IOWA STATE UNIVERSITY

Dept. of Civil, Construction & Envr. Engineering

UNIVERSITY OF WISCONSIN-MADISON Dept. of Civil & Envr. Engineering

Determining Pavement Design Criteria for Recycled Aggregate Base and Large Stone Subbase

Bora Cetin, PI William Likos, Co-PI Tuncer Edil, Co-PI Ashley Buss, Co-PI

Halil Ceylan, Co-PI

Junxing Zheng, Co-PI

MnDOT Project TPF-5(341)

Kick of Meeting February 1st 2018

RESEARCH TEAM

Iowa State University

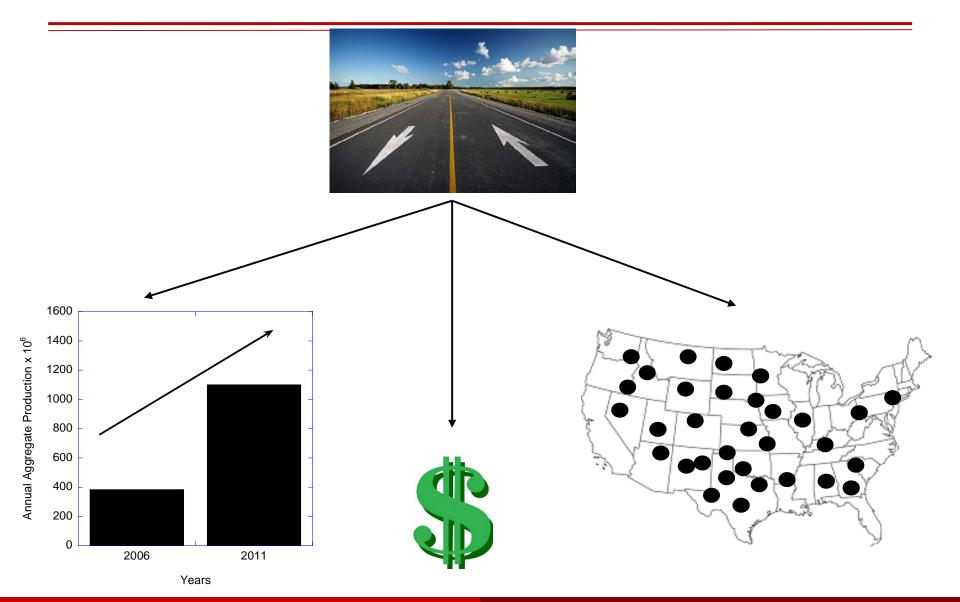
- Principal Investigator Bora Cetin
 - Assistant Professor Department of Civil, Construction & Environmental Engineering
- Co-Principal Investigator Ashley Buss
 - Assistant Professor Department of Civil & Environmental Engineering
- Co-Principal Investigator Halil Ceylan
 - Professor- Department of Civil, Construction & Environmental Engineering
- Co-Principal Investigator Junxing Zheng
 - Assistant Professor- Department of Civil, Construction & Environmental Engineering
- Research Personnel Haluk Sinan Coban
 - PhD Student Department of Civil, Construction & Environmental Engineering

