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EXECUTIVE SUMMARY 

Seasonal freeze-thaw action and changes in temperature from environmental fluctuations have a 
significant effect on soil behavior. Seasonal freeze-thaw cycles and water migration create radical 
changes in soil-structure systems through frost heave, frost boils, thaw weakening, and settlement. It is 
crucial to monitor the changes in soil temperature to predict the frost depth, freezing and thawing 
duration, strength, and moduli. Such physics-based models require an extensive amount of data that 
can be tedious to collect. These models require site-specific soil profiles and ground sensor data that are 
not commonly available and can be costly to obtain. Moreover, these models are constrained by the 
limitations and assumptions inherent with the method of solution as well as boundary conditions. Newly 
developed data-driven models are unconstrained and they could be extended to leverage ubiquitous 
meteorological and satellite-based data that are more easily obtained.  
The lack of models that can be used to predict soil temperatures over time make it challenging for 
engineers to predict the number of freeze-thaw cycles of soils at different depths. Over time, these 
freeze-thaw cycles impact soil performance and thus can contribute to the deterioration of roadways. As 
such, it is beneficial to be able to predict the number of freeze-thaw cycles that may occur over a given 
time, and when the cycles occurred. The challenge is that in most locations where roadways are 
constructed or will be constructed, no sub-surface soil monitoring data is available, only weather data. 
In addition, while physics-based models have been shown to provide reasonable accuracy in predicting 
temperature and freeze thaw behavior, they require a significant number of variable data inputs, most 
of which are not available or collected at most road locations. Therefore, this effort proposed to work 
towards the development of a data-driven model that requires only the more ubiquitous weather data 
as inputs, and evaluates the performance of the developed model using measured data.  
In this study, detailed literature review of data-driven models to predict the soil temperature was 
performed to analyze the current state-of-the-art. A new approach was taken to predict the soil 
temperatures based on time series climate data and time variables. Different modeling methods were 
considered to predict soil temperatures based on climate data. The results of these models were 
compared to identify the best-performing model. Based on the best model, the number and duration of 
freeze-thaw cycles for a given depth was then calculated. Finally, an Excel-based tool was developed which 
predicts the soil temperature, number of freeze-thaw cycles and when the cycles start based on climate 
data for a pre-defined list of soil depths. This tool helps users to predict soil temperature and freeze-thaw 
conditions, ultimately helping with the operation and maintenance of roadways
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 INTRODUCTION 
 
There are several studies that have focused on implementing data-driven methods to predict the soil 
temperatures. Mihalakakou et al. (2002) used an Artificial Neural Network model to predict the 
temperature of a bare and short grass covered soil surface and compared its performance with physical 
models. Six years of data was used for training and 1 year of soil temperature data was used for model 
testing. They found that although the physical model performed better compared to the data-driven 
model, it is much more complex and required many more inputs. The relative error in the predicted soil 
surface temperature was 10% to 15%. In another study by Tang et al. (2019), a linear regression model 
was used to predict the mean annual ground temperature, then a Feed-Forward Neural Network model 
was used to predict the daily mean ground temperature in Chengdu, China. Approximately 50 years of 
daily soil temperature data was used to create the model. Among the considered variables, ambient 
temperature and relative humidity were found to be able to be used to best predict the daily surface 
temperature. Talaee and Hosseinzadeh (2014) predicted daily soil temperatures at six different soil 
depths using a Coactive Neuro-Fuzzy Inference System (CANFIS) in Iran. 10 years of data was used to 
create the model where mean, maximum, and minimum air temperatures, relative humidity, hours of 
sunshine and solar radiation were used as variable inputs to the model.  
 
In another study by George (2001), weekly average soil temperature was predicted using air 
temperature, relative humidity and wind speed data using both Neural Network and Multiple Linear 
Regression models. In another study, monthly soil temperatures at four different depths were predicted 
and compared using three different models, including Multi-Layer Perceptron, Radial Basis Neural 
Network, and Generalized Regression Neural Network models (Ozgur et al., 2015). The air temperature 
was found to be the most effective variable to predict monthly soil temperature. In addition, the 
accuracy of the models generally reduced with an increase in depth. Kim et al. (2014) modeled daily soil 
temperatures at two depths in Illinois using Multilayer Perceptron and Adaptive Neuro-Fuzzy 
Interference System using climate data as input. Another study by Bilgili (2010) predicted the monthly 
soil temperature data with approximately 8 years of climate data in Turkey, using regression models, 
including Linear and Nonlinear Regression and Artificial Neural Networks. Stepwise Regression was also 
used to select the most important variables for analysis. In a similar study, 20 years of soil temperature 
data was used to predict the monthly soil temperature in Turkey using Artificial Neural Network, 
Adaptive Neuro-Fuzzy Inference System and Multi-Linear Regression models (Hatice, 2017). Air 
temperature, month number, soil depth and monthly precipitation were determined to be the best 
combination of variables for soil temperature prediction. Daily soil surface temperatures were predicted 
using a combination of two different Support Vector Machine models, where one model was used to 
predict the annual average soil temperature and the other model was used to predict the daily ground 
temperature amplitude with respect to the annual average temperatures (Lu et al., 2018). It was 
obtained that the combination of the two models performed much better compared to a single Support 
Vector Machine model in predicting the soil temperature.  
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In summary, the above-discussed studies used different data-driven methods, most commonly various 
types of Neural Network and Regression models to predict soil temperatures. However, there is no 
commonly accepted method nor a common set of variables which have been used to predict soil 
temperatures. In addition, in the majority of these studies, the shortest timestep used for temperature 
prediction is the daily level, rather than a more granular level. Similarly, none of these studies focus on 
the prediction of the number of freeze-thaw cycles based on soil temperature data.   
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 DATASETS 
 
In order to evaluate the occurrence of freeze thaw cycles and the resulting environmental impact on 
material performance, the research team measured and collected temperature and moisture data in the 
pavement structure over time at different depths at various locations and for different timespans. The 
research team setup an experimental data collection system to extract the material temperatures and 
moisture at six different locations. The test locations are distributed within a 2-mile span of roadway at 
the MNROAD facility near Albertville , Minnesota. Temperatures were measured at 12 different depths 
across each of these locations as shown in Table 2.1. Similarly, moisture content was also collected at 
four depths across these locations, as shown in Table 2.2. The measurements were collected at 15-
minute intervals. 
 
