<u>Pavement Foundation Layers – Phase I</u>

Principal Investigator:

Bora Cetin, Ph.D.

Co-Principal Investigator:

Kristen Cetin, Ph.D.

Tuncer Edil, Ph.D.

Research Team:

Debrudra Mitra

Department of Civil and Environmental Engineering

Michigan State University

NRRA Monthly Meeting

Objective of the Study:

- Analyze the temperature and moisture data of soil at different location
- Clean and pre-process the soil temperature data
- To identify <u>number of freeze thaw cycles</u> at certain depths and <u>frost depth isotherms</u> over time
- Create a <u>framework/tool</u> to provide soil temperature and number of freeze-thaw cycles predictions

Overview of Research Plan

- ➤ Task 1 Initial Memorandum on Expected Research
 Benefits and Potential Implementation Steps
- ➤ Task 2 Field Data Collection
- ➤ Task 3 Modelling Analyses
- ➤ Task 4 Final Report

Data details:

Dataset 1 (of 2):

<u>Temperature and moisture data</u> of 6 different locations are available within 2-mile span of roadway at MnROAD, MN

Cell 185; Cell 186; Cell 188; Cell 189; Cell 127; Cell 728

Frequency: 15-minute time intervals

Time period: August 2017 to December 2019

<u>Climate data:</u> air temperature, relative humidity, wind speed, net radiation, precipitation

Soil profiles (Dataset 1):

Schematic of the soil profiles for temperature and moisture data collection for the locations of (a) Cell 185; (b) Cell 186; (c) Cell 188; (d) Cell 189; (e) Cell 127; (f) Cell 728

Data details:

Dataset 2 (of 2):

<u>Temperature and moisture data</u> for 2 different counties in are Minnesota: Olmsted and Koochiching

Frequency: 1-hour time intervals

Time period: 2005-2012, 2012-2019 (Koochiching); 2000-

2007, 2010-2017 (Olmsted)

<u>Climate data (same as other dataset):</u> air temperature, relative humidity, wind speed, net radiation, precipitation

Temperature data collected at 12 different depths for all stations

Cell no.	Cell 185	Cell 186	Cell 188	Cell 189	Cell 127	Cell 728			
	Depth (in)								
TC_1	2.8	3	3	3	3	3			
TC_2	3.8	4	4	4	4	4			
TC_3	9.3	9.5	9.5	9.5	6.5	6.5			
TC_4	14.8	15	15	15	9	9			
TC_5	15.8	16	16	16	10	10			
TC_6	18.3	18.5	18.5	18.5	12	14			
TC_7	19.3	19.5	19.5	19.5	18	18.5			
TC_8	23.8	24	24	24	24	24			
TC_9	35.8	36	36	36	36	36			
TC_10	47.8	48	48	48	48	48			
TC_11	59.8	60	60	60	60	60			
TC_12	71.8	72	72	72	72	72			

Moisture data collected at 4 depths for all locations

Cell no.	Cell 185	Cell 186	Cell 188	Cell 189	Cell 127	Cell 728		
	Depth (in)							
EC_1	5	5	5	5	6.5	8.5		
EC_2	14	14	14	14	29	19.5		
EC_3	17	17	17	17	36	24		
EC_4	20.5	20.5	20.5	20.5		36		

Data details (Dataset 2):

Temperature sensor locations for the two-time spans

Dataset location	Time span	Depth of temperature sensors				
**	2005 to 2010	10; 40; 70; 90; 120; 180; 240; 300; 360; 420; 480; 540; 600; 720; 840; 960				
Koochiching	2012 to 2019	10; 30; 50; 80; 120; 150; 180; 210; 240; 300; 360; 420; 480; 540; 600; 640; 780; 910				
	2000 to 2007	25; 60; 90; 120; 180; 240; 300; 360; 420; 480; 600; 720; 840; 960; 1080				
Olmsted	2010 to 2017	10; 25; 50; 70; 130; 190; 250; 310; 370; 430; 490; 550; 610; 730; 850; 970				

Dataset location	Time span	Depth of moisture sensors
Vaashishina	2005 to 2010	NA
Koochiching	2012 to 2019	80, 120, 150, 180, 210, 240, 300, 360, 420, 480, 540, 600, 780, 910
Olmsted	2000 to 2007	60, 90, 120, 180, 240, 300, 360, 420, 480, 600, 720, 840, 960, 1080
Offisted	2010 to 2017	70, 130, 190, 250, 310, 370, 430, 490, 550, 610, 730, 850, 970

Data preprocessing:

Dataset 1: Percent (%) missing temperature data

	TC1	TC2	TC3	TC4	TC5	TC6	TC7	TC8	TC9	TC10	TC11	TC12
Cell 185	2	2	2	2	2	2	2	2	12	2	87	2
Cell 186	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	11	< 1	< 1	< 1
Cell 188	< 1	< 1	0	0	0	0	0	0	0	0	0	0
Cell 189	< 1	< 1	0	0	0	0	0	0	NA	0	0	0
Cell 127	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Cell 728	< 1	< 1	< 1	0	0	0	0	0	0	0	0	0

Outliers: identified and removed from the dataset

Missing Data:

- Number of missing elements were very small (other than TC9 and TC11 in Dataset 1)
- Data imputation was used to fill in missing elements as appropriate