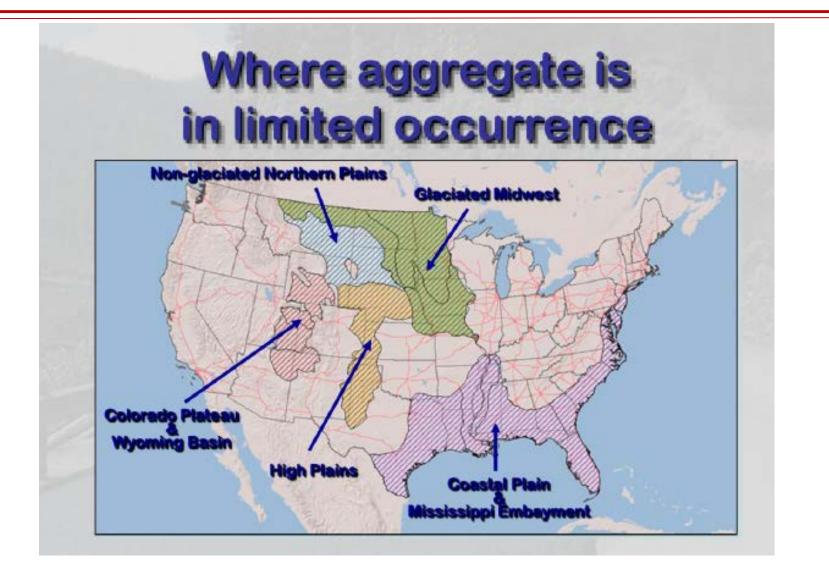
University of Wisconsin-Madison

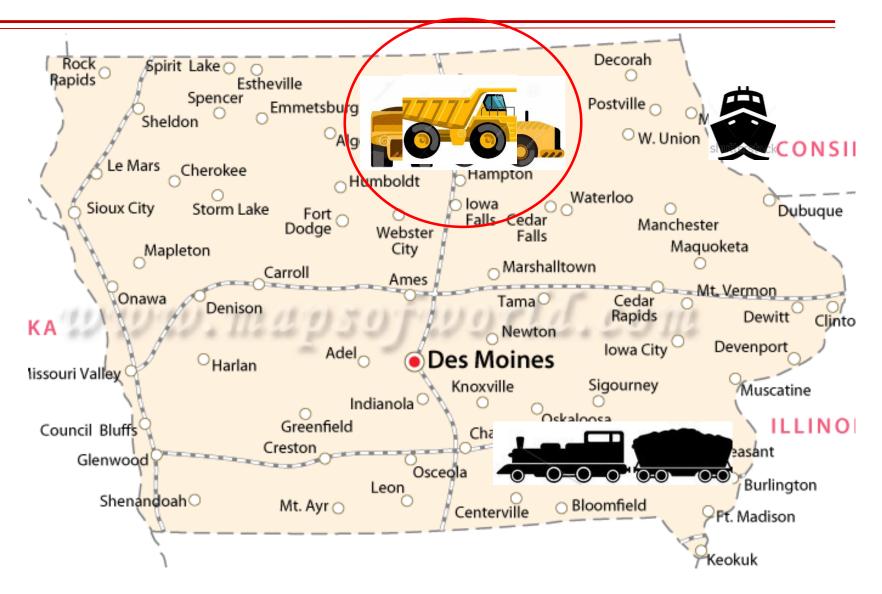
- Co-Principal Investigator William Likos
 - Professor Department of Civil and Environmental Engineering
- Co-Principal Investigator Tuncer B. Edil
 - Professor Emeritus Department of Civil and Environmental Engineering

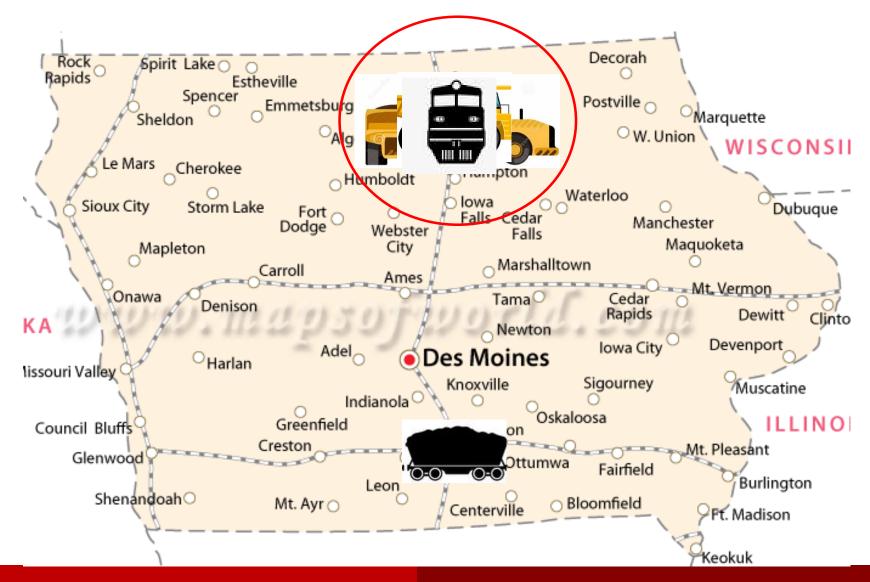
NRRA Members (Agency Partners)

