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EXECUTIVE SUMMARY

Seasonal freeze-thaw action and changes in temperature from environmental fluctuations have a
significant effect on soil behavior. Seasonal freeze-thaw cycles and water migration create radical
changes in soil-structure systems through frost heave, frost boils, thaw weakening, and settlement. It is
crucial to monitor the changes in soil temperature to predict the frost depth, freezing and thawing
duration, strength, and moduli. Such physics-based models require an extensive amount of data that

can be tedious to collect. These models require site-specific soil profiles and ground sensor data that are
not commonly available and can be costly to obtain. Moreover, these models are constrained by the
limitations and assumptions inherent with the method of solution as well as boundary conditions. Newly
developed data-driven models are unconstrained and they could be extended to leverage ubiquitous
meteorological and satellite-based data that are more easily obtained.

The lack of models that can be used to predict soil temperatures over time make it challenging for
engineers to predict the number of freeze-thaw cycles of soils at different depths. Over time, these
freeze-thaw cycles impact soil performance and thus can contribute to the deterioration of roadways. As
such, it is beneficial to be able to predict the number of freeze-thaw cycles that may occur over a given
time, and when the cycles occurred. The challenge is that in most locations where roadways are
constructed or will be constructed, no sub-surface soil monitoring data is available, only weather data.

In addition, while physics-based models have been shown to provide reasonable accuracy in predicting
temperature and freeze thaw behavior, they require a significant number of variable data inputs, most
of which are not available or collected at most road locations. Therefore, this effort proposed to work
towards the development of a data-driven model that requires only the more ubiquitous weather data
as inputs, and evaluates the performance of the developed model using measured data.

In this study, detailed literature review of data-driven models to predict the soil temperature was
performed to analyze the current state-of-the-art. A new approach was taken to predict the soil
temperatures based on time series climate data and time variables. Different modeling methods were
considered to predict soil temperatures based on climate data. The results of these models were
compared to identify the best-performing model. Based on the best model, the number and duration of
freeze-thaw cycles for a given depth was then calculated. Finally, an Excel-based tool was developed which
predicts the soil temperature, number of freeze-thaw cycles and when the cycles start based on climate
data for a pre-defined list of soil depths. This tool helps users to predict soil temperature and freeze-thaw
conditions, ultimately helping with the operation and maintenance of roadways



CHAPTER 1. INTRODUCTION

There are several studies that have focused on implementing data-driven methods to predict the soil
temperatures. Mihalakakou et al. (2002) used an Artificial Neural Network model to predict the
temperature of a bare and short grass covered soil surface and compared its performance with physical
models. Six years of data was used for training and 1 year of soil temperature data was used for model
testing. They found that although the physical model performed better compared to the data-driven
model, it is much more complex and required many more inputs. The relative error in the predicted soil
surface temperature was 10% to 15%. In another study by Tang et al. (2019), a linear regression model
was used to predict the mean annual ground temperature, then a Feed-Forward Neural Network model
was used to predict the daily mean ground temperature in Chengdu, China. Approximately 50 years of
daily soil temperature data was used to create the model. Among the considered variables, ambient
temperature and relative humidity were found to be able to be used to best predict the daily surface
temperature. Talaee and Hosseinzadeh (2014) predicted daily soil temperatures at six different soil
depths using a Coactive Neuro-Fuzzy Inference System (CANFIS) in Iran. 10 years of data was used to
create the model where mean, maximum, and minimum air temperatures, relative humidity, hours of
sunshine and solar radiation were used as variable inputs to the model.

In another study by George (2001), weekly average soil temperature was predicted using air
temperature, relative humidity and wind speed data using both Neural Network and Multiple Linear
Regression models. In another study, monthly soil temperatures at four different depths were predicted
and compared using three different models, including Multi-Layer Perceptron, Radial Basis Neural
Network, and Generalized Regression Neural Network models (Ozgur et al., 2015). The air temperature
was found to be the most effective variable to predict monthly soil temperature. In addition, the
accuracy of the models generally reduced with an increase in depth. Kim et al. (2014) modeled daily soil
temperatures at two depths in lllinois using Multilayer Perceptron and Adaptive Neuro-Fuzzy
Interference System using climate data as input. Another study by Bilgili (2010) predicted the monthly
soil temperature data with approximately 8 years of climate data in Turkey, using regression models,
including Linear and Nonlinear Regression and Artificial Neural Networks. Stepwise Regression was also
used to select the most important variables for analysis. In a similar study, 20 years of soil temperature
data was used to predict the monthly soil temperature in Turkey using Artificial Neural Network,
Adaptive Neuro-Fuzzy Inference System and Multi-Linear Regression models (Hatice, 2017). Air
temperature, month number, soil depth and monthly precipitation were determined to be the best
combination of variables for soil temperature prediction. Daily soil surface temperatures were predicted
using a combination of two different Support Vector Machine models, where one model was used to
predict the annual average soil temperature and the other model was used to predict the daily ground
temperature amplitude with respect to the annual average temperatures (Lu et al., 2018). It was
obtained that the combination of the two models performed much better compared to a single Support
Vector Machine model in predicting the soil temperature.



In summary, the above-discussed studies used different data-driven methods, most commonly various
types of Neural Network and Regression models to predict soil temperatures. However, there is no
commonly accepted method nor a common set of variables which have been used to predict soil
temperatures. In addition, in the majority of these studies, the shortest timestep used for temperature
prediction is the daily level, rather than a more granular level. Similarly, none of these studies focus on
the prediction of the number of freeze-thaw cycles based on soil temperature data.



CHAPTER 2. DATASETS

In order to evaluate the occurrence of freeze thaw cycles and the resulting environmental impact on
material performance, the research team measured and collected temperature and moisture data in the
pavement structure over time at different depths at various locations and for different timespans. The
research team setup an experimental data collection system to extract the material temperatures and
moisture at six different locations. The test locations are distributed within a 2-mile span of roadway at
the MNROAD facility near Albertville , Minnesota. Temperatures were measured at 12 different depths
across each of these locations as shown in Table 2.1. Similarly, moisture content was also collected at
four depths across these locations, as shown in Table 2.2. The measurements were collected at 15-
minute intervals.

Table 2.1 Soil depths for measured temperatures

Cellno. [cCell185  [cCell186  [cCell188 | Cell 189 | cell127 | cell 728
Depth (in)
TC_1 2.8 3 3 3 3 3
TC_2 3.8 4 4 4 4 4
TC_3 9.3 9.5 9.5 9.5 6.5 6.5
TC_4 14.8 15 15 15 9 9
TC_5 15.8 16 16 16 10 10
TC_6 183 18.5 18.5 18.5 12 14
TC_7 19.3 19.5 19.5 19.5 18 18.5
TC_8 23.8 24 24 24 24 24
TC_9 35.8 36 36 36 36 36
TC_10 47.8 48 48 48 48 48
TC_11 59.8 60 60 60 60 60
TC_12 71.8 72 72 72 72 72

Table 2.2 Soil depths for moisture measurements

Cellno. [cCell185  [cCell186  [cCell188 | Cell 189 | cell127 | cell 728
Depth (in)

EC_1 5 5 5 5 6.5 8.5

EC_2 14 14 14 14 29 19.5

EC_3 17 17 17 17 36 24

EC_4 20.5 20.5 20.5 20.5 36

Temperature and moisture measurements were collected for approximately 2 years, from August 2017
to the end of 2019. Along with the ground temperature and moisture data, climate data was also
collected, including air temperature, relative humidity, wind speed, net radiation and precipitation. The
schematic of the plan and vertical profile views for all test cells are shown in Figure 2.1 (a)-(f). The
location of the temperature sensors is shown using black circles; the placement of the moisture probes
is shown with red symbols.
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Figure 2.1 Schematic of the soil layers for temperature and moisture data collection for the locations of (a) Cell
185; (b) Cell 186; (c) Cell 188; (d) Cell 189; (e) Cell 127; (f) Cell 728

Moisture data for all test locations are also shown in Figure 2.2 (a-f). Apart from Cell 185, moisture data

was collected across the entire data collection period at different depths. However, the moisture data

was not as influential as the environmental parameters for the soil temperature prediction. Thus, they
are not incorporated in this study
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Figure 2.1 Moisture variation at different depths for locations (a) Cell 185, (b) Cell 186, (c) Cell 188, (d) Cell 189,

(e) Cell 127, (f) Cell 728

Along with the measured data collected by the research team, previously collected ground

temperatures and moisture data were collected from MnDOT. This includes long term data collected

from three different counties in Minnesota, including Koochiching, Olmsted and Wright. The data in

these locations were available for different, but longer time spans than the above-mentioned data

collected by the research team. For Koochiching, the data is comprised of two different time spans,
including 2005 to 2010, and 2012 to 2019. Similarly, the data availability for Olmsted is from 2000 to
2007 and 2010 to 2017. For Wright county, data are available from 2012 to 2020. Temperature data at
different depths are available for all datasets, as shown in Table 2.3.