Table 2.1 Soil depths for measured temperatures 

Cell no. Cell 185 Cell 186 Cell 188 Cell 189 Cell 127 Cell 728 
 Depth (in) 
TC_1 2.8 3 3 3 3 3 
TC_2 3.8 4 4 4 4 4 
TC_3 9.3 9.5 9.5 9.5 6.5 6.5 
TC_4 14.8 15 15 15 9 9 
TC_5 15.8 16 16 16 10 10 
TC_6 18.3 18.5 18.5 18.5 12 14 
TC_7 19.3 19.5 19.5 19.5 18 18.5 
TC_8 23.8 24 24 24 24 24 
TC_9 35.8 36 36 36 36 36 
TC_10 47.8 48 48 48 48 48 
TC_11 59.8 60 60 60 60 60 
TC_12 71.8 72 72 72 72 72 

 
Table 2.2 Soil depths for moisture measurements 

Cell no. Cell 185 Cell 186 Cell 188 Cell 189 Cell 127 Cell 728 
 Depth (in) 
EC_1 5 5 5 5 6.5 8.5 
EC_2 14 14 14 14 29 19.5 
EC_3 17 17 17 17 36 24 
EC_4 20.5 20.5 20.5 20.5  36 

 
Temperature and moisture measurements were collected for approximately 2 years, from August 2017 
to the end of 2019. Along with the ground temperature and moisture data, climate data was also 
collected, including air temperature, relative humidity, wind speed, net radiation and precipitation. The 
schematic of the plan and vertical profile views for all test cells are shown in Figure 2.1 (a)-(f). The 
location of the temperature sensors is shown using black circles; the placement of the moisture probes 
is shown with red symbols.  
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   (a)            (b) 

  
   (c)            (d) 

  
   (e)            (f) 
Figure 2.1 Schematic of the soil layers for temperature and moisture data collection for the locations of (a) Cell 
185; (b) Cell 186; (c) Cell 188; (d) Cell 189; (e) Cell 127; (f) Cell 728 

Moisture data for all test locations are also shown in Figure 2.2 (a-f). Apart from Cell 185, moisture data 
was collected across the entire data collection period at different depths. However, the moisture data 
was not as influential as the environmental parameters for the soil temperature prediction. Thus, they 
are not incorporated in this study 
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Figure 2.1 Moisture variation at different depths for locations (a) Cell 185, (b) Cell 186, (c) Cell 188, (d) Cell 189, 
(e) Cell 127, (f) Cell 728 

 
Along with the measured data collected by the research team, previously collected ground 
temperatures and moisture data were collected from MnDOT. This includes long term data collected 
from three different counties in Minnesota, including Koochiching, Olmsted and Wright. The data in 
these locations were available for different, but longer time spans than the above-mentioned data 
collected by the research team. For Koochiching, the data is comprised of two different time spans, 
including 2005 to 2010, and 2012 to 2019. Similarly, the data availability for Olmsted is from 2000 to 
2007 and 2010 to 2017. For Wright county, data are available from 2012 to 2020. Temperature data at 
different depths are available for all datasets, as shown in Table 2.3.  
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Table 2.3: Data availability for different locations 

Dataset location Time span Depth of temperature sensor (in)  
 

Koochiching 
2005 to 2010 1; 4; 7; 9; 12; 18; 24; 30; 36; 42; 48; 54; 60; 72; 84; 96 
2012 to 2019 1; 3; 5; 8; 12; 15; 18; 21; 24; 30; 36; 42; 48; 54; 60; 64; 78; 91 

 
Olmsted 

2000 to 2007 2.5; 6; 9; 12; 18; 24; 30; 36; 42; 48; 60; 72; 84; 96; 108 
2010 to 2017 1; 2.5; 5; 7; 13; 19; 25; 31; 37; 43; 49; 55; 61; 73; 85; 97 

Wright 2012 to 2020 0.5; 2; 3.5; 5; 12; 18; 24; 30; 36; 42; 48; 54; 60; 72; 84; 96 
 
These three datasets are available for longer timespans. However, the data was collected at 1-hour time 
intervals rather than 15-minute intervals. Both sets of data are used in this study since the use of both 
sets of data is beneficial for model development and evaluation. Next, the raw data from the above-
mentioned datasets were subjected to quality control prior to use in model development. For each 
location, the number of missing elements was counted for all the depths separately; the percent of 
missing elements is shown in Table 2.4 and Table 2.5.  
 
