IOWA STATE UNIVERSITY

Dept. of Civil, Construction & Envr. Engineering

UNIVERSITY OF WISCONSIN-MADISON Dept. of Civil & Envr. Engineering

Determining Pavement Design Criteria for Recycled Aggregate Base and Large Stone Subbase

Bora Cetin, PI William Likos, Co-PI Tuncer Edil, Co-PI Ashley Buss, Co-PI Halil Ceylan, Co-PI Junxing Zheng, Co-PI

MnDOT Project TPF-5(341)

Monthly Meeting August 2nd, 2018

RESEARCH TEAM

Iowa State University

- Principal Investigator Bora Cetin Assistant Professor – Department of Civil, Construction & Environmental Engineering

 Co-Principal Investigator – Ashley Buss Assistant Professor – Department of Civil, Construction & Environmental Engineering

 Co-Principal Investigator – Halil Ceylan Professor – Department of Civil, Construction & Environmental Engineering
- Co-Principal Investigator Junxing Zheng Assistant Professor – Department of Civil, Construction & Environmental Engineering
- Research Personnel Haluk Sinan Coban PhD Student – Department of Civil, Construction & Environmental Engineering

University of Wisconsin-Madison

- Co-Principal Investigator William Likos Professor – Department of Civil and Environmental Engineering
- Co-Principal Investigator Tuncer B. Edil Professor Emeritus – Department of Civil and Environmental Engineering

NRRA Members (Agency Partners)

- > MnDOT
- ➤ Caltrans
- ≻ MDOT
- Illinois DOT
- ≻ LRRB
- > MoDOT
- ➤ WisDOT

NRRA Members (Industry Partners)

- Aggregate & Ready Mix of MN
- Asphalt Pavement Alliance (APA)
- Braun Intertec
- Concrete Paving Association of MN (CPAM)
- Diamond Surface Inc.
- Flint Hills Resources
- International Grooving & Grinding Association (IGGA)
- Midstate Reclamation & Trucking
- MN Asphalt Pavement Association
- Minnesota State University Mankato
- > National Concrete Pavement Technology Center
- Roadscanners
- University of Minnesota Duluth
- University of New Hampshire
- Mathy Construction Company
- ➤ 3M
- > Asphalt Materials & Pavements Program
- Husky Energy
- Hardrives, Inc.
- Testquip LLC
- The Transtec Group
- The Dow Chemical Company
- Pavia Systems, Inc.

- Michigan Tech Transportation Institute (MTTI)
- University of Minnesota
- National Center for Asphalt Technology (NCAT) at Auburn University
- GSE Environmental
- Helix Steel
- Ingios Geotechnics
- > WSB
- > Cargill
- PITT Swanson Engineering
- Collaborative Aggregates LLC
- American Engineering Testing, Inc.
- Center for Transportation Infrastructure Systems (CTIS)
- Asphalt Recycling & Reclaiming Association (ARRA)
- First State Tire Recycling
- BASF Corporation
- Upper Great Plains Transportation Institute at North Dakota State University
- All States Materials Group
- Caterpillar
- University of California Pavement Research Centre
- Payne & Dolan, Inc.

OUTLINE

- Follow-Up
- Task 3 Construction Monitoring and Reporting
- Task 4 Laboratory Testing

FOLLOW-UP

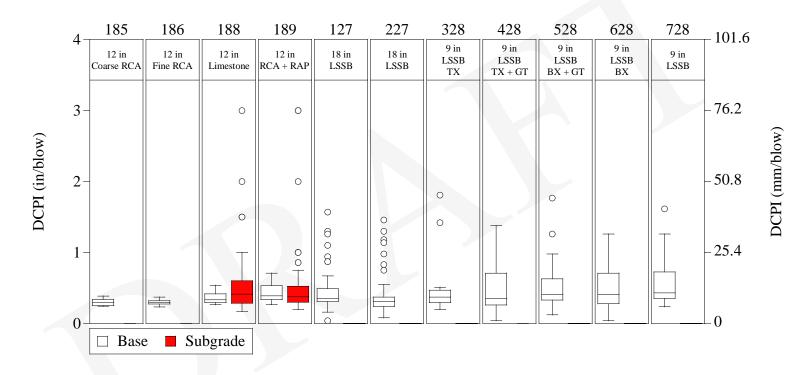
- Task 1 Literature Review and Recommendations
- Task 2 Tech Transfer "State of Practice"
- Task 3 Construction Monitoring and Reporting
- Task 4 Laboratory Testing
- Task 5 Performance Monitoring and Reporting
- Task 6 Instrumentation
- Task 7 Pavement Design Criteria
- Task 8 & 9 Draft/Final Report