Table 2.3: Data availability for different locations

Dataset location Time span Depth of temperature sensor (in)
2005 to 2010 1;4;7;9;12; 18; 24, 30; 36; 42; 48; 54; 60; 72; 84; 96
Koochiching 2012 to 2019 1;3;5;8;12; 15; 18; 21; 24; 30; 36; 42, 48; 54; 60; 64; 78; 91
2000 to 2007 2.5;6;9; 12; 18; 24; 30; 36; 42; 48; 60; 72; 84; 96; 108
Olmsted 2010 to 2017 1;2.5;5;7;13;19; 25; 31; 37, 43, 49, 55; 61, 73; 85; 97
Wright 2012 to 2020 0.5; 2; 3.5;5; 12; 18; 24, 30; 36; 42; 48; 54; 60; 72; 84; 96

These three datasets are available for longer timespans. However, the data was collected at 1-hour time
intervals rather than 15-minute intervals. Both sets of data are used in this study since the use of both
sets of data is beneficial for model development and evaluation. Next, the raw data from the above-
mentioned datasets were subjected to quality control prior to use in model development. For each
location, the number of missing elements was counted for all the depths separately; the percent of
missing elements is shown in Table 2.4 and Table 2.5.

Table 2.4: Percentage of missing elements in the collected dataset in the MnROAD Test Cells

TC1 [TC2 ([TC3 [TC4 [TC5 ([TC6 [TC7 [TC8 [TC9 [TC10 [TC11 [TC12
Cell 185 2 2 2 2 2 2 2 2 12 2 87 2
Cell 186 <1 <1 <1 <1 <1 <1 <1 <1 11 <1 <1 <1
Cell 188 <1 <1 0 0 0 0 0 0 0 0 0 0
Cell 189 <1 <1 0 0 0 0 0 0 NA 0 0 0
Cell 127 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1
Cell 728 <1 <1 <1 0 0 0 0 0 0 0 0 0

*Note: NA: No data is available




Table 2.5: Percentage of missing elements in the MNDOT collected dataset

Location Timespan Percentage of missing elements
TC1 TC2 TC3 TC4 TC5 TC6 TC7 TC8 TC9
2005-2010 | <1 <1 <1 <1 58 <1 <1 <1 <1
TC10 | TC11 | TC12 | TC13 | TCi4 | TC15 | TCi6 | TC17 | TC18
<1 <1 <1 <1 <1 <1 <1 4 5
Koochiching TC1 | TC2 | TC3 | TC4 | TC5 | TC6 | TC7 | TC8 | TC9
2012-2019 54 50 41 <1 <1 <1 <1 <1 <1
TC10 | TC11 | TC12 | TC13 | TC14 | TC15 | TC16 | TC17 | TC18
<1 <1 <1 <1 <1 <1 <1 <1 <1
TC1 TC2 TC3 TC4 TC5 TC6 TC7 TC8 TC9
2000-2007 7 7 7 7 7 28 7 7 7
TC10 | TC11 | TC12 | TC13 | TC14 | TC15
Olmsted 7 7 9 7 7 7
TC1 TC2 TC3 TC4 TC5 TC6 TC7 TC8 TC9
2010-2017 | <1 <1 <1 <1 58 <1 <1 <1 <1
TC10 | TC11 | TC12 | TC13 | TC14 | TC15 | TC16
<1 <1 <1 <1 58 <1 <1
TC1 TC2 TC3 TC4 TC5 TC6 TC7 TC8 TC9
Wright 2012-2020 | 30 <1 <1 <1 <1 <1 <1 <1 <1
TC10 | TC11 | TC12 | TC13 | TC14 | TC15 | TC16
<1 46 <1 <1 <1 <1 <1

After removing the missing elements, outliers were identified and removed. If more than 40% data is

missing, those datasets were not used for further analysis. Forward imputation (Barnard et al., 1999,

Solaro et al., 2017), which is a sequential procedure to fill up the missing data in a step-by-step process

by exploiting the data structure and interconnections among variable, was then used to fill in the

missing elements.




CHAPTER 3. CALCULATION OF FREEZE-THAW CYCLES

The occurrence of freeze-thaw cycles significantly impacts the performance of pavement systems over
time. Thus, one of the objectives of this study is to evaluate the number of freeze thaw cycles occurring
at different soil depths based on measured data. However, there is no widely accepted method to
calculate the number of freeze-thaw cycles from soil temperature data. Freeze-thaw cycles consist of
two components, including a freezing component and a thawing component (Figure 3.1). One freeze-
thaw cycle must include both in sequential order. To ensure complete freezing, the soil temperature
needs to be lower than the freezing point temperature, and after it must be higher than the thaw
temperature to ensure the soil is completely thawed (MnDOT, 2014). Thus the number of freeze-thaw
cycles depend on the freezing and thawing temperature and time duration needed to ensure freezing
and thawing for soils at different depths. To evaluate the number of cycles, several different methods
were assessed, as follows.

Freeze Phase change Melt
| |
| I "

Freezing Thaw
temperature temperature (0°C)

Figure 3.1 Freeze-thaw cycle diagram

3.1. FIXED FREEZING TEMPERATURE

First, different freezing point temperatures were considered to calculate the freeze-thaw cycles while
keeping the thaw temperature fixed at 0°C. Nine different freezing point temperatures were selected
including -0.001°C, -0.1°C, -0.2°C, -0.25°C, -0.3°C, -0.4°C, -0.5, -0.75°C and -1°C. A value of -1°C, for
example, means that when the temperature is above 0°C, it is considered to be thawed, and when the
temperature is below -1°C, it is considered to be fully frozen. The variation in the number of freeze-thaw
cycles for different freezing temperatures is shown in Figure 3.2 for a specific test cell (Cell 185) covering
2 years of measured data.
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Figure 3.2: Variation in number of freeze-thaw cycles for different freezing point temperatures across 2 years of
measured data for Cell 185

As seen in Figure 3.2, for freezing point temperatures closer to the thaw temperature, the number of
freeze-thaw cycles for Cell 185 increases significantly. In addition, for these freezing point temperatures,
the number of freeze-thaw cycles increases with increasing depth (Zegeye et al., 2019). The reason that
this occurs is that, at the deeper locations, the fluctuations in the temperatures are much lower than the
shallower depths, thus if at the deeper locations, the temperatures fluctuation is around 0°C (e.g. at the
48 in depth in Figure 3.2), A significant increase in the count of freeze-thaw cycles can be seen when the
freezing point temperatures are closest to 0°C. This requires careful consideration. Given that the
accuracy of the temperature sensors used to collect the data is +/- 1°C, it is recommended to consider
-1°C freezing point temperature to calculate the number of freeze-thaw cycles.