Table 2.4: Percentage of missing elements in the collected dataset in the MnROAD Test Cells 

 TC1 TC2 TC3 TC4 TC5 TC6 TC7 TC8 TC9 TC10 TC11 TC12 
Cell 185 2 2 2 2 2 2 2 2 12 2 87 2 
Cell 186 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 11 < 1 < 1 < 1 
Cell 188 < 1 < 1 0 0 0 0 0 0 0 0 0 0 
Cell 189 < 1 < 1 0 0 0 0 0 0 NA 0 0 0 
Cell 127 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 
Cell 728 < 1 < 1 < 1 0 0 0 0 0 0 0 0 0 
*Note: NA: No data is available  
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Table 2.5: Percentage of missing elements in the MNDOT collected dataset 

Location Timespan Percentage of missing elements 
 
 
 
 

Koochiching 

 
2005-2010 

TC1 TC2 TC3 TC4 TC5 TC6 TC7 TC8 TC9 
< 1 < 1 < 1 < 1 58 < 1 < 1 < 1 < 1 

TC10 TC11 TC12 TC13 TC14 TC15 TC16 TC17 TC18 
< 1 < 1 < 1 < 1 < 1 < 1 < 1 4 5 

 
2012-2019 

TC1 TC2 TC3 TC4 TC5 TC6 TC7 TC8 TC9 
54 50 41 < 1 < 1 < 1 < 1 < 1 < 1 

TC10 TC11 TC12 TC13 TC14 TC15 TC16 TC17 TC18 
< 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 

 
 
 

Olmsted 

 
2000-2007 

TC1 TC2 TC3 TC4 TC5 TC6 TC7 TC8 TC9 
7 7 7 7 7 28 7 7 7 

TC10 TC11 TC12 TC13 TC14 TC15  
7 7 9 7 7 7 

 
2010-2017 

TC1 TC2 TC3 TC4 TC5 TC6 TC7 TC8 TC9 
< 1 < 1 < 1 < 1 58 < 1 < 1 < 1 < 1 

TC10 TC11 TC12 TC13 TC14 TC15 TC16  
< 1 < 1 < 1 < 1 58 < 1 < 1 

 
Wright 

 
2012-2020 

TC1 TC2 TC3 TC4 TC5 TC6 TC7 TC8 TC9 
30 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 

TC10 TC11 TC12 TC13 TC14 TC15 TC16  
< 1 46 < 1 < 1 < 1 < 1 < 1 

 
After removing the missing elements, outliers were identified and removed. If more than 40% data is 
missing, those datasets were not used for further analysis. Forward imputation (Barnard et al., 1999, 
Solaro et al., 2017), which is a sequential procedure to fill up the missing data in a step-by-step process 
by exploiting the data structure and interconnections among variable, was then used to fill in the 
missing elements.  
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 CALCULATION OF FREEZE-THAW CYCLES  
 
The occurrence of freeze-thaw cycles significantly impacts the performance of pavement systems over 
time. Thus, one of the objectives of this study is to evaluate the number of freeze thaw cycles occurring 
at different soil depths based on measured data. However, there is no widely accepted method to 
calculate the number of freeze-thaw cycles from soil temperature data. Freeze-thaw cycles consist of 
two components, including a freezing component and a thawing component (Figure 3.1). One freeze-
thaw cycle must include both in sequential order. To ensure complete freezing, the soil temperature 
needs to be lower than the freezing point temperature, and after it must be higher than the thaw 
temperature to ensure the soil is completely thawed (MnDOT, 2014). Thus the number of freeze-thaw 
cycles depend on the freezing and thawing temperature and time duration needed to ensure freezing 
and thawing for soils at different depths. To evaluate the number of cycles, several different methods 
were assessed, as follows.  
 
 

 
Figure 3.1 Freeze-thaw cycle diagram 

 

3.1. FIXED FREEZING TEMPERATURE 

First, different freezing point temperatures were considered to calculate the freeze-thaw cycles while 
keeping the thaw temperature fixed at 0°C. Nine different freezing point temperatures were selected 
including -0.001°C, -0.1°C, -0.2°C, -0.25°C, -0.3°C, -0.4°C, -0.5, -0.75°C and -1°C. A value of -1°C, for 
example, means that when the temperature is above 0°C, it is considered to be thawed, and when the 
temperature is below -1°C, it is considered to be fully frozen. The variation in the number of freeze-thaw 
cycles for different freezing temperatures is shown in Figure 3.2 for a specific test cell (Cell 185) covering 
2 years of measured data.  
 



 

9 
 

 
Figure 3.2: Variation in number of freeze-thaw cycles for different freezing point temperatures across 2 years of 
measured data for Cell 185 

As seen in Figure 3.2, for freezing point temperatures closer to the thaw temperature, the number of 
freeze-thaw cycles for Cell 185 increases significantly. In addition, for these freezing point temperatures, 
the number of freeze-thaw cycles increases with increasing depth (Zegeye et al., 2019). The reason that 
this occurs is that, at the deeper locations, the fluctuations in the temperatures are much lower than the 
shallower depths, thus if at the deeper locations, the temperatures fluctuation is around 0°C (e.g. at the 
48 in depth in Figure 3.2), A significant increase in the count of freeze-thaw cycles can be seen when the 
freezing point temperatures are closest to 0°C. This requires careful consideration. Given that the 
accuracy of the temperature sensors used to collect the data is +/- 1°C, it is recommended to consider    
-1°C freezing point temperature to calculate the number of freeze-thaw cycles.   
 
To assess the similarity of these counts of freeze-thaw cycles in literature, the resulting number of 
freeze-thaw cycles from the above-mentioned analysis was compared with a similar study where the 
data was collected from various locations in the state of Minnesota (MnDOT, 2014). In that study, the 
average number of freeze-thaw cycles across a 10-year period was evaluated at a depth of one inch 
below the surface, as shown in Figure 3.3. A freezing point temperature of 0°C was used in the study. As 
shown in Figure 3.3, an average of 86 cycles was found across the months of October to April.  
 

