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1. Literature Review 

 

The objective of this task is to create and validate a model to predict soil temperatures and number 

of freeze-thaw cycles for different soil depths. To achieve the target, initially a literature review 

was completed to assess the current state of art in soil temperature prediction.  

 

There are several studies that have focused on implementing data-driven methods to predict the 

soil temperatures. Mihalakakou et al. [1] used an Artificial Neural Network model to predict the 

temperature of a bare and short grass covered soil surface and compared its performance with 

physical models. Six years of data was used for training and 1 year of soil temperature data was 

used for model testing. They found that although the physical model performed better compared 

to the data-driven model, it is much more complex and required many more inputs. The relative 

error in the predicted soil surface temperature was 10% to 15%. In another study by Tang et al. 

[2], a linear regression model was used to predict the mean annual ground temperature, then a 

Feed-Forward Neural Network model was used to predict the daily mean ground temperature in 

Chengdu, China. Approximately 50 years of daily soil temperature data was used to create the 

model. Among the considered variables, ambient temperature and relative humidity were found to 

be able to be used to best predict the daily surface temperature. Talaee and Hosseinzadeh [3] 

predicted daily soil temperatures at six different soil depths using a Coactive Neuro-Fuzzy 

Inference System (CANFIS) in Iran [3]. 10 years of data was used to create the model where mean, 

maximum, and minimum air temperatures, relative humidity, hours of sunshine and solar radiation 

were used as variable inputs to the model.  

 

In another study by George [4], weekly average soil temperature was predicted using air 

temperature, relative humidity and wind speed data using both Neural Network and Multiple 

Linear Regression models. In [5], monthly soil temperatures at four different depths were predicted 

and compared using three different models, including Multi-Layer Perceptron, Radial Basis Neural 

Network, and Generalized Regression Neural Network models. The air temperature was found to 

be the most effective variable to predict monthly soil temperature. In addition, the accuracy of the 

models generally reduced with an increase in depth. Kim et al. [6] modeled daily soil temperatures 

at two depths in Illinois using Multilayer Perceptron and Adaptive Neuro-Fuzzy Interference 

System using climate data as input. Another study by Bilgili [7] predicted the monthly soil 

temperature data with approximately 8 years of climate data in Turkey, using regression models, 

including Linear and Nonlinear Regression and Artificial Neural Networks. Stepwise Regression 

was also used to select the most important variables for analysis. In a similar study, 20 years of 

soil temperature data was used to predict the monthly soil temperature in Turkey using Artificial 

Neural Network, Adaptive Neuro-Fuzzy Inference System and Multi-Linear Regression models 

[8]. Air temperature, month number, soil depth and monthly precipitation were determined to be 

the best combination of variables for soil temperature prediction. Daily soil surface temperatures 

were predicted using a combination of two different Support Vector Machine models, where one 

model was used to predict the annual average soil temperature and the other model was used to 

predict the daily ground temperature amplitude with respect to the annual average temperatures 

[9]. It was obtained that the combination of the two models performed much better compared to a 

single Support Vector Machine model in predicting the soil temperature.  
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In summary, the above-discussed studies used different data-driven methods, most commonly 

various types of Neural Network and Regression models to predict soil temperatures. However, 

there is no commonly accepted method nor a common set of variables which have been used to 

predict soil temperatures. In addition, in the majority of these studies, the shortest timestep used 

for temperature prediction is the daily level, rather than a more granular level. Similarly, none of 

these studies focus on the prediction of the number of freeze-thaw cycles based on soil temperature 

data.   

 

2. Data Processing 

 

Two different datasets are being used in this study, as discussed in the Task 2 report. For ease and 

clarity of discussion, we have named these Dataset 1 and Dataset 2. Along with the soil surface 

temperatures at different depths, climate data was in Dataset 1. These data were collected across a 

2-mile span of roadway in MNROAD facility at Monticello, Minnesota. Air temperature, relative 

humidity, wind speed, precipitation and solar radiation data were collected at a 15-minute timestep 

to be consistent with the collected temperature data granularity. In Dataset 2, soil surface 

temperature data were collected at a 1-hour time interval in three different counties in Minnesota, 

including Koochiching, Olmsted and Wright. For brevity, we focus on the data collected in 

Olmsted county in this Task, as data timespan of the three locations are similar.  