To assess the similarity of these counts of freeze-thaw cycles in literature, the resulting number of
freeze-thaw cycles from the above-mentioned analysis was compared with a similar study where the
data was collected from various locations in the state of Minnesota (MnDOT, 2014). In that study, the
average number of freeze-thaw cycles across a 10-year period was evaluated at a depth of one inch
below the surface, as shown in Figure 3.3. A freezing point temperature of 0°C was used in the study. As
shown in Figure 3.3, an average of 86 cycles was found across the months of October to April.
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Figure 3.3: Average freeze-thaw cycles by month from a prior MnDOT study (MnDOT, 2014)



In the present study, based on the measured data, a similar analysis was performed. A freezing point
temperature of -1°C was used to incorporate the sensitivity of the sensors. The number of freeze-thaw
cycles for the 3- and 4-inch depths in different test cells is shown in Figure 3.4a and 3.4b for the same
months as the study represented in Figure 3.3. As shown in Figure 3.4, the number of cycles calculated
in this study decreases with increasing depth from the surface. Similar to the previous study and Figure
3.3, the number of cycles is higher for the month of March at the end of winter, and during November,
and at the start of the winter season.
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Figure 3.4: Average freeze-thaw cycles by month for (a) 3-inch and (b) 4-inch depth

3.2. MODIFIED REFERENCE TEMPERATURE METHOD

The freezing point temperature value was also calculated using a second method, to assess the impact
of this method on the calculated number of freeze-thaw cycles. This method is based on the MnDOT
Technical Memorandum 14-10-MAT-02. Unlike the constant freezing point temperature method used in
Section 2.1, the freezing point temperature is considered to vary by the time of year. Table 3.1 shows
this variation, as defined in the memorandum. The reasoning behind considering such variation is the
change in solar radiation across different times of the year. This impacts the freezing and thawing
behavior of the soils, particularly near the surface. Following this method while incorporating the
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sensitivity of the temperature sensors used to measure for data collection of +/-1°C, a “modified
reference temperature” was determined (Table 3.1) and used to calculate the number of freeze-thaw
cycles. The number of freeze-thaw cycles obtained using the “modified reference temperature” method
is shown in Figure 3.5, using data from Cell 185.

Table 3.1. Reference temperature variation as defined by MnDOT Technical Memorandum 14-10-MAT-02 and
modified reference temperature by time of year

Date Reference temperature (°C) Modified reference temperature (°C)
January 1- January 31 0 -1.0
February 1- February 7 -1.5 -1.5
February 8- February 14 -2.0 -2.0
February 15- February 21 -2.5 -2.5
February 22- February 28 -3.0 -3.0
March 1 — March 7 -3.5 -3.5
March 8 — March 14 -4.0 -4.0
March 15 — March 21 -4.5 -4.5
March 22 — March 28 -5.0 -5.0
March 29 — April 4 -5.5 -5.5
April 5 - April 11 -6.0 -6.0
April 12 - April 18 -6.5 -6.5
April 19 - April 25 -7.0 -7.0
April 26 — May 2 -7.5 -7.5
May 3- May 9 -8.0 -8.0
May 10- May 16 -8.5 -8.5
May 10- May 23 -9.0 -9.0
May 24- May 30 -9.5 -9.5
June 1- December 31 0 -1.0
18
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Figure 3.5: Number of freeze-thaw cycles obtained using modified reference temperature method for Cell 185
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3.3. TIME DELAY METHOD

Another method considered in this effort includes the incorporation of a “time delay” for the purposes
of ensuring that complete freezing and thawing has occurred in the studied soils. A “time delay” is
defined as a minimum period of time required for a half of a freeze-thaw cycle to be completed. For
example, a “time delay” of 1 hour indicates that for at least 1 hour, the studied soil must be below the
freezing point temperature. An example soil temperature distribution for a single day is shown in Figure
3.6 which demonstrates the time delay concept for complete freezing. If the period of time below the
freezing point temperature is less than 1 hour, that portion of the freeze-thaw cycle is not considered to
have occurred. To complete a freeze-thaw cycle, the soil temperature needs to be higher than the
thawing temperature for the time delay period to ensure complete thawing.

3
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) /\ /\
o
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.8_1
[75]
-2
-3
o 2 o OO O O
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— AN AN A

Temperature below freezing point for
less than time delay span; which is not
considered as total freezing

Temperature below freezing point for
more than time delay span (1 hour
here); considered as complete freezing

Figure 3.6: Schematic of the time delay scenario to calculate the number of freeze-thaw cycles

Similarly, the soil temperature must be lower than the freezing point temperature for the designated time
period to ensure complete freezing. Different time delays were considered, from 0 to 24 hours, the results
of which are shown in Figure 3.7.
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Figure 3.7: Number of freeze-thaw cycles using the time delay method and an assumed -1°C freezing point
temperature

3.4. RECOMMENDATIONS

Comparing the three methods, it was recommended to the use of a fixed freezing temperature of -1°C,
based on the data collected and reported sensor error of +/- 1°C. When using this fixed freezing
temperature of -1°C, the additional use of the time delay method impacts only the shallow depths of
temperature measurements.

After substantial discussions with the project Technical Advisory Panel on this topic, a method was
finalized to calculate the number of freeze-thaw cycles. To do this, 0°C was used as threshold
temperature for melting and -1°C was used as the threshold temperature for freezing. Along with the
temperature, a time delay is also considered in the calculation, where a 24 hour time delay is required
after the -1°C threshold is passed, to ensure complete freezing. For thawing, a minimum 5 consecutive
hours above 0°C was required.
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CHAPTER 4. MODEL DEVELOPMENT
4.1. DATA PROCESSING

Two different datasets were used in this study. For ease and clarity of discussion, the datasets were
named as Dataset 1 and Dataset 2. Along with the soil temperatures at different depths, climate data
was in Dataset 1. These data were collected across a 2-mile span of roadway in MNROAD facility near
Albertville , Minnesota. Air temperature, relative humidity, wind speed, precipitation and solar radiation
data were collected at a 15-minute timestep to be consistent with the collected temperature data
granularity. In Dataset 2, soil temperature data were collected at a 1-hour time interval in three
different counties in Minnesota, including Koochiching, Olmsted and Wright. For brevity, the focus was
on the data collected in Olmsted county in this section, as data timespan of the three locations are
similar.

The climatic variables were pre-processed to create a list of potential variables which can be used as the
input parameters in the modeling process. The final list of parameters considered can be divided in two
categories: time variables and climate variables. The list of all the variables is shown below:

The time variables considered include:

1. Month number (1 to 12)

2. Week number (1 to 52)

3. Day of year (1 to 365)

4. Timestep (1 to 4*24 for 15-minute timestep data)

The climatic variables considered include:

. Air temperature (AirTemp)

. Relative humidity (RH)

. Rain or precipitation (Rain)

. Windspeed (Wind)

. Radiation (Rad)

. Daily average air temperature (avgTemp)
. Daily average relative humidity (avgRH)

. Daily average precipitation (avgRain)

O 00 N OO U1 B WIN -

. Daily average windspeed (avgWind)

10. Daily average solar radiation (avgrad)

11. Variation of the air temperature with respect to the daily average value (varTemp)
12. Variation of the relative humidity with respect to the daily average value (varRH)
13. Variation of the precipitation with respect to the daily average value (varRain)

14. Variation of the windspeed with respect to the daily average value (varWind)

15. Variation of the solar radiation with respect to the daily average value (varRad)
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The variation values were calculated by subtracting the daily average values from the instantaneous
value at a specific time interval, using the following:

Variation = Instantaneous value — Average value of a specific day

To implement the Regression model, variables should be independent of one other. To check the
correlation among the variables, Stepwise Regression was used. The results of the Stepwise Regression
analysis are shown in Table 4.1.

The correlation coefficient values are shown in Table 4.1, where any value close to 1 represents high
correlation and 0 represents no correlation. The cells are color coded based on the level of correlation
coefficients. Yellow represents highly correlated parameters with a correlation coefficient higher than
0.7. Green cells represent moderate correlations where the absolute value of correlation coefficient
value between 0.3 to 0.7. Non-colored cells represent variables with low correlation, with a correlation
coefficient less than 0.3. These non-colored variables are used in the development of the Regression
model .