 
Figure 3.3: Average freeze-thaw cycles by month from a prior MnDOT study (MnDOT, 2014) 
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In the present study, based on the measured data, a similar analysis was performed. A freezing point 
temperature of -1°C was used to incorporate the sensitivity of the sensors. The number of freeze-thaw 
cycles for the 3- and 4-inch depths in different test cells is shown in Figure 3.4a and 3.4b for the same 
months as the study represented in Figure 3.3. As shown in Figure 3.4, the number of cycles calculated 
in this study decreases with increasing depth from the surface. Similar to the previous study and Figure 
3.3, the number of cycles is higher for the month of March at the end of winter, and during November, 
and at the start of the winter season.  
 

 
           (a) 

 
          (b) 
Figure 3.4: Average freeze-thaw cycles by month for (a) 3-inch and (b) 4-inch depth 

 

3.2. MODIFIED REFERENCE TEMPERATURE METHOD  

 
The freezing point temperature value was also calculated using a second method, to assess the impact 
of this method on the calculated number of freeze-thaw cycles. This method is based on the MnDOT 
Technical Memorandum 14-10-MAT-02. Unlike the constant freezing point temperature method used in 
Section 2.1, the freezing point temperature is considered to vary by the time of year. Table 3.1 shows 
this variation, as defined in the memorandum. The reasoning behind considering such variation is the 
change in solar radiation across different times of the year. This impacts the freezing and thawing 
behavior of the soils, particularly near the surface. Following this method while incorporating the 
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sensitivity of the temperature sensors used to measure for data collection of +/-1°C, a “modified 
reference temperature” was determined (Table 3.1) and used to calculate the number of freeze-thaw 
cycles. The number of freeze-thaw cycles obtained using the “modified reference temperature” method 
is shown in Figure 3.5, using data from Cell 185.  
 
Table 3.1. Reference temperature variation as defined by MnDOT Technical Memorandum 14-10-MAT-02 and 
modified reference temperature by time of year 

Date Reference temperature (°C) Modified reference temperature (°C) 
January 1- January 31 0 -1.0 
February 1- February 7 -1.5 -1.5 
February 8- February 14 -2.0 -2.0 
February 15- February 21 -2.5 -2.5 
February 22- February 28 -3.0 -3.0 
March 1 – March 7 -3.5 -3.5 
March 8 – March 14 -4.0 -4.0 
March 15 – March 21 -4.5 -4.5 
March 22 – March 28 -5.0 -5.0 
March 29 – April 4 -5.5 -5.5 
April 5 - April 11 -6.0 -6.0 
April 12 - April 18 -6.5 -6.5 
April 19 - April 25 -7.0 -7.0 
April 26 – May 2 -7.5 -7.5 
May 3- May 9 -8.0 -8.0 
May 10- May 16 -8.5 -8.5 
May 10- May 23 -9.0 -9.0 
May 24- May 30 -9.5 -9.5 
June 1- December 31 0 -1.0 

 

 
Figure 3.5: Number of freeze-thaw cycles obtained using modified reference temperature method for Cell 185 
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3.3. TIME DELAY METHOD 

 
Another method considered in this effort includes the incorporation of a “time delay” for the purposes 
of ensuring that complete freezing and thawing has occurred in the studied soils. A “time delay” is 
defined as a minimum period of time required for a half of a freeze-thaw cycle to be completed.  For 
example, a “time delay” of 1 hour indicates that for at least 1 hour, the studied soil must be below the 
freezing point temperature. An example soil temperature distribution for a single day is shown in Figure 
3.6 which demonstrates the time delay concept for complete freezing. If the period of time below the 
freezing point temperature is less than 1 hour, that portion of the freeze-thaw cycle is not considered to 
have occurred. To complete a freeze-thaw cycle, the soil temperature needs to be higher than the 
thawing temperature for the time delay period to ensure complete thawing.  
 

 
Figure 3.6: Schematic of the time delay scenario to calculate the number of freeze-thaw cycles 

Similarly, the soil temperature must be lower than the freezing point temperature for the designated time 
period to ensure complete freezing. Different time delays were considered, from 0 to 24 hours, the results 
of which are shown in Figure 3.7. 
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Figure 3.7: Number of freeze-thaw cycles using the time delay method and an assumed -1°C freezing point 
temperature 

 

3.4. RECOMMENDATIONS 

Comparing the three methods, it was recommended to the use of a fixed freezing temperature of -1°C, 
based on the data collected and reported sensor error of +/- 1°C. When using this fixed freezing 
temperature of -1°C, the additional use of the time delay method impacts only the shallow depths of 
temperature measurements.  
 
After substantial discussions with the project Technical Advisory Panel on this topic, a method was 
finalized to calculate the number of freeze-thaw cycles. To do this, 0°C was used as threshold 
temperature for melting and -1°C was used as the threshold temperature for freezing. Along with the 
temperature, a time delay is also considered in the calculation, where a 24 hour time delay is required 
after the -1°C threshold is passed, to ensure complete freezing. For thawing, a minimum 5 consecutive 
hours above 0°C was required. 
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 MODEL DEVELOPMENT 

4.1. DATA PROCESSING 

Two different datasets were used in this study. For ease and clarity of discussion, the datasets were 
named as Dataset 1 and Dataset 2. Along with the soil temperatures at different depths, climate data 
was in Dataset 1. These data were collected across a 2-mile span of roadway in MNROAD facility near 
Albertville , Minnesota. Air temperature, relative humidity, wind speed, precipitation and solar radiation 
data were collected at a 15-minute timestep to be consistent with the collected temperature data 
granularity. In Dataset 2, soil temperature data were collected at a 1-hour time interval in three 
different counties in Minnesota, including Koochiching, Olmsted and Wright. For brevity, the focus was 
on the data collected in Olmsted county in this section, as data timespan of the three locations are 
similar.  
 