- ≻ MnDOT
- ➤ Caltrans
- > MDOT
- Illinois DOT
- ≻ LRRB
- > MoDOT
- ➤ WiscDOT

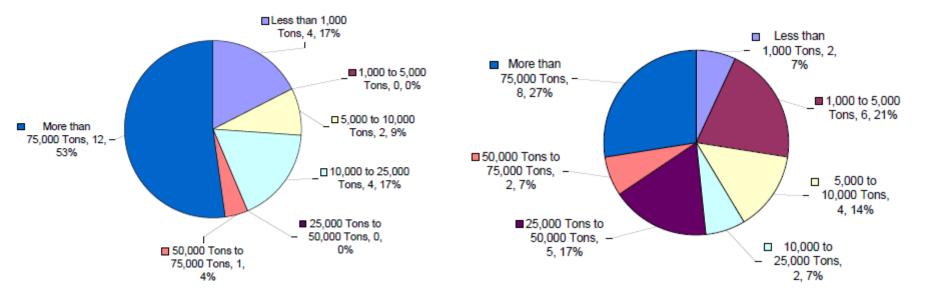

NRRA Members (Industry Partners)


- Aggregate and Ready Mix (Association of MN)
- > APA
- Braun Intertec
- > CPAM
- Diamond Surface Inc
- Flint Hills Resources
- > IGGA
- MIDSTATE (Reclamation and Trucking)
- MN Asphalt Pavement Association
- Minnesota State University
- > NCP Tech Center
- Road Scanners
- University of Minnesota-Duluth
- University of New Hampshire
- > MATHY
- ≻ 3M
- Paviasystems


- Michigan Tech
- University of Minnesota
- > NCAT
- GSE Environmental
- > HELIX
- Ingios
- > WSB
- > Cargill
- PITT Swanson Engineering
- ➢ INFRASENSE
- Collaborative Aggregates LLC
- American Engineering Testing, Inc.
- > CTIS
- > ARRA
- ▶ 1st
- > O-BASF
- North Dakota State University
- All States Materials Group


OUTLINE

- Problem Statement
- ➢ Background
- ➢ Objectives
- ≻Research Plan
- Products and Deliverables
- Agency Assistance



2 billion tons/year aggregate produced (FWHA 2004)
200 million tons/year of RCA and 90 million tons/year of RAP generated (FHWA 2011)

http://www.gratechcompanyltd.com/aggregate.htm

Annual Quantity Used

RAP

RCA

From Edil et al. (2012)

PROBLEMS WITH USE OF RECYCLED BASE MATERIAL AND LARGE STONE SUBBASE

- Limited information about the performance of RCA and RAP built on LSSB.
 - Different mixtures of RCA-RAP
 - Freeze-thaw durability
 - Frost heave-thaw weakening settlement
 - ≻ Stiffness
- No pavement design guideline for pavements built with RCA, RAP on LSSB.
- Verify available methods to predict stiffness and strength of these materials with simple index properties.

OBJECTIVES

1st Goal – Determine the field and laboratory performance

- FWD, LWD, DCP, Intelligent compaction (IC) data
- Unsaturated characteristics, index properties

2^{nd} Goal – Develop a method to estimate the stiffness and permeability

- Percent crushing of recycled aggregates and LSSB
- Sphericity, angularity, and surface texture of aggregates
- Gravel, sand, fines content, gravel-to-sand ratio, D_{10} , D_{30} , D_{50} , D_{60}

$\mathbf{3}^{rd}$ Goal – Prepare a pavement design and construction specification