TEST SECTIONS

	Recycled Ag	gregate Base		Large Stor	ne Subbase	Large Stone Subbase with Geosynthetics										
185	186	188	189	127	227	328	428	528	628	728						
3.5 in Superpave	3.5 in Superpave	3.5 in Superpave	3.5 in Superpave	3.5 in Superpave	3.5 in Superpave	3.5 in Superpave	3.5 in Superpave	3.5 in Superpave	3.5 in Superpave	3.5 in Superpave						
12 in Coarse RCA (Class 5Q)	12 in Fine RCA	12 in Limestone	12 in RCA + RAP	6 in Class 6	6 in Class 6	6 in Class 5Q	6 in Class 5Q	6 in Class 5Q	6 in Class 5Q	6 in Class 5Q						
	(Class 5)	(Class 6)	(Class 6)			9 in LSSB	9 in LSSB	9 in LSSB	9 in LSSB	9 in LSSB						
3.5 in S. Granular Borrow	3.5 in S. Granular Borrow	3.5 in S. Granular Borrow	3.5 in S. Granular Borrow	18 in LSSB	18 in LSSB (1.15)	TX	TX - GT	BX - GT	BX							
Clean Sand	Clean Sand	Clay Loam (A-6)	Clay Loam (A-6)	(1 lift)	(1 lift)	Clay Loam (A-6)	Clay Loam (A-6)	Clay Loam (A-6)	Clay Loam (A-6)	Clay Loam (A-6)						
							NOTE: TX = Triaxial Geogrid BX = Biaxial Geogrid									
				Clay Loam (A-6)	Clay Loam (A-6)	GT = Nonw	voven Geotex	tile								

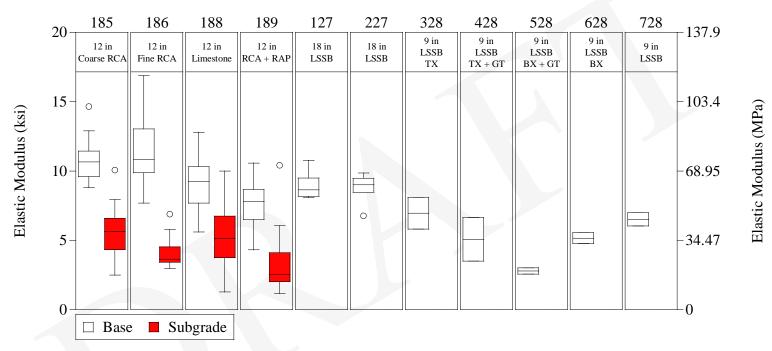
Task 3 – Construction Monitoring and Reporting

- Dynamic Cone Penetrometer (DCP) Test
- Lightweight Deflectometer (LWD) Test
- Validated Intelligent Compaction (VIC)
- Falling Weight Deflectometer (FWD) Test


Dynamic Cone Penetrometer (DCP) Test (ASTM D6951)

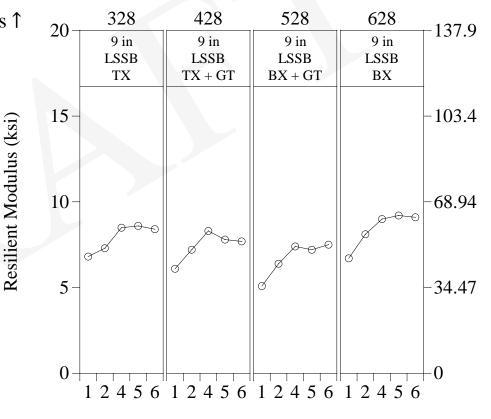
- Subgrade layers data available for cells 188 and 189 [penetration depth = 18 in (457.2 mm)]
 - Cells $185 186 \rightarrow$ No test due to bad weather
 - Cells $328 728 \rightarrow$ No test due to very soft subgrade (for LSSB)