The climatic variables were pre-processed to create a list of potential variables which can be used as the 
input parameters in the modeling process. The final list of parameters considered can be divided in two 
categories: time variables and climate variables. The list of all the variables is shown below: 
 
The time variables considered include:   
1. Month number (1 to 12) 
2. Week number (1 to 52) 
3. Day of year (1 to 365)  
4. Timestep (1 to 4*24 for 15-minute timestep data) 
 
The climatic variables considered include: 
1. Air temperature (AirTemp) 
2. Relative humidity (RH) 
3. Rain or precipitation (Rain) 
4. Windspeed (Wind) 
5. Radiation (Rad) 
6. Daily average air temperature (avgTemp) 
7. Daily average relative humidity (avgRH) 
8. Daily average precipitation (avgRain) 
9. Daily average windspeed (avgWind) 
10. Daily average solar radiation (avgrad) 
11. Variation of the air temperature with respect to the daily average value (varTemp)  
12. Variation of the relative humidity with respect to the daily average value (varRH) 
13. Variation of the precipitation with respect to the daily average value (varRain) 
14. Variation of the windspeed with respect to the daily average value (varWind) 
15. Variation of the solar radiation with respect to the daily average value (varRad) 
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The variation values were calculated by subtracting the daily average values from the instantaneous 
value at a specific time interval, using the following:  
 
Variation = Instantaneous value – Average value of a specific day 
 
To implement the Regression model, variables should be independent of one other. To check the 
correlation among the variables, Stepwise Regression was used. The results of the Stepwise Regression 
analysis are shown in Table 4.1.  
 
The correlation coefficient values are shown in Table 4.1, where any value close to ±1 represents high 
correlation and 0 represents no correlation. The cells are color coded based on the level of correlation 
coefficients. Yellow represents highly correlated parameters with a correlation coefficient higher than 
0.7. Green cells represent moderate correlations where the absolute value of correlation coefficient 
value between 0.3 to 0.7. Non-colored cells represent variables with low correlation, with a correlation 
coefficient less than 0.3. These non-colored variables are used in the development of the Regression 
model .  
 
Table 4.1 Correlation analysis using stepwise regression 

 
 
As shown in Table 4.1, several variables cannot be considered individually in the Regression model as 
they are either highly or moderately correlated among each other. As an example, the time variables 
such as Week with respect to Month, and Week with respect to Day of Year are highly correlated. 
Similarly, the variation values of precipitation, relative humidity, wind speed and solar radiation are 
highly correlated with their respective measured data values. Similarly, the average air temperature is 
highly correlated with both the air temperature and average radiation values. The average radiation 
values are highly correlated with actual air temperature values. Thus, based on the results obtained of 
the stepwise regression method, 8 different variables were selected as the input variables for the 
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Regression model. These include, Day of Year, Timestep, Air Temperature, Radiation, Variation in Air 
Temperature, Variation in Rain, Variation in Relative Humidity and Variation in Windspeed.  
 
Dataset 1 and Dataset 2 were then used to create the data-driven models. Dataset 1, with 
approximately 1.5-2 years of data available at each cell (16 months) from January 1, 2018 to April 16, 
2019, was split into two datasets, one for use in training the model, and a second for model testing. This 
split was a 75%-25% split where 12 months of data (2018) was used as training data, and January 1, 
2019 to the end of the dataset was used for the testing of the model. For Dataset 2, with data across 
multiple years, data was split in an 80%-20% division, where 80% of it was used for the training purpose 
and the rest of the data was used as testing data. For example, for the Olmsted location, data from 
September 2005 to February 2007 was used as testing data and January 2000 to September 2005 was 
used at training data. The reason that the datasets were split slightly differently is because for Dataset 1, 
training dataset was selected to include one whole year and similarly for Dataset 2, the objective was to 
select an entire winter season for training data. For weather data, for Dataset 1, onsite field collected 
data was used; for Dataset 2, the nearest available weather station data was used for each location.  

4.2. MODEL DEVELOPMENT 

As mentioned, there are no well accepted algorithm that can be used for the prediction of the soil 
surface temperatures. At the initial stage of the study, different models were implemented to study 
which algorithm performs best. Initially, a Linear Regression model was used, followed by Regression 
models used for time series data forecasting, including Vector Auto Regression, Vector Auto Regression 
Moving Average, and Vector Error Correction Models. However, the above-mentioned models were 
unable to accurately capture the granular trend in soil temperature. An example result of soil 
temperature prediction is shown in Figure 4.1. This was obtained for a specific cell location and at a 
specific depth using Vector Auto Regression modeling methods. The results show the predicted 
temperature for testing dataset where x-axis of the figure shows timestep of the year. However, the 
results obtained for the other mentioned algorithms were also similar for all the soil depths. Thus, 
Nonlinear Regression models were implemented, and the performance of the soil temperature 
prediction improved significantly using this method.  
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Figure 4.1. Temperature prediction using Vector Auto Regression Model 

4.2.1. Temperature prediction 

A Nonlinear Regression modeling method was implemented using a fourth order polynomial model. Two 
modeling methods were considered based on a Nonlinear Regression algorithm. Model 1 predicts 
temperature at each depth individually, using a single model. Two time variables and six climate 
variables were used as input. These include Day of Year, Timestep, Air Temperature, Radiation, Variation 
in Air Temperature, Variation in Rain, Variation in Relative Humidity and Variation in Windspeed. The 
equation for the Model 1 is in Appendix Table A 1. Model 2 was developed using a combination of two 
parts - one to predict the daily average soil temperatures, and a second to predict the variation in soil 
temperature with respect to the daily average values. To predict the daily average soil temperatures, six 
variables were used (Day of Year, Timestep, Average Air Temperature, Average Rain, Average Relative 
Humidity and Average Wind Speed. For the second half of the model, Day of Year, Timestep, Air 
Temperature, Radiation, Variation in Air Temperature, Variation in Rain, Variation in Relative Humidity 
and Variation in Wind Speed were used as the input parameters.  
 