Table 4.1 Correlation analysis using stepwise regression

Week a g
Week | 1 % g 5
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Dayofrear| 1 | 1 1 & € % B 8 B s P
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™ 0| o 0 1 3 3 § & e | = 2 § E
L™
Arfemp (02201 02 | om | 1 e ¥ | § § 2 |8 §
©
goin 0020w | o | o;m | o4 | 1 5 2 2 8 | & 3 5 - -
R |02 |02 | 02 | 025 | 024 |009| 1 5 =18 8 5 5 < & § 8
=} -
Wind | 009|003 000 | 004 | 011 |001]|023| 1 £ = :§ < g g s %
rad o] o 0 004 | 046 |-0.03|-05]018| 1 s 3 - L3
varfemp | 0 | 0 0 04 | 027 |001|-055/026| 05| 1 § < g %
varRain | 0 | © 0 0.01 0o |09 |00 |00 0w 00 | 1 < ]
vartt | 0 | © 0 036 | 021 |004|071|-027/051| 078 | 004 | 1 =
varwind | 0 | © 0 005 | 01 |002|-027|071|035| 037 | 002 |-038 1
varkad | 0 | © 0 004 | 015 |-002|-04 028|091 | 055 | 002 [-056] 039 | 1
awgfemp | 022 | 0.2 | 0.2 0 096 |004|-009|-018/034| © o | o] o 0 1
avgRain | 009 | 0.09 | 0.9 0 015 |026|024| 0 |-004]| © o | o] o 0o | 016 | 1
avgRH 031|031 | 031 0 | 013 |009|071 006 02| 0 o |0 o 0o | 013 | 034 | 1
avgWind | 012|012 | -0.12 0 |02 | 0 |[006[071]|011] o0 o | o] o o | 026 | o |o08 1
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As shown in Table 4.1, several variables cannot be considered individually in the Regression model as
they are either highly or moderately correlated among each other. As an example, the time variables
such as Week with respect to Month, and Week with respect to Day of Year are highly correlated.
Similarly, the variation values of precipitation, relative humidity, wind speed and solar radiation are
highly correlated with their respective measured data values. Similarly, the average air temperature is
highly correlated with both the air temperature and average radiation values. The average radiation
values are highly correlated with actual air temperature values. Thus, based on the results obtained of
the stepwise regression method, 8 different variables were selected as the input variables for the
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Regression model. These include, Day of Year, Timestep, Air Temperature, Radiation, Variation in Air
Temperature, Variation in Rain, Variation in Relative Humidity and Variation in Windspeed.

Dataset 1 and Dataset 2 were then used to create the data-driven models. Dataset 1, with
approximately 1.5-2 years of data available at each cell (16 months) from January 1, 2018 to April 16,
2019, was split into two datasets, one for use in training the model, and a second for model testing. This
split was a 75%-25% split where 12 months of data (2018) was used as training data, and January 1,
2019 to the end of the dataset was used for the testing of the model. For Dataset 2, with data across
multiple years, data was split in an 80%-20% division, where 80% of it was used for the training purpose
and the rest of the data was used as testing data. For example, for the Olmsted location, data from
September 2005 to February 2007 was used as testing data and January 2000 to September 2005 was
used at training data. The reason that the datasets were split slightly differently is because for Dataset 1,
training dataset was selected to include one whole year and similarly for Dataset 2, the objective was to
select an entire winter season for training data. For weather data, for Dataset 1, onsite field collected
data was used; for Dataset 2, the nearest available weather station data was used for each location.

4.2. MODEL DEVELOPMENT

As mentioned, there are no well accepted algorithm that can be used for the prediction of the soil
surface temperatures. At the initial stage of the study, different models were implemented to study
which algorithm performs best. Initially, a Linear Regression model was used, followed by Regression
models used for time series data forecasting, including Vector Auto Regression, Vector Auto Regression
Moving Average, and Vector Error Correction Models. However, the above-mentioned models were
unable to accurately capture the granular trend in soil temperature. An example result of soil
temperature prediction is shown in Figure 4.1. This was obtained for a specific cell location and at a
specific depth using Vector Auto Regression modeling methods. The results show the predicted
temperature for testing dataset where x-axis of the figure shows timestep of the year. However, the
results obtained for the other mentioned algorithms were also similar for all the soil depths. Thus,
Nonlinear Regression models were implemented, and the performance of the soil temperature
prediction improved significantly using this method.
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Figure 4.1. Temperature prediction using Vector Auto Regression Model

4.2.1. Temperature prediction

A Nonlinear Regression modeling method was implemented using a fourth order polynomial model. Two
modeling methods were considered based on a Nonlinear Regression algorithm. Model 1 predicts
temperature at each depth individually, using a single model. Two time variables and six climate
variables were used as input. These include Day of Year, Timestep, Air Temperature, Radiation, Variation
in Air Temperature, Variation in Rain, Variation in Relative Humidity and Variation in Windspeed. The
equation for the Model 1 is in Appendix Table A 1. Model 2 was developed using a combination of two
parts - one to predict the daily average soil temperatures, and a second to predict the variation in soil
temperature with respect to the daily average values. To predict the daily average soil temperatures, six
variables were used (Day of Year, Timestep, Average Air Temperature, Average Rain, Average Relative
Humidity and Average Wind Speed. For the second half of the model, Day of Year, Timestep, Air
Temperature, Radiation, Variation in Air Temperature, Variation in Rain, Variation in Relative Humidity
and Variation in Wind Speed were used as the input parameters.

The results of the soil temperature prediction are shown in Figure 4.2 for both initial models, including
the temperature at three depths (3-inch, 14-inch, 72-inch). These three depths were selected to be
presented because they represent the top surface (largest diurnal fluctuations), intermediate depth, and
deep depth (least fluctuations). The timespan of the temperature prediction shown in Figure 4.2 is for 4
months of data from January 2019 to April 2019, which represents the second part of winter. This time
span is used because January to December 2018 was used as training data, thus the remaining 4 months
was used as testing data. This divides the dataset in a 75%-25% split where 75% of the data was used for
training and rest 25% was used for testing. The Models are labeled as “initial” models in Figure 4.2
because further adjustments were made to the modeling method to arrive at the final Models for this

work.
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Figure 4.2. Comparison between the measured and predicted temperature for depths of (a) 3 inch, (b) 14 inch
and (c) 72 inch below the surface for the initial Model 1 and Model 2 for the timeframe of January to April

As shown, the temperature fluctuations at the top surface are greater, whereas this fluctuation
decreases with depth, as expected. Both the Models can predict the temperature at the top surface
quite well. However, the performance of these initial Models reduces at deeper depths. At a depth of
14-inch, Model 2 predicts the overall trend of the temperature for most of the timespan. However,
several spikes occur where the predicted temperature deviates significantly compared to the measured
temperature data. Model 1 did not generate any spikes in the temperature prediction. However, the
predicted temperature deviates from the measured soil temperature more than Model 2.

To reduce the spikes in the model predictions, two different filters were used. The objective of the filters
was to limit the allowable variation in the model results from timestep (n-1) to the next timestep (n). In
addition, the filters were also designed to limit temperature predictions which were significantly higher
or lower than the measured temperature bounds (i.e. the minimum and maximum soil temperatures
observed for each depth throughout the dataset). To identify the temperature bounds, the range of soil
temperatures (maximum and minimum) expected for each depth across the dataset was assessed. The
RMSE (root mean squared error) values for both the initial Models and the models which include the
developed filters for all six locations at the MNROAD test facility and several depths are shown in Figure
4.3. A smaller RMSE values equates to better model performance over the timespan of evaluation.
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Figure 4.3. Comparison of RMSE values for initial Model 1 and 2, and Model 1 and 2 with filters applied, at
depths of (a) 3 inches, (b) 4 inches, (c) 18.5 inches, (d) 24 inches, (e) 48 inches and (f) 72 inches for all cell
locations for Dataset 1

The results show that, overall, across the models, the RMSE values for predicting the soil temperature
decrease at deeper depths. In addition, in comparing the models, Model 1 generally has larger error
than Model 2. The use of the filters helps to reduce this model error. For 3-inch and 4-inch depths, RMSE
values for Model 1 without the filters was approximately 8 to 12°C. After implementing both filters, the
RMSE values were reduced to half, or approximately 4 to 6 °C. Model 2 has a significantly smaller RMSE
values of 2 to 4°C with the use of filtering. For intermediate and deeper depths, Model 2 with the filters
had the smallest RMSE values among the 4 model variations evaluated for all the depths in all locations.
For the deepest depths, the smallest RMSE values were approximately 1 to 2°C for 18.5- and 48-inch
depths, and less than 1°C for the 72-inch depth. These results demonstrate that Model 2 with filters
provides the best prediction of temperature among the modeling methods implemented.