Dataset 2: Same procedure of data preprocessing is also used

Location	Timespan	Percentage of missing elements								
	- 7	TC1	TC2	TC3	TC4	TC5	TC6	TC7	TC8	TC9
		<1	<1	<1	<1	58	<1	<1	<1	<1
	2005-2010	TC10	TC11	TC12	TC13	TC14	TC15	TC16	TC17	TC18
Koochiching		<1	<1	<1	<1	<1	<1	<1	4	5
Koocincining		TC1	TC2	TC3	TC4	TC5	TC6	TC7	TC8	TC9
		54	50	41	<1	<1	<1	<1	<1	<1
	2012-2019	TC10	TC11	TC12	TC13	TC14	TC15	TC16	TC17	TC18
		<1	<1	<1	<1	<1	<1	<1	<1	<1
	2000-2007	TC1	TC2	TC3	TC4	TC5	TC6	TC7	TC8	TC9
		7	7	7	7	7	28	7	7	7
		TC10	TC11	TC12	TC13	TC14	TC15			
Olmsted		7	7	9	7	7	7			
		TC1	TC2	TC3	TC4	TC5	TC6	TC7	TC8	TC9
		<1	<1	<1	<1	58	<1	<1	<1	<1
	2010-2017	TC10	TC11	TC12	TC13	TC14	TC15	TC16		
		<1	<1	<1	<1	58	<1	<1		

Freeze-thaw cycle calculations

<u>Justification:</u> Number of freeze-thaw cycles significantly impacts the soil properties

Number of freeze thaw cycles depends on:

- Freezing temperature
- Thaw temperature (can be difference from freezing temperature)
- <u>Time</u> the soil temperature is lower than the freezing and higher than the thaw temperature

Based on these factors, three different approaches were considered to calculate the number of freeze-thaw cycles:

- Fixed freezing temperature
- Modified reference temperature
- Time delay method (including fixed freezing temperature)

Freeze-thaw cycles: Fixed freezing temperature

To undergo a complete freeze-thaw cycle, soil temperature needs to be higher than <u>thaw temperature</u> and then it needs to be lower than <u>freezing temperature</u>.

Thaw temperature is 0°C

9 different <u>freezing temperatures</u> are considered:

-0.001 °C, -0.1 °C, -0.2 °C, -0.25 °C, -0.3 °C, -0.4 °C, -0.5 °C, -0.75 °C, -1 °C

Freeze-thaw cycles: Fixed freezing temperature

The variation in number of cycles at different depth are shown below (Cell 185, Dataset 1, for 2018 January to December, similar data in other locations)

- increase freezing temperature, number of cycles reduces significantly
- If assume larger freezing temperatures, # of cycles reduces with depth; if assume smaller (makes sense), at deeper depths it increases increases significantly (doesn't make sense)

Freeze-thaw cycles: Fixed freezing temperature

Summary:

- Selection of the <u>freezing temperature</u> plays an important role in the calculated number of freeze-thaw cycles
- Increasing the <u>freezing</u> temperature (up to 1°C): reduces the number of freeze-thaw cycles calculated at different depths
- Temperature sensors error used in this study is 1°C; the minimum freezing temperature that can be selected for this calculation should be at least 1°C

Freeze-thaw cycles: Modified reference temperature

Similar to the previous method (i.e the fixed freezing method) However, <u>freezing point</u> varies with respect to the time of year rather than a constant value

Date	Reference temperature (°C)	Modified reference temperature (°C)
January 1- January 31	0	-1.0
February 1- February 7	-1.5	-1.5
February 8- February 14	-2.0	-2.0
February 15- February 21	-2.5	-2.5
February 22- February 28	-3.0	-3.0
March 1 – March 7	-3.5	-3.5
March 8 – March 14	-4.0	-4.0
March 15 – March 21	-4.5	-4.5
March 22 – March 28	-5.0	-5.0
March 29 – April 4	-5.5	-5.5
April 5 - April 11	-6.0	-6.0
April 12 - April 18	-6.5	-6.5
April 19 - April 25	-7.0	-7.0
April 26 – May 2	-7.5	-7.5
May 3- May 9	-8.0	-8.0
May 10- May 16	-8.5	-8.5
May 107 May 23	-9.0	-9.0
May 24- May 30	-9.5	-9.5
June 1- December 31	0	-1.0

Freeze-thaw cycles: Modified reference temperature

The variation in number of cycles at different depth are shown below (Cell 185, **Dataset 1**, for 2018 January to December)

The number of cycles calculated are much **less** compared to the <u>fixed freezing</u> temperature (previous) method

Freeze-thaw cycles: Time Delay

"Time delay" is defined as a minimum period of time required for a half of a freeze-thaw cycle to be completed in order for it to count as a F-T cycle

Temperature below freezing point for more than time delay span (1 hour here); considered as complete freezing

Freeze-thaw cycles: Time Delay

4 different time delays considered: 1-hour, 4-hour, 12-hour and 24-hour

The variation in number of cycles at different depth are shown below (Cell 185, **Dataset 1**, for 2018 January to December)

Increasing the time delay reduces the number of cycles calculated at shallower depths

Freeze-thaw cycles:

A similar study for <u>Dataset 2</u> using a **fixed freezing temperature** of **1 C** and **12-hour** time delay methods. Similar trends can be seen for this dataset

Soil temperature modeling approach

Modeling methods considered:

- Linear regression methods,
- Polynomial regression methods,
- Vector auto regressive methods,
- Predictors used for these models:
 - climate parameters (air temperature, relative humidity, rainfall, wind speed)
 - Variables based on combining time and climate variables