The results of the soil temperature prediction are shown in Figure 4.2 for both initial models, including 
the temperature at three depths (3-inch, 14-inch, 72-inch). These three depths were selected to be 
presented because they represent the top surface (largest diurnal fluctuations), intermediate depth, and 
deep depth (least fluctuations). The timespan of the temperature prediction shown in Figure 4.2 is for 4 
months of data from January 2019 to April 2019, which represents the second part of winter. This time 
span is used because January to December 2018 was used as training data, thus the remaining 4 months 
was used as testing data. This divides the dataset in a 75%-25% split where 75% of the data was used for 
training and rest 25% was used for testing. The Models are labeled as “initial” models in Figure 4.2 
because further adjustments were made to the modeling method to arrive at the final Models for this 
work.  
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Figure 4.2. Comparison between the measured and predicted temperature for depths of (a) 3 inch, (b) 14 inch 
and (c) 72 inch below the surface for the initial Model 1 and Model 2 for the timeframe of January to April 

As shown, the temperature fluctuations at the top surface are greater, whereas this fluctuation 
decreases with depth, as expected. Both the Models can predict the temperature at the top surface 
quite well. However, the performance of these initial Models reduces at deeper depths. At a depth of 
14-inch, Model 2 predicts the overall trend of the temperature for most of the timespan. However, 
several spikes occur where the predicted temperature deviates significantly compared to the measured 
temperature data. Model 1 did not generate any spikes in the temperature prediction. However, the 
predicted temperature deviates from the measured soil temperature more than Model 2.  
 
To reduce the spikes in the model predictions, two different filters were used. The objective of the filters 
was to limit the allowable variation in the model results from timestep (n-1) to the next timestep (n). In 
addition, the filters were also designed to limit temperature predictions which were significantly higher 
or lower than the measured temperature bounds (i.e. the minimum and maximum soil temperatures 
observed for each depth throughout the dataset). To identify the temperature bounds, the range of soil 
temperatures (maximum and minimum) expected for each depth across the dataset was assessed. The 
RMSE (root mean squared error) values for both the initial Models and the models which include the 
developed filters for all six locations at the MNROAD test facility and several depths are shown in Figure 
4.3. A smaller RMSE values equates to better model performance over the timespan of evaluation.  
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Figure 4.3. Comparison of RMSE values for initial Model 1 and 2, and Model 1 and 2 with filters applied, at 
depths of (a) 3 inches, (b) 4 inches, (c) 18.5 inches, (d) 24 inches, (e) 48 inches and (f) 72 inches for all cell 
locations for Dataset 1 

The results show that, overall, across the models, the RMSE values for predicting the soil temperature 
decrease at deeper depths. In addition, in comparing the models, Model 1 generally has larger error 
than Model 2. The use of the filters helps to reduce this model error. For 3-inch and 4-inch depths, RMSE 
values for Model 1 without the filters was approximately 8 to 12°C. After implementing both filters, the 
RMSE values were reduced to half, or approximately 4 to 6 °C. Model 2 has a significantly smaller RMSE 
values of 2 to 4°C with the use of filtering. For intermediate and deeper depths, Model 2 with the filters 
had the smallest RMSE values among the 4 model variations evaluated for all the depths in all locations. 
For the deepest depths, the smallest RMSE values were approximately 1 to 2°C for 18.5- and 48-inch 
depths, and less than 1°C for the 72-inch depth. These results demonstrate that Model 2 with filters 
provides the best prediction of temperature among the modeling methods implemented. 
 
A similar study was conducted using Dataset 2 which was the longer timescale data collected 
throughout Minnesota with a 1-hour timestep. The performance of both initial Model 1 and 2, and 
Model 1 and 2 with filters were evaluated for a time period starting from January 2000 to February 
2007. This is substantially longer time period than the Dataset 1. The performance of both Model 1, 
Model 2 and the two models with filters are shown in Figure 4.4. As shown in the Figure, the RMSE 
values decreased at deeper depths as obtained for Dataset 1. However, the RMSE values were higher for 
this dataset compared to the model performance with previous set of data. The reason for these higher 
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RMSE may be because the weather data used for model prediction was not collected on site and instead 
was obtained from the closest available weather station.   
 

 
 
Figure 4.4: Comparison of RMSE values for Dataset 2 

Based on the resulting performance of the models considered, the Model 2 with filters performed best 
in predicted temperatures at the various depths. 
 

4.2.2. Prediction of number of freeze-thaw cycles 

Based on the above-mentioned method for defining a freeze-thaw cycle (Section 3.4), the number of 
freeze-thaw cycles was evaluated from Dataset 1 using the four considered modeling methods, and 
compared with the number of cycles obtained from measured soil temperature (Figure 4.5). This figure 
also depicts the freeze-thaw cycle comparison for 4 months in the beginning of 2019 which represents 
the end of the winter. As discussed above, the reason this time period was used for this dataset is 
because for training one whole year of data was utilized, and the rest of the data was used as testing 
dataset. 
 