- Performance
- Cost benefits
- Life cycle cost

Overview of Research Plan

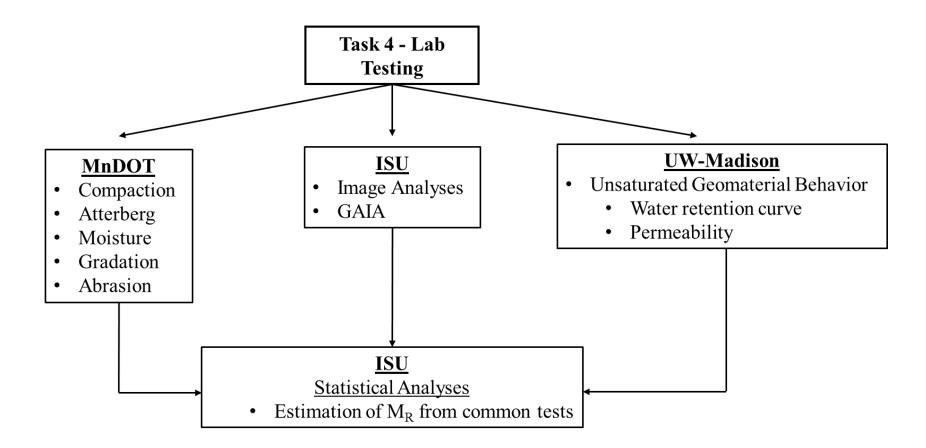
- Task 1 Literature Review and Recommendations
- Task 2 Tech Transfer "State of Practice"
- Task 3 Construction Monitoring and Reporting
- Task 4 Laboratory Testing
- Task 5 Performance Monitoring and Reporting and Climatic Effects
- ➤ Task 6 Instrumentation
- Task 7 Pavement Design Criteria
- Task 8&9 Draft/Final Report

Task 1 – Literature Review and Recommendations

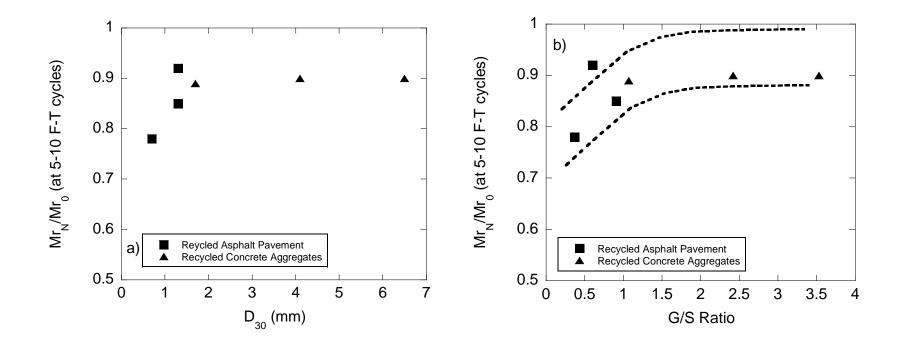
Conduct a comprehensive literature review on:

- Current recycling practices of State DOTs from different climatic regions
- Previous laboratory and field investigations on the use of RCA, RAP, and LSSB
- In depth review on a recently published FHWA report (Edil 2012)

Task 2 – Tech Transfer "State of Practice"

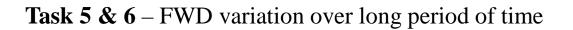

Prepare a report:

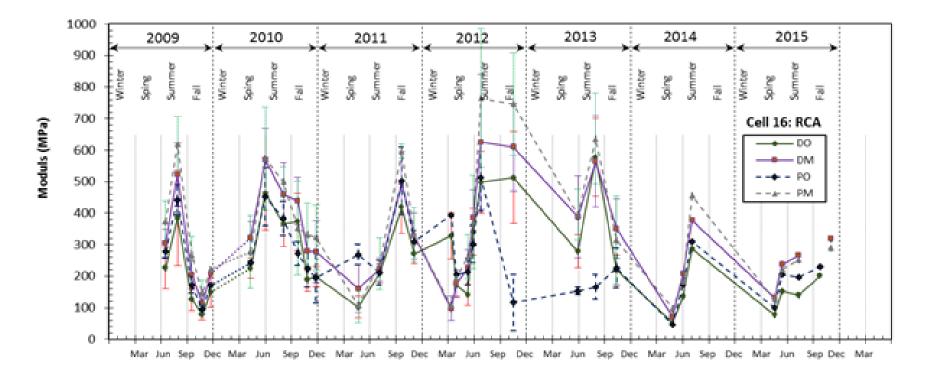
- To guide local county engineers and state DOTs on how to apply recommended methods and designs to built highway pavement foundation systems with recycled materials and LSSB.
- Specific information will be provided about the mixtures of RCA-RAP-VA, RCA-VA, and LSSB built with different thickness and geosynthetics.
- > CP Tech Center will assist to the research team