[DCPI: 2.5 - 3.5 in/blow (63.5 - 88.9 mm/blow)]

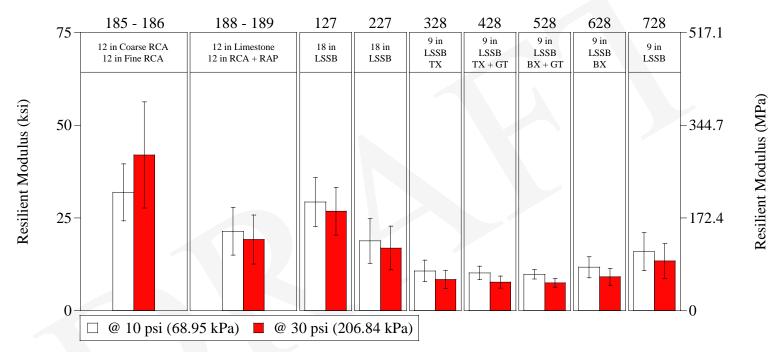

- Base layers data available for each cell
 - Cells $185 189 \rightarrow$ Depths corresponding to 12 drops
 - Cells $127 728 \rightarrow$ Penetration depth = 6 in (152 mm)

Dynamic Cone Penetrometer (DCP) Test (ASTM D6951) – Cont'd

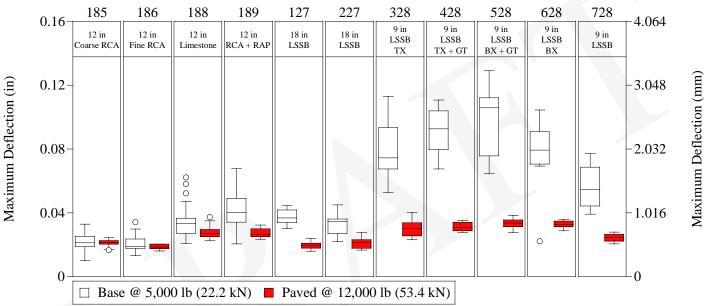
- Cells 185 186 (Base) → Lowest DCPI
- Cells 188 189 (Base) → Low DCPI (no outliers)
- Cells 127 782 (Base) \rightarrow Higher and wider DCPI (with outliers)


Lightweight Deflectometer (LWD) Test (ASTM E2583)

- Cells $127 728 \rightarrow$ No test due to very soft subgrade
- Cells $185 189 \rightarrow$ Base modulus > Subgrade modulus
- Cells 185 186 (Base) → Higher modulus
- Cells 328 728 (Base) → Lower modulus

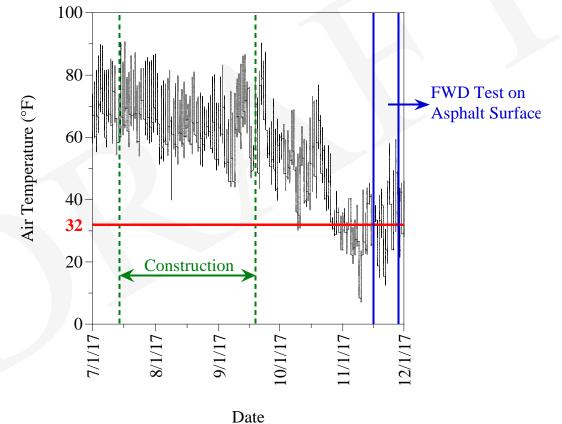

Validated Intelligent Compaction (VIC) (White and Vennapusa 2017)

- Cells 328 628
 - − No. of passes ↑, resilient modulus ↑
- Insufficient compaction


