 64S-22
	Low LTC	High LTC		Med/High LTC	Med LTC	Med LTC	High LTC	High LTC
	Pote nti a l	Potential	Med LTC	Potential	Potential	Potential	Potential	Pote nti al
	15% RAP	20% RAP	Potential	30% RAP	20% RAP	20% RAP	10% RAP	20% RAP
	Hi MA	LMS	20% RAP		3% Air Voids		5% RAS	5% RAS
-		PG Binder+	Typical Mix	12"		12"		
	12" Class 6	a nti-stri p		Class 6	12"	Class 6	12"	12"
		12" Class 6	12" Class 6		Class 6		Class 6	Class 6
	12" Class 3							
	7" Select							
	Gran	Gran	Gran	Gran	Gran	Gra n	Gran	Gran
	Clay							
Opened	Sept 16							
Length (ft)	500	500	500	500	500	500	500	500
Gap (ft)		80	80	90	50	70	70	47

10 Test Sections @ 450 feet

Cells 16-23 ICT

Material	Technology
Pre-Milling	3D GPR (thickness), FWD, TSD (traffic speed deflectometer / NCHRP project) Smoothness Scan road and create 3D existing and milled surface models Is milling texture being looked at and affect on bonding (e.g., drum speed)?
Milling	AMG (Variable Depth) Milling (>=1,000 feet) – tie Phase I milling study – Include as Contract Item
12" Granular Base	IC Pre-Mapping (Phase I project – level 3 ICMV depending upon timing) – include as contract item LWD, DCP (assuming refusal) – collecting by OMRR Research? Scanning of Moisture – tie to Phase I project Corrective Action Needed?

Material	Technology
6" Hot Mix Asphalt	Variable Depth Paving – Contract (concern: No paving contractors in MN set up with this technology – pave to depth with AMG milling) Asphalt Real-Time Smoothness (ARTS) (Phase I project – if available) – Add via Change Order if technology ready IC – contract item PMTP – contract item MDMS – contract item Smoothness – contract item FWD – collected by OMRR research DPS – collected by OMRR research (collaboration on cores w/ Flex Team) must collect 3 linear passes of k-measurements (adjacent CL, middle of lane, adjacent to shoulder; data lot labeling must be used and follow other ICT requirements); MnDOT AMT unit/NDDOT will mine data in Veta) Seismic – collected by Geotech if system available (phase I project) Road Doctor (include GPR – layer thickness) – collected by OMRR research TSD (Pay for service is available)

All spot tests – collect GPS coordinates and/or station and offset Monitoring Plan Laser Scanning?

As-Builts recorded during AMG milling & paving

3 Concrete Studies -

 12
 72
 73
 71
 70
 96
 162
 160
 9
 8
 7
 806
 706
 606
 506
 805

Study - Use of Carbon Dioxide for Sustainable and Resilient Concrete Pavements

Study - Reduced Cement in Concrete

Alternative Cementitious Materials – Geopolymer Concrete

• (three studies – Rigid team determines the number of cells for each)

Existing Test Sections:

- First Grouping 506, 606, 706, 806, 7, 8, 9 (2,074 feet)
- gap
- Second Grouping 96, 70 (648 feet), 71, 73, 72 (945 feet), 12 (499 feet)

Construction:

- Remove existing concrete and base materials varying depths
- Pave 7.5" PCC with common drainable granular base 15' panels input from Geotech team
 - First Grouping 8 test sections (~250 feet each with no transitions)
 - Second Group 8 test sections (~250 feet each with no transitions)

Action Needed:

- Rigid Team determine the number and concrete mixes for each study from the above utilizing the 16 test section locations.
- Rigid Team discuss the need for a consistent base support (can the geotechnical have variations built into the test sections and not effect the surface material studies)?
- GeoTechnical Review (at a later time) base material
- ICT Team what technology could be utilized in this granular base or PCC paving?
- Assume a common control mix could be shared as one test section leaving 15 test sections.
- Note that cells 71,73,72 do not have to be reconstructed due to pavement condition. Could be withheld from the contract if costs come in high.