A similar study was conducted using Dataset 2 which was the longer timescale data collected
throughout Minnesota with a 1-hour timestep. The performance of both initial Model 1 and 2, and
Model 1 and 2 with filters were evaluated for a time period starting from January 2000 to February
2007. This is substantially longer time period than the Dataset 1. The performance of both Model 1,
Model 2 and the two models with filters are shown in Figure 4.4. As shown in the Figure, the RMSE
values decreased at deeper depths as obtained for Dataset 1. However, the RMSE values were higher for
this dataset compared to the model performance with previous set of data. The reason for these higher
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RMSE may be because the weather data used for model prediction was not collected on site and instead
was obtained from the closest available weather station.
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Figure 4.4: Comparison of RMSE values for Dataset 2

Based on the resulting performance of the models considered, the Model 2 with filters performed best
in predicted temperatures at the various depths.

4.2.2. Prediction of number of freeze-thaw cycles

Based on the above-mentioned method for defining a freeze-thaw cycle (Section 3.4), the number of
freeze-thaw cycles was evaluated from Dataset 1 using the four considered modeling methods, and
compared with the number of cycles obtained from measured soil temperature (Figure 4.5). This figure
also depicts the freeze-thaw cycle comparison for 4 months in the beginning of 2019 which represents
the end of the winter. As discussed above, the reason this time period was used for this dataset is
because for training one whole year of data was utilized, and the rest of the data was used as testing
dataset.

As shown in Figure 4.5, the number of freeze-thaw cycles obtained from the Model 1 is similar to the
number of freeze-thaw cycles obtained from the measured data. At deeper depths, the number of
freeze-thaw cycles decreased, as expected. Model 2 generally slightly overpredicts the number of cycles
for most soil depths and locations, as compared to Model 1. The number of freeze-thaw cycles was also
calculated for the Dataset 2, as shown in Figure 4.6.
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Figure 4.6. Number of freeze-thaw cycle comparison for Dataset 2

As shown in Figure 4.6, apart from the 30-inch and 36-inch depths, the number of freeze-thaw cycles
predicted by the Model 1 is similar to the actual number of freeze-thaw cycles. However, for the two
mentioned depths, Model 1 and 2 overpredict the number of cycles. One possible reason for this is that,
as mentioned in the previous section, the location of soil temperature collection and location of weather
data was not same, which may impact the level of error in the input data. This result was consistent with
the results obtained with the Dataset 1. Thus, from these two sections, it can beconcluded that the
Model 1 with 2 filters, is better suited to evaluate the number of freeze-thaw cycles effectively and thus

is chosen as the final model for this project.

4.2.3. Isotherm calculation

The distribution of the 0°C isotherm for different depths and different time periods were calculated
from the measured data. The results of cell 185 are shown in Figure 4.7. The remaining figures are
shown in Appendix A. The 0°C isotherm curve reaches its maximum depth during the months of
December to February and then the depth of the isotherm curve reduces. A similar trend can be seen

for all cell locations.
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Figure 4.7. 0°C isotherm for cell 185 in Dataset 1

4.2.4. Time duration of freezing and thawing phase and their occurrence

The duration of the frozen period including the start and end dates, was calculated for each soil depth
along with the freezing and thawing periods for each test location. Using Dataset 1, these were
evaluated for approximately 18 months of data, from September 2017 to April 2019 and shown in Table
4.2. It was obtained that for some years, for shallower depths, such as 6.5 inch in both Cell 189 and 127,
the soil froze intermittently, in some cases for as little as 1-day periods. As expected, for deeper depths
the temperatures fluctuate less thus there are not short freeze periods at these depths.

The starting and ending time of freezing phase and their duration was compared for the predicted soil
temperatures with the actual values. The performance of both the Model 1 and Model 2 were
evaluated, as shown in Table 4.2. Model 1 performed significantly better compared to the Model 2. The
performance of the Model 1 and its comparison with respect to the actual values is shown in Table 4.3.
Note the freeze and thaw periods calculated for these cells assume the use of the shallowest soil depth
that is not within the pavement foundation layers (i.e. base, subbase and subgrade layer) (e.g. cell 189
uses a soil depth of 6.5 in to calculate when the freezing and thawing period starts and ends).
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Table 4.2. Freezing start and end day with the duration for different soil depths for the location of (a) cell 185,
(b) cell 186, (c) cell 188, (d) cell 189, (e) cell 127, (f) cell 728

24

Soil Number of . . Freeze . . Soil ~ Number of . . Freeze . .
Freezing Freezing X Freezing Thawing Freezing Freezing . Freezing Thawing

depth  freeze-thaw tart dat d dat duration iod iod depth freeze-thaw tart dat d dat duration iod iod

inch) cycles § e end date (days) perior periof (inch) cycles start date en e (days) perio perio

9.5 2 127717 2/27/18 82 12/13/17  3/1/18 78

12/7/18  3/11/19 94 9.5 3 12/7/18  12/22/18 15
148 2 122517 31 o8 Year 2017- Year 2017 P = Year 2017~ Year 2017
1/2/19  3/15/19 72 car o car o 15 5 12/26/17 __3/4/18 68 ‘ear 17- ear 17-
1273617 3/3/18 p 2018: 2018: 1/1/19  3/17/19 74 2018: 2018:
15.8 2 Dec7to  Feb27to 1226/17 3/4/18 68 Dec 13 to Mar 1 to
1/3/19  3/16/19 72 Feb 27 Mar 20 16 2 1319 34719 7 Mar 1 Mar 12
183 12/26/17  3/4/18 68
2 12/27/17  3/7/18 70
1/19/19 3/18/19 58 18.5
2207 3ans g7 Year2018- Year2018- V2U19 3N9/9 57 Year2018- Year2018-
19.3 2 2019: 2019 195 ) 12/28/17 3/7/18 69 2019: 2019:
1/20/19  3/18/19 57 Dec7to Marll to ' 1/21/19  3/19/19 57 Dec7to  Mar l4to
238 5 12/28/17 3/10/18 72 Mar1l  Mar20 24 1231/17 _3/12/19 71 Mar 14 Mar2l
1/22/19  3/20/19 57 1/26/19  3/21/19 54
47.8 0 - - - 48 0 - - -
71.8 0 - - - 72 0 B B .
(a) (b)

Soil - Number of Freezing Freezing Free?e Freezing  Thawing Soil Number of Freezing Freezing Free?e Freezing  Thawing
depth  freeze-thaw start date end date duration eriod eriod depth  freeze-thaw iart dat d dat duration iod iod
(inch) cycles (days) P P (inch) cycles s ¢ en € (days) perio perto

95 3 12/13/17  3/1/18 78 11/10/17 11/11/17 1

: 12/8/18  3/15/19 97 6.5 3 12/6/17  2/27/18 83
12/26/17  3/5/18 69 11/27/18 3/13/19 106
15 2 Year 2017-  Year 2017-
16 2 12/26/17  3/9/19 73 Dec 13t Mar 1 to 2018: 2018:
1219 3/19/19 76 Mar 1 Mar 15 10 2 12/7117  2/28/18 83 Nov10to Feb27to
185 5 1227117 3/11/18 74 11/28/18 3/14/19 106 Feb 27 Mar 21
‘ Ls1e_suts 76 B3 ons o 8
Year 2018-  Year 2018-
195 2 1%/71/ ;7 g’g;ﬁg ;2 2019: 2019; U219 3/1519 73 Year2018- Year 2018-
22917 3/15/18 26 Dec8to MarlSto 18 12/3117 3/17/18 77 2019: 2019:
2 2 Marls  Aprl 12219 3/22/19 60 Nov27to Marl3io
1/21/19  3/22/19 60 U118 32118 30 Mar 13 Mar 22
48 24
72 (1) J6N9 4119 26 1/25/19  3/22/19 57
- - - 48 0 - - -
72 0 - - -
© (@

Soil Number of Freezing Freezing Free.ze Freezing  Thawing Soil - Number of Freezing Freezing Free.ze Freezing Thawing
depth  freeze-thaw tart dat 4 dat duration iod iod depth freeze-thaw cart dat d dat duration iod iod
(inch) cycles  SRMCAE NCC (days) peno pero (inch) cycles  ® ate end e (days) peno perto