As shown in Figure 4.5, the number of freeze-thaw cycles obtained from the Model 1 is similar to the 
number of freeze-thaw cycles obtained from the measured data. At deeper depths, the number of 
freeze-thaw cycles decreased, as expected. Model 2 generally slightly overpredicts the number of cycles 
for most soil depths and locations, as compared to Model 1. The number of freeze-thaw cycles was also 
calculated for the Dataset 2, as shown in Figure 4.6. 
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Figure 4.5. Comparison of the freeze-thaw cycle variations for the four Models 
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Figure 4.6. Number of freeze-thaw cycle comparison for Dataset 2 

As shown in Figure 4.6, apart from the 30-inch and 36-inch depths, the number of freeze-thaw cycles 
predicted by the Model 1 is similar to the actual number of freeze-thaw cycles. However, for the two 
mentioned depths, Model 1 and 2 overpredict the number of cycles. One possible reason for this is that, 
as mentioned in the previous section, the location of soil temperature collection and location of weather 
data was not same, which may impact the level of error in the input data. This result was consistent with 
the results obtained with the Dataset 1. Thus, from these two sections, it can beconcluded that the 
Model 1 with 2 filters, is better suited to evaluate the number of freeze-thaw cycles effectively and thus 
is chosen as the final model for this project.  
 

4.2.3. Isotherm calculation 

The distribution of the 0°C isotherm for different depths and different time periods were calculated 
from the measured data. The results of cell 185 are shown in Figure 4.7. The remaining figures are 
shown in Appendix A. The 0°C isotherm curve reaches its maximum depth during the months of 
December to February and then the depth of the isotherm curve reduces. A similar trend can be seen 
for all cell locations. 
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Figure 4.7. 0°C isotherm for cell 185 in Dataset 1 

 

4.2.4. Time duration of freezing and thawing phase and their occurrence 

The duration of the frozen period including the start and end dates, was calculated for each soil depth 
along with the freezing and thawing periods for each test location. Using Dataset 1, these were 
evaluated for approximately 18 months of data, from September 2017 to April 2019 and shown in Table 
4.2. It was obtained that for some years, for shallower depths, such as 6.5 inch in both Cell 189 and 127, 
the soil froze intermittently, in some cases for as little as 1-day periods. As expected, for deeper depths 
the temperatures fluctuate less thus there are not short freeze periods at these depths. 
  
The starting and ending time of freezing phase and their duration was compared for the predicted soil 
temperatures with the actual values. The performance of both the Model 1 and Model 2 were 
evaluated, as shown in Table 4.2. Model 1 performed significantly better compared to the Model 2. The 
performance of the Model 1 and its comparison with respect to the actual values is shown in Table 4.3. 
Note the freeze and thaw periods calculated for these cells assume the use of the shallowest soil depth 
that is not within the pavement foundation layers (i.e. base, subbase and subgrade layer) (e.g. cell 189 
uses a soil depth of 6.5 in to calculate when the freezing and thawing period starts and ends).  
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Table 4.2. Freezing start and end day with the duration for different soil depths for the location of (a) cell 185, 
(b) cell 186, (c) cell 188, (d) cell 189, (e) cell 127, (f) cell 728 
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Table 4.3. Comparison of freezing time for actual and predicted soil temperatures for Dataset 1 for the location 
of (a) cell 185, (b) cell 186, (c) cell 188, (d) cell 189, (e) cell 127, (f) cell 728 (note: Method 1 refers to Model1) 

 
 
As shown in Table 4.3, Model 1 can generally predict the freezing start and end day and the duration of 
the freezing phase for the Dataset 1. The predicted freezing and thawing period using Model 1 and the 
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measured data-derived results are compared in Table 4.4. It can be seen from Table 4.4 that the Model 
1 can predict the freezing period accurately for most of the cell locations. However, it underpredicts the 
time for the thawing period.  
 
Table 4.4. Comparison of freezing and thawing period for all cell locations using Dataset 1 
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 TOOL DEVELOPMENT 
 
The focus of this task was to create an Excel-based modeling tool to predict the soil temperatures and 
number of freeze-thaw cycles for different soil depths.  Excel was requested to be used for this tool as it 
is available to and commonly used by the target audience. This tool developed was achieved using Excel 
macro functions and VBA programs. It is noted that as Excel is used, there are more efficient methods 
(e.g. python) for tool execution, and that choice of Excel somewhat limits some of the speed of results 
output. However, it does achieve the desired functionality. This tool allows the user to provide climate 
condition data and the depth at which the soil temperature and freeze-thaw cycles are desired to be 
calculated. The tool then provides a prediction, for the given weather conditions, of the soil 
temperatures at that depth over time and the predicted number freeze-thaw cycles. The framework of 
the tool is designed in three layers, as shown in Figure 5.1.  
 

 
 
 

 
Figure 5.1: Framework of the Excel-based tool 

In (1) the first part, the tool requires the user to provide climate data for the location of interest. The 
following inputs are required at a frequency of 15 minutes in the following format: 

1. Date and time in mm/dd/yy hh:mm 
2. Air temperature in ⁰C 
3. Precipitation in mm 
4. Relative humidity in % 
5. Windspeed in m/s 
6. Net radiation in W/m2 

As an example, of these values, the inputs of the tool should be in the format shown in Figure 5.2, as 
follows. 
  