Reconstruction of Cells 12, 70-73 & 96

Remove Existing Concrete & Base at varying depths

SHRP-II Wh
Composite Pavements Reir

7.5" PCC 15' Panels

Common Drainable Base

4" Class 5Q Drainable Granular Base 5.5" Class 7 Recycled Granular Base (may or may not use a paver)

	Keli			
72	73	71	70	96
3" PCC	3" PCC	3" PCC	28.54.24	MicroSurface
15'Lx12'W	15'Lx12'W	15'Lx12'W	3" 64-34	6" Fiber
1.25" dowel	1.25" dowel	1.25" dowel	Saw/Seal	Reinf. PCC
6" PCC Low Cost	6" PCC Low Cost	6" PCC Recycle	6" PCC Recycle	2011 Traditional Grind 7*
8" Class 7	8" Class 7	8" Class 7	8" Class 7	58-28 93HMA Clay
				5'lx6'W
Clay	Clay	Clay	Clay	5 DX6 W
EAC Surface	Innovative Grind (Drving Ln)	Innovative Grind (Drving Ln)	15'Lx12'W	Polyolefin Fibers
	Convent.	Convent.	Driving Ln	25p cy
	Grind	Grind	1.25" dowel	
May 10	May 10	May 10	May 10	Oct 97
469	210	267	480	168
5				

8 Test Sections ~ 250 feet (no transitions)

Reconstruction of Cells 7-9, 506, 606, 706, 806

Remove Existing Concrete & Base at varying depths

> 7.5" PCC 15' Panels

Common Drainable Base

4" Class 5Q Drainable Granular Base 5.5" Class 7 Recycled Granular Base (may or may not use a paver)

> Opened Length (ft)

	~ 2,000 feet						
	Original 5-Year PCC		Fiber Reinforced PCC				
	9	8	7	806	706	606	506
	7.5" PCC 2008 Ultimate	7.5" PCC 2007	7.5" PCC 2007	5" Fiber Reinf. PCC (High) Astro Turf	5" Fiber Reinf. PCC (Enhanced) Astro Turf	5" Fiber Reinf. PCC (Standard) Astro Turf	5" PCC Control No Fibers Astro Turf
	Grind	Traditional Grind	Innovative Grind				
	4"PSAB	4*PSAB	4°PSAB	11" Class 5Q	11" Class 5Q	11" Class 5Q	11" Class 5Q
ise	3"CI 4	3"CI 4	3°CI 4				
se	Clay 15'Lx14'W 15'Lx13'W	Cla y 15'Lx14'W 15'Lx13'W	Clay 20'Lx14'W 20'Lx13'W	3" Class 5	3" Class 5	3" Class 5	3" Class 5
	13' PCC Shoulder	13' PCC Shoulder	1" dowel	Clay	Clay	Clay	Clay
	Passing Ln 1" dowel	Passing Ln 1" dowel		Fibers 0.75% by Volume	Fibers 30% RSR	Fibers 20% RSR	
pened	Sep 92	Sep 92	Sep 92	2017	2017	2017	2017
ngth (ft)	518	510	500	131	135	134	146
Gap (ft)	8	30	35	28			

8 Test Sections ~ 250 feet (no transitions)

Material	Technology	
4" Class 5Q Drainable Granular Base	IC Pre-Mapping (Phase I project – level 3 ICMV depending upon timing) – include as contract item (mat'l left in place) IC during compaction efforts (ICMV, MDP) LWD, DCP (assuming refusal) – collecting by OMRR Research? Continuous Moisture Testing – tie to Phase I project Automated Plate Load Testing Modulus Testing – coordinate with cont. moisture & Level 3/4 testing Density	
5.5" Class 7 Recycled Granular Base	See 5Q comments Use sand cone if testing for density – not nuke	
Concrete Paving (may or may not use a paver)	Concrete Real Time Smoothness (CRTS) – SHRP2 program if paver	
Concrete Removals (5-9")	Wirtgen – Hamm H25iVC roller (vibration crusher) – Tim will send info. (particle size ~ 2 ft down to 4" or less) – out for 5-6 years (will not work in 12" thick rebar enforced concrete; uses force going into mat'l to crush – not affected by underlying mat'l; often used in demolition locations, where vibration not a factor) Include vibration monitoring (Geotech) Pre-thickness evaluation with 3D GPR	ad
	I VI VI VII. I/Cocal Lil	Alliance

Material	Technology
Existing Clay Subgrade	Will send link to MnDOT standard specs. for subgrade Link is on Geotech team website (state specs and design manuals posted on NRRA Geotech website). IC: CMV / MDP – if compaction needed

Studies

Reclamation and Recycling Techniques to Achieve Perpetual Pavements Characteristics
Thinlays as a PM Treatment

Performance Evaluation of Wicking Geotextiles for Improving Drainage and Stiffness of Road Foundation (ties to 4 and 15 SFDR)