Task 3 – Construction Monitoring and Reporting

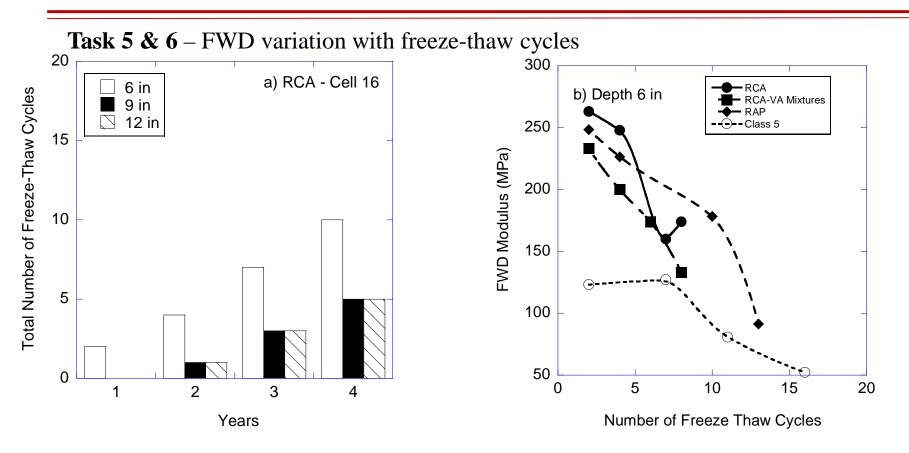
				Sou	th Side Cell	s (West to	East)										
	Recyc	led Unboun	d Base		Large S	ubbase	Large Subbase and Geogrid Cells										
185	186	87	188	189	127	227	328	428	528	628	728						
3.5" HMA	3.5" HMA	4" HMA	3.5" HMA	3.5'' HMA	3.5" HMA	3.5" HMA	3.5" HMA	3.5" HMA	3.5" HMA	3.5" HMA	3.5" HMA						
12" Coarse	12'' Fine	4'' Mesabi Ballast	12" Recycled	12" Recycled	6'' Class 6	6" Class 6	6'' Class 6	6" Class 5Q	6" Class 5Q	6'' Class 5Q	6'' Class 5Q						
RCA	RCA	CA-15	Aggregate Base Class 6	Aggregate Base Class 6	18'' Large Subbase	18" Large Subbase	9'' Large Subbase	Grid 1 9" Large Subbase	Fabric Grid 1 9" Large Subbase	Fabric Grid 2 9'' Large Subbase	Grid 2 9'' Large Subbase						
3.5" Select	3.5" Select		3.5" Select	3.5" Select	1 Lift	2 L ift			Subbase	Subbase							
Granular Borrow	Granular Borrow		Granular Borrow	Granular Borrow													
Sand	Sand	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay						