 

The climatic variables were pre-processed to create a list of potential variables which can be used 

as the input parameters in the modeling process. The final list of parameters considered can be 

divided in two categories: time variables and climate variables. The list of all the variables is shown 

below: 

 

The time variables considered include:   

1. Month number (1 to 12) 

2. Week number (1 to 52) 

3. Day of year (1 to 365)  

4. Timestep (1 to 4*24 for 15-minute timestep data) 

 

The climatic variables considered include: 

1. Air temperature (AirTemp) 

2. Relative humidity (RH) 

3. Rain or precipitation (Rain ) 

4. Windspeed (Wind) 

5. Radiation (Rad) 

6. Daily average air temperature (avgTemp) 

7. Daily average relative humidity (avgRH) 

8. Daily average precipitation (avgRain) 

9. Daily average windspeed (avgWind) 

10. Daily average solar radiation (avgrad) 

11. Variation of the air temperature with respect to the daily average value (varTemp)  

12. Variation of the relative humidity with respect to the daily average value (varRH) 

13. Variation of the precipitation with respect to the daily average value (varRain) 

14. Variation of the windspeed with respect to the daily average value (varWind) 
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15. Variation of the solar radiation with respect to the daily average value (varRad) 

The variation values were calculated by subtracting the daily average values from the 

instantaneous value at a specific time interval, using the following equation:  

Variation = Instantaneous value – Average value of a specific day 

 

To implement the Regression model, variables should be independent of one other. To check the 

correlation among the variables, Stepwise Regression was used. The results of the Stepwise 

Regression analysis are shown in Table 1.  

 

The correlation coefficient values are shown in Table 1, where any value close to ±1 represents 

high correlation and 0 represents no correlation. The cells are color coded based on the level of 

correlation coefficients. Yellow represents highly correlated parameters with a correlation 

coefficient higher than 0.7. Green cells represent moderate correlations where the absolute value 

of correlation coefficient value between 0.3 to 0.7. Non-colored cells represent variables with low 

correlation, with a correlation coefficient less than 0.3. These are used in the final Regression 

model.  

 

Table 1. Correlation analysis using stepwise regression 

 

 
 

As shown in Table 1, several variables cannot be considered individually in the Regression model 

as they are either highly or moderately correlated among each other. As an example, the time 

variables such as Week with respect to Month, and Week with respect to Day of Year are highly 

correlated. Similarly, the variation values of precipitation, relative humidity, wind speed and solar 

radiation are highly correlated with their respective measured data values. Similarly, the average 

air temperature is highly correlated with both the air temperature and average radiation values. The 

average radiation values are highly correlated with actual air temperature values. Thus, based on 

the results obtained of the stepwise regression method, 8 different variables were selected as the 

input variables for the Regression model. These include, Day of Year, Timestep, Air Temperature, 

Radiation, Variation in Air Temperature, Variation in Rain, Variation in Relative Humidity and 

Variation in Windspeed.  
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Week 1

Month 1 1

DayofYear 1 1 1

Timestep 0 0 0 1

AirTemp 0.22 0.21 0.22 0.11 1

Rain 0.02 0.02 0.02 0.01 0.04 1

RH 0.22 0.22 0.22 -0.25 -0.24 0.09 1

Wind -0.09 -0.09 -0.09 0.04 -0.11 0.01 -0.23 1

rad 0 0 0 0.04 0.46 -0.03 -0.5 0.18 1

varTemp 0 0 0 0.4 0.27 -0.01 -0.55 0.26 0.5 1

varRain 0 0 0 0.01 0 0.96 0.03 0.02 -0.02 -0.01 1

varRH 0 0 0 -0.36 -0.21 0.04 0.71 -0.27 -0.51 -0.78 0.04 1

varWind 0 0 0 0.05 0.1 0.02 -0.27 0.71 0.35 0.37 0.02 -0.38 1

varRad 0 0 0 0.04 0.15 -0.02 -0.4 0.28 0.91 0.55 -0.02 -0.56 0.39 1

avgTemp 0.22 0.22 0.22 0 0.96 0.04 -0.09 -0.18 0.34 0 0 0 0 0 1

avgRain 0.09 0.09 0.09 0 0.15 0.26 0.24 0 -0.04 0 0 0 0 0 0.16 1

avgRH 0.31 0.31 0.31 0 -0.13 0.09 0.71 -0.06 -0.2 0 0 0 0 0 -0.13 0.34 1

avgWind -0.12 -0.12 -0.12 0 -0.25 0 -0.06 0.71 -0.11 0 0 0 0 0 -0.26 0 -0.08 1

avgrad -0.01 -0.01 -0.01 0 0.77 -0.02 -0.33 -0.18 0.42 0 0 0 0 0 0.8 -0.09 -0.46 -0.25 1
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Dataset 1 and Dataset 2 (see Task 2 report) were then used to create the data-driven models. Dataset 

1, with approximately 1.5-2 years of data available at each cell (16 months) from January 1, 2018 

to April 16, 2019, was split into two datasets, one for use in training the model, and a second for 

model testing. This split was a 75%-25% split where 12 months of data (2018) was used as training 

data, and January 1, 2019 to the end of the dataset was used for the testing of the model. For 