11/10/17 11/11/17 1 6.5 2 12/7/17  3/3/18 86
6.5 3 12/6/17  2/27/18 83 11/27/18 3/15/19 108
11/27/18 3/13/19 106 12/8/17 3/4/18 86
9 2 12/7/17  2/28/18 83 9 3 11/28/18 12/1/18 3
1/28/18 31419 105 Y2017 Yeara017- 12718 3519 oy Yewral- Yearaon
10 2 12/7/17  2/28/18 83 Novi10to Feb27to 12/8/17  3/4/18 86 Dec 7 to Mar 3 to
11/28/18 3/14/19 106 Feb 27 Mar 21 10 3 12/8/18 12/21/18 13 Mar 3 Mar 21
12/26/17  3/4/18 68 12/25/18 3/15/19 80
12 3 12/10/18 12/19/18 9 14 12/27/17 3/17/18 30
12093159 73 e S- YearZols- 12019 319019 58 Yewrd0ls Near3ots-
18 5 12/31/17 3/17/18 77 Nov27to Mar 13 to 185 12/27/17 3/17/18 80 Nov27to  Mar 15 to
1/22/19  3/22/19 60 Mar 13 Mar 22 1/20/19 3/21/19 60 Mar 15 Mar 23
24 2 1/1/18  3/21/18 80 24 1/2/18  3/21/18 78
1/25/19  3/22/19 57 1/27/19 3/23/19 55
48 0 - - - 48 0 - - -
72 0 - - - 72 0 - - -
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Table 4.3. Comparison of freezing time for actual and predicted soil temperatures for Dataset 1 for the location
of (a) cell 185, (b) cell 186, (c) cell 188, (d) cell 189, (e) cell 127, (f) cell 728 (note: Method 1 refers to Model1)

Cell 185 | Cell 186
Number | Freezing | Freezing | Freezing [Total Freezing| Number | Freezing | Freezing | Freezing | Total Freezing
Depths | Method of cycles | start day | end day | duration | duration Depths | Method of cycles | start day | end day | duration duration
Actual value 1 Jan-02 | Mar-08 65 65 |Actual value 1 Jan-02 Mar-09 66 66
Jan-02 Jan-07 5 9.5inch Jan-02 Feb-23 52
9.5 inch
NN Method1 | 3 Jan-09 | Feb23 | 45 60 Method1 | 2 Feb25 | Mar08 | 11 63
Feb-26 | Mar-08 10 15 inch |Actual value 1 Jan-02 Mar-19 76 76
14.8inch Actual value 1 Jan-02 | Mar-15 72 72 ! Method 1 1 Jan-02 Mar-09 66 66
i Method 1 1 Jan-02 | Mar-09 66 66 16 inch |Actual value 1 Jan-03 Mar-20 76 76
15.8 inch Actual value 1 Jan-03 | Mar-16 72 72 ! Method 1 1 Jan-02 Mar-09 66 66
i Method 1 1 Jan-02 | Mar-09 66 66 18.5 |Actual value 1 Jan-21 Mar-22 60 60
183 inch Actual value 1 Jan-19 Mar-18 58 58 inch | Method 1 1 Jan-02 Mar-09 66 66
i Method 1 1 Jan-02 Mar-03 60 60 19.5 |Actual value 1 Jan-21 Mar-22 60 60
Actual value 1 Jan-20 | Mar-18 57 57 inch | Method 1 1 Jan-02 Mar-09 66 66
19.3inch Jan-02 Jan-07 5 |Actual value 1 Jan-26 Mar-25 58 58
Method 1 2 57 i
Jan-10 Mar-03 52 24inch Method 1 1 Jan-10 Mar-09 58 58
Actual value 1 Jan-22 Mar-20 57 57
23.8inch Jan-02 Jan-07 5
Method 1 2 Jan-10 Mar-03 52 57 03)
()
cell 188 | Cell 189
Number | Freezing | Freezing | Freezing [Total Freezing Number | Freezing | Freezing | Freezing |Total Freezing
Depths | Method of cycles |start day | end day |duration| duration Depths | Method of cycles [startday| end day | duration duration
Jan-02 Jan-07 5 . IActual value| 1 Jan-02 Mar-09 66 66
9.5 inch|Actual value| 2 Jan09 | Mar08 | 58 63 6-5inchIy cthod 1 | 1 Jan-02 | Mar08 65 65
Method 1 1 Jan-02 Mar-08 65 65 9inch IActual value| 1 Jan-02 Mar-18 75 75
15 inch Actual value 1 Jan-02 Mar-18 75 75 ! Method 1 1 Jan-02 Mar-09 66 66
Method 1 1 Jan-02 Mar-09 66 66 10inch IActual value| 1 Jan-02 Mar-19 76 76
16 inch Actual value 1 Jan-02 Mar-18 75 75 Method 1 1 Jan-02 Mar-09 66 66
Method 1 1 Jan-02 Mar-09 66 66 12 inch /Actual value| 1 Jan-03 Mar-20 76 76
18.5 |[Actual value 1 Jan-02 Mar-19 76 76 Method 1 1 Jan-02 Mar-09 66 66
inch Method 1 1 Jan-02 Mar-09 66 66 18 inch /Actual value| 1 Jan-03 Mar-20 76 76
19.5 |[Actual value 1 Jan-02 Mar-19 76 76 Method 1 1 Jan-02 Mar-09 66 66
inch Method 1 1 Jan-02 Mar-09 66 66 24 inch IActual value| 1 Jan-21 Mar-22 60 60
24 inch Actual value 1 Jan-03 Mar-20 76 76 ! Method 1 1 Jan-02 Mar-09 66 66
Method 1 1 Jan-02 Mar-09 66 66 48 inch IActual value| 1 Mar-06 | Apr-01 26 26
48 inch Actual value 1 Feb-16 Mar-29 41 41 Method 1 1 Jan-30 Feb-14 15 15
Method 1 1 Jan-30 Mar-02 31 31 q
© @
Cell 127 | Cell 728
Depths| Method Number | Freezing | Freezing Freez!ng Total Frgezmg Depths Method Number| Freezing | Freezing Freez!ng Total Fre-ezmg
of cycles | start day | end day | duration duration of cycles| start day | end day | duration duration
Jan-02 Jan-07 5 Jan-02 | Jan-07 5
Actual value 2 1an-09 Mar-08 T8 63 . Actual value 2 1an09 | Mar-13 63 68
6.5 inch Jan-02 Jan-07 5 : Method 1 2 Jan-02 | Jan-07 5 70
Method 1 3 Jan-09 | Mar-08 58 65 Jan-09 | Mar-15 65
Mar-13 | Mar-15 2 Actual value 1 Jan-02 | Mar-15 72 72
Actual value 1 Jan-02 Mar-14 71 71 9inch Jan-02 | Jan-07 5
9inch Jan-02 Jan-07 5 Method 1 2 Jan-09 | Mar-15 65 70
Method 1 3 Jan-09 Mar-08 58 65 Actual value 1 Jan-02 | Mar-15 72 72
Mar-13 | Mar-15 2 10inch Jan-02 | Jan-07 5
Actual value 1 Jan-02 Mar-14 71 71 Method 1 3 Jan-09 | Mar-09 59 68
10inch Jan-02 Jan-07 5 Mar-11 | Mar-15 4
! Method 1 3 Jan-09 Mar-08 58 65 Actual value 1 Jan-20 | Mar-19 58 58
Mar-13 | Mar-15 2 14 inch Jan-02 | Jan-06 4
Actual value 1 Jan-02 Mar-16 73 73 Method 1 3 Jan-10 | Mar-10 59 68
12inch Jan-02 | Mar-09 66 Mar-11 | Mar-15 4
Method1 | 2 Mar-11 | Mar-15 4 0 Actualvalue] 1 | Jan-20 | Mar2L 60 60
. Actual value 1 Jan-22 | Mar-23 60 60 18.5inch Jan-02 | Jan-05 3
18inch "y ethod 1 | 1 Jan-10 | Mar-10 | 59 59 Methodl | 2 I7).1 10 | Mar-10 59 62
24inch Actual value 1 Jan-25 | Mar-23 57 57 24 inch Actual value] 1 Jan-27 | Mar-23 55 55
Method 1 1 Jan-13 | Mar-10 56 56 Method 1 1 Jan-17 | Mar-10 52 52
© ®

As shown in Table 4.3, Model 1 can generally predict the freezing start and end day and the duration of

the freezing phase for the Dataset 1. The predicted freezing and thawing period using Model 1 and the
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measured data-derived results are compared in Table 4.4. It can be seen from Table 4.4 that the Model
1 can predict the freezing period accurately for most of the cell locations. However, it underpredicts the
time for the thawing period.