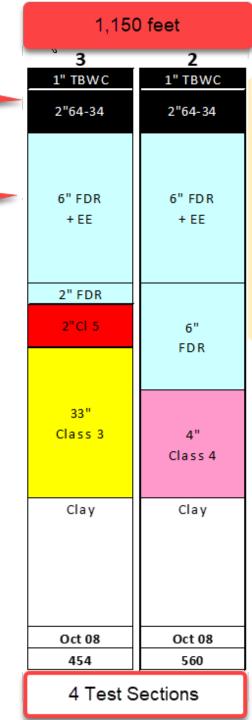
• Existing Test Sections: 2 (575 feet),3 (575 feet),4 (575 feet), gap to, 115,215 (573 feet)

Construction:

- Cell 2,3 (minimal repair of SFDR) split into 4 test sections with minimal PM treatment and thinlay as other treatment. Flex group designs if any milling is done and the mix designs. Example 102 PM treatment, 202 thinlay, 103 thinlay, 203 PM treatment.
- Cell 4 (extensive repair of SFDR) Flex and Geotech team design section. How can the wicking geotextile be used to improve system from the past (full depth section with no base was the original roadway before SFDR in 2007)
- Cell 115,215 (New reclamation of a ~14 inch full depth roadway with no granular base) Flex and Geotech team to design section. How can the wicking geotextile be used to improve system?

Action Needed:

- PM and Flex design surface treatments for cells 2 and 3 good performing SFDR (thinlay and another surface treatment). Note cell 4 and 115-215 also will need surfaces.
- Flex and Geotech design repairs to cell 4 highly distressed SFDR
- Flex and Geotech design a perpetual type of recycled cell to replace 115 and 215.
- ICT Team what technology could be utilized in this area?



Cells 2-3 ICT

Possibly 2 Thinlays 2 PM Treatments

> Minimal SFDR Repair

Material	Technology	Comments
PM Treatments		
Thinlays	AMG Milling	

Cell 4 ICT

Surface (?)
SFDR Repairs

Extensive SFDR Repair

Flex & Geotech still need to design

Wicking Geotextile to be Used

575 feet

4

1" 64-34

2"64-34

8" FDR + EE

> 9" FDR +

Fly As h

Clay

Oct 08

496

NKK

Asphalt Surface

14" Full Depth Reclamation (No Granular Base)

Wicking Geotextile to be Used

Material	Technology
НМА	
FDR	

215	115
1.5" HMA	MicroSurface
2.25" WM	2.6" WM
58-34	58-34
11"	11"
64-22	64-22
1993 HMA	1993 HMA
Clay	Clay
M-Mill .75"	M-Mill .375"
Overlay 1.5"	IVI-IVII 11 .3/3
(2 0.75" lifts,	Micro surface
4.75 mm PG	CQS-1P 0.375"
58V-34)	520 1. 0.075
33. 3.,	
2017	2017
283	290

Perpetual Pavements in Wet Freeze Climate

- Existing Test Sections: 101,201 (500 feet)
- Construction:
 - Flexible Team design needed
 - 1 or 2 test sections match Wisconsin plus?

• Action:

- Flexible Team Designs needed for two perpetual pavements
- Can a 250 foot section work?
- ICT Team what technology could be utilized in these test sections?

ICT team needs to wait for more details

Recycled Binder Availability

• Existing Test Sections:

- 160,162 (447 feet)
- (Break between the cells)
- 114,214,314,414,514,614,714,814,914 (520 feet)

• Construction:

- Remove 18" of whitetopping and clay subgrade on all cells and replace with a 12" granular base with 6" HMA surface
- 4 test sections at 250' each with transitions.

Questions:

- Flex team what mix four mix designs?
- Flex team do these test sections have to be at MnROAD? Could they be on another roadway because instrumentation is not a priority?
- Geotechnical Group What base is suggested?

Cells 160,162,114,214,314,414,514,614,714,814,914?

- 12" Granular Base
- 6" HMA
- 4 test section @ 250 feet each with transitions (1,000 ft)

Material	Technology	Comments
Granular Base		
НМА		

BCOA "Whitetopping" with Fibers

• Existing Test Sections: 114,214,314,414,514,614,714,814,914 (520 feet)

• Construction:

- Remove existing 6" PCC + mill 1" HMA
- Construct 5" FRC, 6'x6' panels BCOA. Use fibers intended to enhance joint LTE (ranked #6)

• Question:

- Test sections do need work
- MnDOT would do the needed research at our costs

Cells 114,214,314,414,514,614,714,814,914 (520 feet)?

Material	Technology	Comments
Concrete		