Number of Passes

Validated Intelligent Compaction (White and Vennapusa 2017) - Cont'd

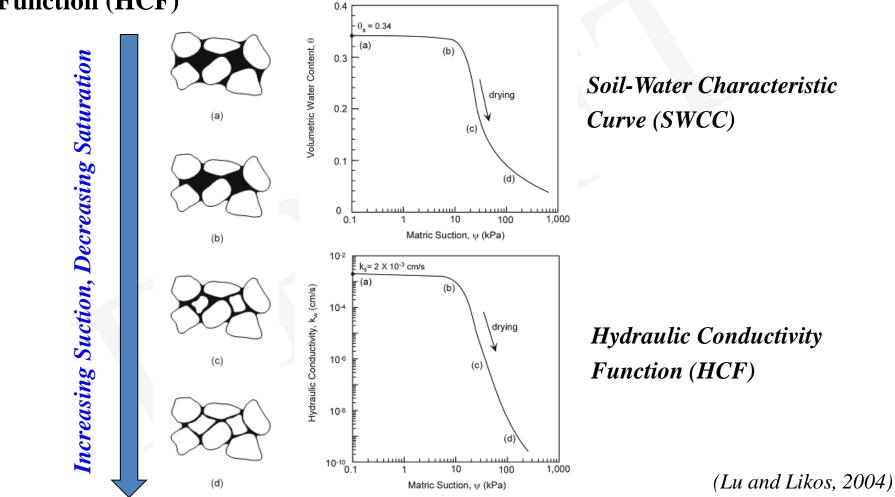
- Only in cells 185 186 (Base) → Modulus @ 30 psi > Modulus @ 10 psi
- Cells 185 186 (Base) → Highest modulus
- Cells 127 227 (Base) \rightarrow Similar or higher modulus than cells 188 189
- Cells 328 728 (Base) → Lowest modulus

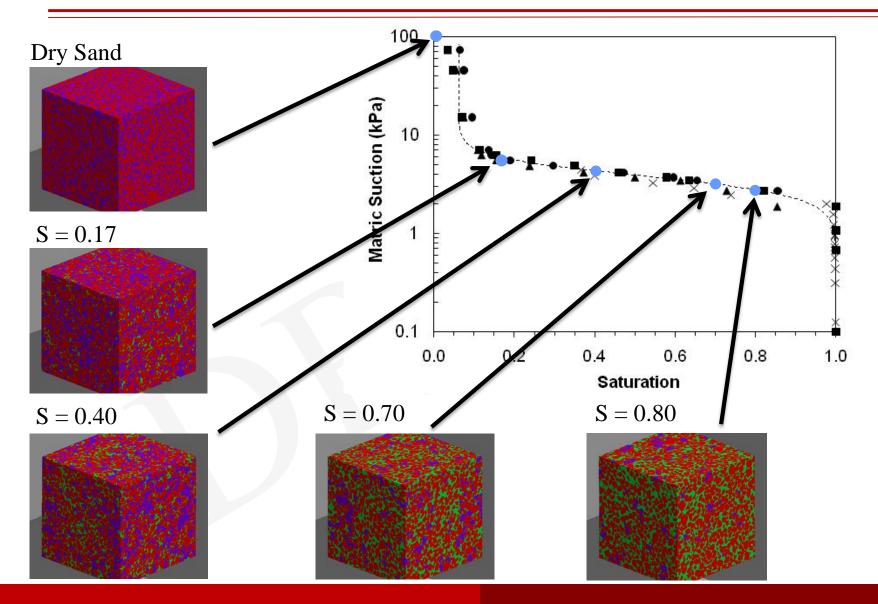

Falling Weight Deflectometer (FWD) Test

- Base Layers
 - Cells 185 and 186 \rightarrow Lowest deflections
 - Cells $188 227 \rightarrow$ Similar median but wider range in cells 188 189
 - Cells $328 728 \rightarrow$ Higher deflections
- Asphalt Surface
 - Similar deflections

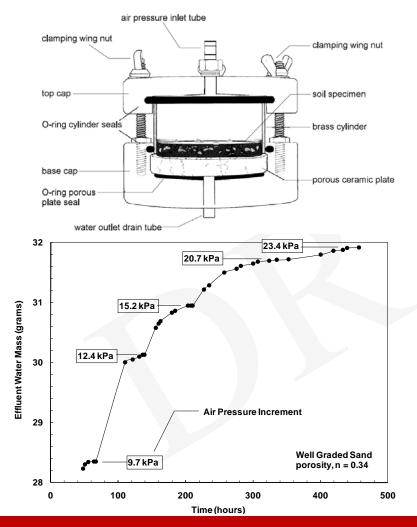
Falling Weight Deflectometer (FWD) Test – Cont'd

• Possible frozen road condition during FWD testing on asphalt in November 2017.