Table 4.4. Comparison of freezing and thawing period for all cell locations using Dataset 1

Cell Freezing period Thawing period

location Actual value Predicted Actual value Predicted
Cell 185 Jan 2 — Mar 8 Jan 2 — Mar 3 Mar 8 — Mar 20 Mar 3- Mar 9
Cell 186 Jan 2 — Mar 9 Jan 2 — Mar 8 Mar 9 — Mar 25 Mar 8- Mar 9
Cell 188 Jan 2 — Mar 8 Jan 2 — Mar 2 Mar 8 — Mar 29 Mar 2- Mar 9
Cell 189 Jan 2 — Mar 9 Jan 2 — Feb 14 Mar 9 — Apr 1 Feb 14- Mar 9
Cell 127 Jan 2 — Mar 8 Jan 2 — Mar 10 Mar 8 — Mar 23 Mar 8- Mar 15
Cell 728 Jan 2 — Mar 15 Jan2 —Mar 10 | Mar 15— Mar 23 | Mar 10- Mar 15
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CHAPTER 5. TOOL DEVELOPMENT

The focus of this task was to create an Excel-based modeling tool to predict the soil temperatures and
number of freeze-thaw cycles for different soil depths. Excel was requested to be used for this tool as it
is available to and commonly used by the target audience. This tool developed was achieved using Excel
macro functions and VBA programs. It is noted that as Excel is used, there are more efficient methods
(e.g. python) for tool execution, and that choice of Excel somewhat limits some of the speed of results
output. However, it does achieve the desired functionality. This tool allows the user to provide climate
condition data and the depth at which the soil temperature and freeze-thaw cycles are desired to be
calculated. The tool then provides a prediction, for the given weather conditions, of the soil
temperatures at that depth over time and the predicted number freeze-thaw cycles. The framework of
the tool is designed in three layers, as shown in Figure 5.1.

(1) Prediction of (2) Temperature (3) Calculation of the
soil temperature filtration number of cycles

\4
\4

Figure 5.1: Framework of the Excel-based tool

In (1) the first part, the tool requires the user to provide climate data for the location of interest. The
following inputs are required at a frequency of 15 minutes in the following format:

Date and time in mm/dd/yy hh:mm

Air temperature in °C

Precipitation in mm

Relative humidity in %

Windspeed in m/s

Net radiation in W/m?

ok wnN P

As an example, of these values, the inputs of the tool should be in the format shown in Figure 5.2, as
follows.
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A | B c D | E | F

1 DateTime Air Temperature (degree ) | Rain(mm) | Relative humidity (%) | Windspeed(m/s) | Solar Radiation (W/m2)
2 01/01/18 00:00 -15.43 0.00 63.64 4.03 -49.14
3 01/01/18 00:15 -15.66 0.00 63.37 439 -50.10
4 | 01/01/18 00:30 -15.83 0.00 63.71 408 -44 86
5 i 01/01/18 00:45 -1599 0.00 5450 304 -40.91
(=] i 01/01/18 01:00 -16.13 0.00 6399 333 -40.27
¥ | 01/01/18 01:15 -16.3 0.00 56493 2.59 -40.96
a8 | 01/01/18 01:30 -16.49 0.00 65.29 2.58 -43.22
g | 01/01/18 01:45 -16.75 0.00 65.78 226 -47.49
10_ 01/01/18 02:00 -16.99 0.00 65.66 243 -4z 77
11_ 01/01/18 02:15 -17.12 0.00 66.07 2.02 -41.24
1 2_ 01/01/18 02:30 -17.31 0.00 66.97 168 -37.47
13: 01/01/18 02:45 -17.65 0.00 6851 276 -38.50
el o e mon o nn aman

Figure 5.2: Required input from the user

The tool user must also input the depth of the soil at which temperature and calculation of number of
freeze thaw cycles is requested. The depth is used to determine which set of the developed regression
equations to use. The user can select the depth from a drop-down menu (Figure 5.3) within the tool.

TemperaturePredictorTeol_checks_update w1 - Excel

Developer Help Q Tell me what you want to do

’?}" EE Wrap Text Mumber - I::I-—l D EEIED EE
) BEH E
€= 3= Merge & Center ~ $ - Op s €0 00 Conditi?nal Format as  Cell Insert Del
Formatting = Table~ Styles~ A "
Alignment P MNumber P Styles Ce
D E F G
Relative humidity (%0) Wind speed (m/z) Solar Radiation (W/m2)
63.64 4.03 -49.14 7500 |-
63.37 439 -50.10 |
63.71 4.08 -44 BE

Figure 5.3: Soil depth input to the tool as a drop-down menu (in green, bottom right)

The tool has three buttons that can be clicked, which each have their own functionalities. The
applicability of each of the buttons are described below :

1. Temperature prediction;

2. Number of freeze thaw cycles;

3. Predict soil temperature and number of cycles.
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5.1. TEMPERATURE PREDICTION

Based on the given input to the tool and after selecting the depth, choosing this button results in the
temperature prediction for each timestep, as shown in Figure 5.4. Predicted temperatures will be added
in the highlighted column AG.

F G AF AG AH Al
Solar Radiation (W/m2) Temperat.Jre prediction
-49.14 -11.2023
-50.10 -11.0578
-44 36 -11.0963
-40.91 -11.4808
-40.27 -11.4674

Figure 5.4. Example results of the ‘Temperature prediction’ button

5.2. NUMBER OF FREEZE-THAW CYCLES

Based on the predicted temperature, this button calculates three values, as follows. Note that this
button must be clicked on after the “temperature prediction” button. Figure 5.5 shows an example of
the results in Columns L through O.

e number of freeze-thaw cycles,

starting of freeze and thaw mode and

the duration of each of the freeze-thaw cycles

L M M 0
Number of cycleg Freezing start time | Thaw start time | Duration of cycle
1 1/2/2018 1/7/2018 6

Figure 5.5. Example results of the ‘Number of freeze-thaw cycles prediction’ button

5.3. PREDICT SOIL TEMPERATURE AND NUMBER OF FREEZE-THAW CYCLES

This button accomplishes what is done for button 1 and 2 in one step, and includes the temperature
prediction, and the calculation of number of freeze-thaw cycles and their duration. The results would
include a combination of Figure 5.4 and Figure 5.5, an example of which is shown in Figure 5.6.
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G H | ] K L M M 0O
_ Temperat Duration Number of cycleg Freezing start time | Thaw start time | Duration of cycle |
. 7500 -11.2023 | 1 11212018 172018 | 6 |

-11.0573

Figure 5.6. Example results of the ‘Predict soil temperature and number of cycles’ button

5.4. STEPS TO RUN THE TOOL

After the user provides the climate data and selects the specific soil depth of interest, they must click
the button which performs the calculations to provide the desired output. Within the tool’s code, it will,
prior to running the modeling program, check the weather data provided to verify there are no non-
numerical values or values that are too high or low and likely erroneous. As an example, relative
humidity can only be between 0 — 100%. If there is any value in the relative humidity column that is
greater than 100% or lesser than 0% or is non-numerical, the tool will generate a message to inform the
user using an error message (e.g. Figure 5.7) and prevent the code from running further. If there is no
issue with the data, no message will be generated.

Microsoft Excel >

Temperature value is either out of range or nun-numerical, This can
result in an incorrect prediction or error when running this program

Figure 5.7. Error message generated for out-of-range or non-numerical data input

After the data quality check is complete, the tool will check whether the user would like to proceed with
the running of the tool’s code (Figure 5.8). This step is to ensure that user did not press the button
unintentionally and to check, based on any potential error messages regarding the range or values of
the input data (e.g. Figure 5.7), whether the user wishes to proceed with the results calculations. If the
user selects ‘yes’, the tool will proceed with the calculations, which takes between 2 and 15 minutes for
a range of 1 to 5 months of data (depending on the speed of the computer utilized). If the user selects
‘no’, the program will terminate.
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Kutools for Excel

It will take 5 to 20 minutes to run depending on number of months, Do
you want to run it now?