(1) Prediction of 
soil temperature 

(2) Temperature 
filtration 

(3) Calculation of the 
number of cycles 
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Figure 5.2: Required input from the user 

The tool user must also input the depth of the soil at which temperature and calculation of number of 
freeze thaw cycles is requested. The depth is used to determine which set of the developed regression 
equations to use. The user can select the depth from a drop-down menu (Figure 5.3) within the tool.  
 

 
Figure 5.3: Soil depth input to the tool as a drop-down menu (in green, bottom right) 

 
The tool has three buttons that can be clicked, which each have their own functionalities. The 
applicability of each of the buttons are described below : 

1. Temperature prediction; 
2. Number of freeze thaw cycles; 
3. Predict soil temperature and number of cycles. 
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5.1. TEMPERATURE PREDICTION 

Based on the given input to the tool and after selecting the depth, choosing this button results in the 
temperature prediction for each timestep, as shown in Figure 5.4. Predicted temperatures will be added 
in the highlighted column AG. 
 

 
 

Figure 5.4. Example results of the ‘Temperature prediction’ button 

 

5.2. NUMBER OF FREEZE-THAW CYCLES 

 
Based on the predicted temperature, this button calculates three values, as follows. Note that this 
button must be clicked on after the “temperature prediction” button. Figure 5.5 shows an example of 
the results in Columns L through O.   

• number of freeze-thaw cycles,  
• starting of freeze and thaw mode and  
• the duration of each of the freeze-thaw cycles 

 

 
 

Figure 5.5. Example results of the ‘Number of freeze-thaw cycles prediction’ button 

 

5.3. PREDICT SOIL TEMPERATURE AND NUMBER OF FREEZE-THAW CYCLES 

This button accomplishes what is done for button 1 and 2 in one step, and includes the temperature 
prediction, and the calculation of number of freeze-thaw cycles and their duration. The results would 
include a combination of Figure 5.4 and Figure 5.5, an example of which is shown in Figure 5.6.  
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Figure 5.6. Example results of the ‘Predict soil temperature and number of cycles’ button 

 

5.4. STEPS TO RUN THE TOOL 

After the user provides the climate data and selects the specific soil depth of interest, they must click 
the button which performs the calculations to provide the desired output. Within the tool’s code, it will, 
prior to running the modeling program, check the weather data provided to verify there are no non-
numerical values or values that are too high or low and likely erroneous. As an example, relative 
humidity can only be between 0 – 100%. If there is any value in the relative humidity column that is 
greater than 100% or lesser than 0% or is non-numerical, the tool will generate a message to inform the 
user using an error message (e.g. Figure 5.7) and prevent the code from running further. If there is no 
issue with the data, no message will be generated. 
 

   
 
Figure 5.7. Error message generated for out-of-range or non-numerical data input 

  
After the data quality check is complete, the tool will check whether the user would like to proceed with 
the running of the tool’s code (Figure 5.8). This step is to ensure that user did not press the button 
unintentionally and to check, based on any potential error messages regarding the range or values of 
the input data (e.g. Figure 5.7), whether the user wishes to proceed with the results calculations.  If the 
user selects ‘yes’, the tool will proceed with the calculations, which takes between 2 and 15 minutes for 
a range of 1 to 5 months of data (depending on the speed of the computer utilized). If the user selects 
‘no’, the program will terminate.   
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Figure 5.8. Tool asking permission to run 

 
To improve user friendliness of the developed methods, a sample weather data of 15 days is provided so 
that it is clear what the type of data and its format are needed as input. An introduction page is also 
added to explain the tool and its procedures. 
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 CONCLUSIONS AND RECOMMENDATIONS 
 
In this project, a detailed literature review was conducted to predict soil temperature using data-driven 
models. Next, different data-driven models were implemented to predict the soil temperature and 
calculate the number of freeze-thaw cycles from climate information. Stepwise regression models were 
implemented to select the variables for this study. Two final models were developed to predict the soil 
temperature based on the given climate condition. Two filters were also designed to post process the 
data obtained from the models. Different methods were also analyzed to calculate the number of 
freeze-thaw cycles from the soil temperature values. Based on the analysis, the following conclusions 
are drawn: 
 

• Soil temperature needed to be below -1°C for consecutive for 24 hours to ensure complete 
freezing. At the same time, soil temperature needs to be more than 0°C for 5 hours to ensure 
complete thawing.  

• Overall, Model 1 i.e. nonlinear regression model with two time variables and six environmental 
parameters along with two filters performs better for the soil temperature prediction. These 
two filters are used to limit the maximum and minimum temperature and the fluctuation across 
two consecutive timesteps. 

• Two time variables and six climate variables were used as input for soil temperature prediction, 
including Day of Year, Timestep, Air Temperature, Radiation, Variation in Air Temperature, 
Variation in Rain, Variation in Relative Humidity and Variation in Windspeed. 

• Overall Model 1 with the 2 filters performs best for prediction freeze-thaw cycles and thus used 
in further study.  

• Based on this, an Excel-based tool is developed to predict the soil temperature and number of 
freeze-thaw cycles and their duration for different depths using climate and time variables as 
input. 

Overall, this study and the developed tool resulted in a data-driven model between the climate 
conditions and the soil surface temperature, which makes it easier for the user to predict the number of 
freeze-thaw cycles and analyze the pavement condition. 
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APPENDIX A 
 

 
             (a) 
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            (e) 

 
Figure A.1. 0°C isotherm for test sites (a) cell 186, (b) cell 188, (c) cell 189, (d) cell 127 and (e) cell 728 in Dataset 1  
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Table A 1. Coefficients used in regression equations for temperature prediction at different soil depths for Dataset 
1, Cell 186 
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