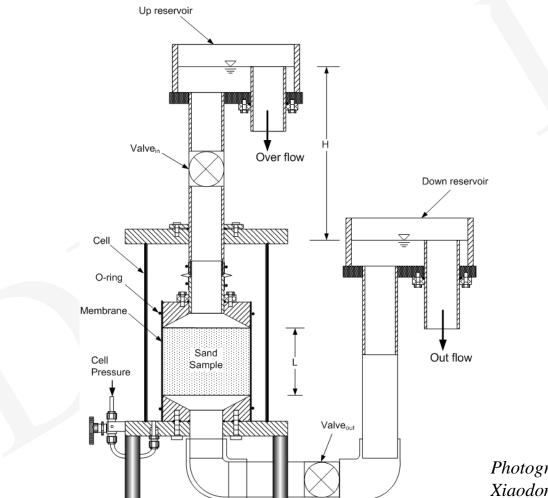

Task 4 – Laboratory Testing

• Iowa State University


- Soil classification
- Image analysis
- Proctor & gyratory compaction
- Asphalt & cement content determination
- Contact angle measurement
- University of Wisconsin-Madison
 - Soil-water characteristic curve
 - Permeability

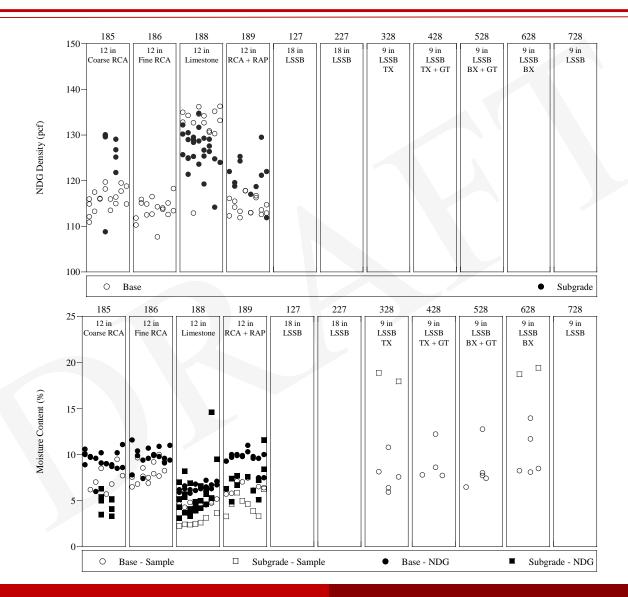
Soil-Water Characteristic Curve (SWCC) and Hydraulic Conductivity Function (HCF)

Axis Translation Method


University of Wisconsin-Madison

Large-Scale Axis Translation Methods

UW-Madison Flexible-Wall Permeameter for Coarse-Textured



Photographic Portrayal by Xiaodong Wang & Craig H. Benson

Soils

Permeameter with Constant Head Reservoirs for Headwater & Tailwater

SCHEDULE

TASKS															Γ	мС	N	ΓH	S														
	1	2	3	4	5	6	7	8	9	1 0	1 1	1 2	1 3	1 4	1 5	1 6	1 7	1 8	1 9	2 0	2 1	2 2	2 3	2 4	2 5	2 6	2 7	2 8	2 9	3 0	3 1	3 2	3 3
Task 1																																	
Task 2																																	
Task 3																																	
Task 4																																	
Task 5																																	
Task 6																																	
Task 7																																	
Task 8																																	
Task 9																																	

Thank You! QUESTIONS??

Iowa State University

University of Wisconsin-Madison