Task 4 – Laboratory Testing

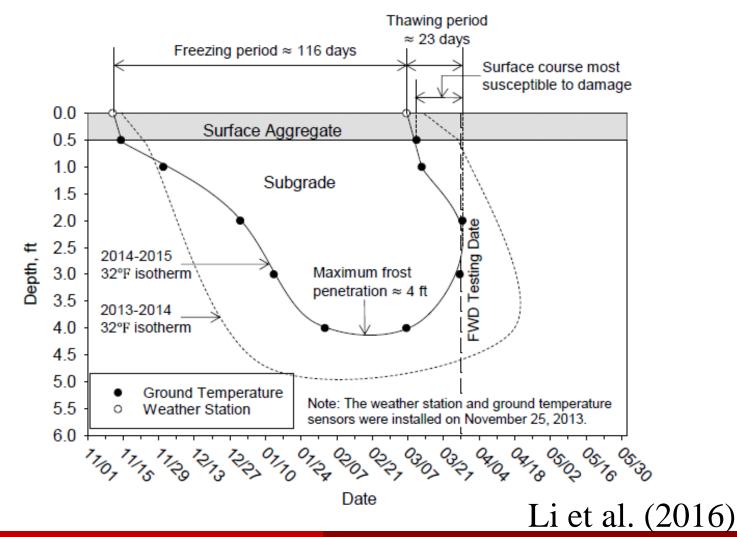

Task 4 – Example of Freeze-Thaw Behavior of Recycled Materials



Normalized resilient modulus of recycled concrete aggregate and recycled asphalt pavement at 5-10 F-T cycles (a) vs D_{30} , (b) vs G/S ratio (from Rosa et al. 2017).


Task 5 & 6 – Performance Monitoring and Reporting, and Climatic Effects <u>Analyze the following data that will be collecting throughout the</u> <u>project</u>

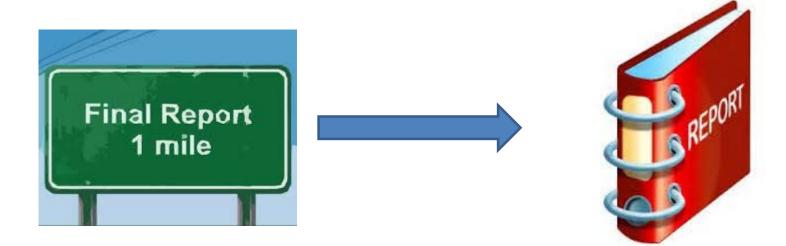
- FWD, frost heave-thaw settlement, IRI, rutting, surface survey.
- > Temperature, moisture, matric suction, strain.
 - Determine freeze-thaw cycle numbers and its impact on pavement performance
 - Determine impact of frost heave and thaw settlements on pavement performance
 - Predict frost/thaw depth



FWD elastic modulus of RCA base layer during 7 years (Data collected from MnDOT 2008 project).

a) Cumulative number of F-T cycles since 2008 in RCA base layer and b) field elastic modulus of RCA, RCA-VA blend, RAP, and Class 5 aggregate field test sections with F-T cycles (Edil et al. 2017).

Task 5 & 6 – Frost depth prediction over the years


Task 7 – Determine Pavement Design Criteria

Prepare a report that:

- Summarizes the findings from the laboratory and field tests
- Provides detailed review on pavement design inputs in terms of benefits and costs
- Analyzes the cost effectiveness of using recycled materials and LSSB
- Shows correlations between the index properties and stiffness/permeability of geomaterials tested
- Provides the results of sustainability assessment analyses

Task 8&9

Task 8&9 – Draft/Final Report

Schedule

TASKS		MONTHS																															
	1	2	3	4	5	6	7	8	9	1 0	1 1	1 2	1 3	1 4	1 5	1 6	1 7	1 8	1 9	2 0	2 1	2 2	2 3	2 4	2 5	2 6	2 7	2 8	2 9	3 0	3 1	3 2	3 3
Task 1																																	
Task 2																																	
Task 3																																	
Task 4																																	
Task 5																																	
Task 6																																	
Task 7																																	
Task 8																																	
Task 9																																	

PRODUCTS & DELIVERABLES

- > Quarterly progress reports as required
- Draft final report
- ➢ Final report
- Technology transfer brief
- > A copy of the executive final presentation

AGENCY ASSISTANCE

- Access to data collected during construction
- > Access to data being collected throughout the project
- Assistance with installation of matric suction sensors

Thank You!

QUESTIONS??

Iowa State University

University of Wisconsin-Madison