Yes Mo

Figure 5.8. Tool asking permission to run

To improve user friendliness of the developed methods, a sample weather data of 15 days is provided so
that it is clear what the type of data and its format are needed as input. An introduction page is also
added to explain the tool and its procedures.
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CHAPTER 6. CONCLUSIONS AND RECOMMENDATIONS

In this project, a detailed literature review was conducted to predict soil temperature using data-driven
models. Next, different data-driven models were implemented to predict the soil temperature and
calculate the number of freeze-thaw cycles from climate information. Stepwise regression models were
implemented to select the variables for this study. Two final models were developed to predict the soil
temperature based on the given climate condition. Two filters were also designed to post process the
data obtained from the models. Different methods were also analyzed to calculate the number of
freeze-thaw cycles from the soil temperature values. Based on the analysis, the following conclusions
are drawn:

e Soil temperature needed to be below -1°C for consecutive for 24 hours to ensure complete
freezing. At the same time, soil temperature needs to be more than 0°C for 5 hours to ensure
complete thawing.

e Overall, Model 1 i.e. nonlinear regression model with two time variables and six environmental
parameters along with two filters performs better for the soil temperature prediction. These
two filters are used to limit the maximum and minimum temperature and the fluctuation across
two consecutive timesteps.

e Two time variables and six climate variables were used as input for soil temperature prediction,
including Day of Year, Timestep, Air Temperature, Radiation, Variation in Air Temperature,
Variation in Rain, Variation in Relative Humidity and Variation in Windspeed.

e Overall Model 1 with the 2 filters performs best for prediction freeze-thaw cycles and thus used
in further study.

e Based on this, an Excel-based tool is developed to predict the soil temperature and number of
freeze-thaw cycles and their duration for different depths using climate and time variables as
input.

Overall, this study and the developed tool resulted in a data-driven model between the climate
conditions and the soil surface temperature, which makes it easier for the user to predict the number of
freeze-thaw cycles and analyze the pavement condition.
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APPENDIX A
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Figure A.1. 0°C isotherm for test sites (a) cell 186, (b) cell 188, (c) cell 189, (d) cell 127 and (e) cell 728 in Dataset 1
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Table A 1. Coefficients used in regression equations for temperature prediction at different soil depths for Dataset
1, Cell 186

[Terms 3inch 4 inch 9.5 inch 15 inch 16 inch 18.5inch | 19.5inch 24 inch 48 inch 72 inch
IConstant -2.587 -2.418 -1.385 0.276 0.575 1.390 1.596 2.654 5.437 7.630
DayofYear -0.204 -0.206 -0.233 -0.278 -0.285 -0.307 -0.311 -0.338 -0.362 -0.322
DayofYear"2 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.005
DayofYear"3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
[Timestep -0.153 -0.133 -0.009 -0.018 -0.024 -0.040 -0.044 -0.058 -0.046 -0.027
DayofYear*Timestep 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
[Timestep”2 0.001 0.000 -0.004 -0.002 -0.002 -0.001 -0.001 0.000 0.000 0.000
[Timestep*Rad*varAirTemp 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Rad 0.657 0.527 0.095 0.021 0.009 0.079 0.098 0.223 0.824 0.673
[Timestep*Rad -0.021 -0.012 0.012 0.018 0.019 0.018 0.018 0.016 0.008 0.008
[Timestep”2*Rad 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Rad"2 0.261 0.241 0.110 0.005 0.000 -0.034 -0.038 -0.073 -0.208 -0.126
DayofYear*Rad"2 -0.005 -0.005 -0.004 -0.003 -0.003 -0.002 -0.002 -0.001 0.001 0.001
[Timestep*Rad"2 0.001 0.000 -0.002 -0.003 -0.003 -0.003 -0.003 -0.002 -0.001 -0.001
Rad"3 -0.075 -0.065 -0.021 0.000 0.001 0.006 0.007 0.010 0.018 0.002
[Timestep*Rad"3 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Rad"4 0.006 0.005 0.003 0.002 0.001 0.001 0.001 0.001 0.000 0.001
[Rad"3* varAirTemp -0.001 -0.001 -0.001 -0.001 -0.001 0.000 0.000 0.000 0.000 0.000
DayofYear*varRH 0.019 -0.017 -0.126 -0.231 -0.245 -0.250 -0.253 -0.254 -0.172 -0.109
varRH -15.700 -12.260 -3.544 5319 6.798 7.507 7.992 9.426 10.670 8.896
[Timestep*varRH 0.330 0.366 0.573 0.610 0.601 0.608 0.603 0.545 0.163 0.003
[Timestep”2*varRH 0.001 0.001 -0.003 -0.005 -0.005 -0.005 -0.005 -0.005 -0.001 0.001
AirTemp*varRH -0.316 -0.394 -0.413 -0.357 -0.350 -0.336 -0.329 -0.285 -0.098 -0.014
[Timestep* AirTemp*varRH 0.010 0.011 0.010 0.007 0.007 0.006 0.006 0.005 0.002 0.001
Rad* varRH -3.546 -4.806 -6.432 -6.166 -6.108 -5.785 -5.715 -5.378 -3.867 -3.096
[Timestep*Rad* varRH 0.041 0.041 0.016 -0.020 -0.025 -0.036 -0.040 -0.052 -0.034 -0.007
Rad"2* varRH -1.204 -1.003 -0.267 0.042 0.071 0.177 0.204 0.294 0.329 0.229
[Timestep*Rad"2* varRH -0.008 -0.008 -0.005 -0.002 -0.001 -0.001 0.000 0.000 0.000 -0.002
DayofYear*Rad"2* varRH -0.001 -0.002 -0.003 -0.004 -0.004 -0.003 -0.003 -0.003 -0.002 -0.001
Rad"3* varRH 0.226 0.219 0.149 0.095 0.090 0.072 0.068 0.054 0.031 0.025
varAirTemp* varRH -0.289 -0.470 -0.549 -0.424 -0.405 -0.378 -0.370 -0.324 -0.127 -0.063
Rad*varAirTemp* varRH 0.173 0.199 0.219 0214 0.212 0.202 0.199 0.177 0.092 0.057
varRH”2 19.920 15.660 -5.840 -18.780 -20.540 -22.790 -23.420 -24.040 -21.470 -14.830
DayofYear*varRH2 -0.124 -0.083 0.086 0.190 0.205 0.225 0.230 0.233 0.198 0.136
[DayofYear"2*varRH"2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
[Timestep*varRH"2 -0.140 -0.162 -0.165 -0.100 -0.093 -0.077 -0.070 -0.043 -0.007 0.004
[Timestep”2*varRH"2 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.000 0.000
Rad*varRH"2 3.037 3.594 5.564 5.680 5.594 5.170 5.109 4.854 4.159 3.591
[DayofYear*Rad*varRH"2 -0.023 -0.025 -0.026 -0.023 -0.023 -0.021 -0.020 -0.019 -0.014 -0.012
[Timestep*Rad*varRH"2 0.037 0.039 0.026 0.021 0.021 0.020 0.020 0.020 0.016 0.011
|AirTemp*varRH"2 -0.066 -0.059 0.016 0.055 0.057 0.063 0.064 0.071 0.070 0.067
Rad"2*varRH"2 0.309 0.303 0.219 0.149 0.141 0.127 0.124 0.107 0.023 -0.004
[Timestep*Rad"2*varRH -0.008 -0.008 -0.005 -0.002 -0.001 -0.001 0.000 0.000 0.000 -0.002
varRH3 -2.375 -2.343 -1.462 -0.999 -0.937 -0.820 -0.804 -0.765 -0.539 -0.631
DayofYear*varRH"3 0.013 0.013 0.007 0.004 0.003 0.003 0.003 0.002 0.001 0.001
[Timestep*varRH"3 -0.012 -0.012 -0.006 -0.004 -0.004 -0.003 -0.003 -0.003 -0.002 -0.001
Rad*varRH"3 -0.306 -0.308 -0.281 -0.251 -0.248 -0.237 -0.235 -0.229 -0.195 -0.156
varRH"4 0.031 0.034 0.044 0.048 0.048 0.048 0.048 0.047 0.039 0.031
varRH”2* varWind -1.426 -1.407 -0.918 -0.682 -0.658 -0.613 -0.615 -0.586 -0.418 -0.375
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