Dataset 2, with data across multiple years, data was split in a 80%-20% division, where 80% of it 

was used for the training purpose and the rest of the data was used as testing data. For example, 

for the Olmsted location, data from September 2005 to February 2007 was used as testing data and 

January 2000 to September 2005 was used at training data. The reason that the datasets were split 

slightly differently is because for Dataset 1, training dataset was selected to include one whole 

year and similarly for Dataset 2, the objective was to select an entire winter season for training 

data. For weather data, for Dataset 1, onsite field collected data was used; for Dataset 2, the nearest 

available weather station data was used for each location.  

 

3. Model Development: 

 

As mentioned in the literature review, there are no well accepted algorithm that can be used for 

the prediction of the soil surface temperatures. At the initial stage of the study, different models 

were implemented to study which algorithm performs best. Initially, a Linear Regression model 

was used, followed by Regression models used for time series data forecasting, including Vector 

Auto Regression, Vector Auto Regression Moving Average, and Vector Error Correction Models. 

However, the above-mentioned models were unable to accurately capture the granular trend in soil 

temperature. An example result of soil temperature prediction is shown in Figure 1. This was 

obtained for a specific cell location and at a specific depth using Vector Auto Regression modeling 

methods. The results show the predicted temperature for testing dataset where x-axis of the figure 

shows timestep of the year. However, the results obtained for the other mentioned algorithms were 

also similar for all the soil surfaces. Thus, Nonlinear Regression models were implemented, and 

the performance of the soil temperature prediction improved significantly using this method.  

 

 
Figure 1. Temperature prediction using Vector Auto Regression Model 

 

3.1. Temperature prediction: A Nonlinear Regression modeling method was implemented using 

a fourth order polynomial model. Two modeling methods were considered based on a Nonlinear 

Regression algorithm. Model 1 predicts temperature at each depth individually, using a single 
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model. Two time variables and six climate variables were used as input. These include Day of 

Year, Timestep, Air Temperature, Radiation, Variation in Air Temperature, Variation in Rain, 

Variation in Relative Humidity and Variation in Windspeed. The equation for the Model 1 is in 

Appendix. Model 2 was developed using a combination of two parts - one to predict the daily 

average soil temperatures, and a second to predict the variation in soil temperature with respect to 

the daily average values. To predict the daily average soil temperatures, six variables were used 

(Day of Year, Timestep, Average Air Temperature, Average Rain, Average Relative Humidity and 

Average Wind Speed. For the second half of the model, Day of Year, Timestep, Air Temperature, 

Radiation, Variation in Air Temperature, Variation in Rain, Variation in Relative Humidity and 

Variation in Wind Speed were used as the input parameters.  

 

The results of the soil temperature prediction are shown in Figure 2 for both initial Models, 

including the temperature at three depths (3-inch, 14-inch, 72-inch). These three depths were 

selected to be presented because they represent the top surface (largest diurnal fluctuations), 

intermediate depth, and deep depth (least fluctuations). The timespan of the temperature prediction 

shown in Figure 2 is for 4 months of data from January 2019 to April 2019, which represents the 

second part of winter. This time span is used because January to December 2018 was used as 

training data, thus the remaining 4 months was used as testing data. This divides the dataset in a 

75%-25% split where 75% of the data was used for training and rest 25% was used for testing. 

The Models are labeled as “initial” models in Figure 2 because further adjustments were made to 

the modeling method to arrive at the final Models for this work.  

 

 
Figure 2. Comparison between the measured and predicted temperature for depths of (a) 3 inch, 

(b) 14 inch and (c) 72 inch below the surface for the initial Model 1 and Model 2 for the 

timeframe of January to April 
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As shown, the temperature fluctuations at the top surface are greater, whereas this fluctuation 

decreases with depth, as expected. Both the Models can predict the temperature at the top surface 

quite well. However, the performance of these initial Models reduces at deeper depths. At a depth 

of 14-inch, Model 2 predicts the overall trend of the temperature for most of the timespan. 

However, several spikes occur where the predicted temperature deviates significantly compared 

to the measured temperature data. Model 1 did not generate any spikes in the temperature 

prediction. However, the predicted temperature deviates from the measured soil temperature more 

than Model 2.  

 

To reduce the spikes in the model predictions, two different filters were used. The objective of the 

filters was to limit the allowable variation in the model results from timestep (n-1) to the next 

timestep (n). In addition, the filters were also designed to limit temperature predictions which were 

significantly higher or lower than the measured temperature bounds (i.e. the minimum and 

maximum soil temperatures observed for each depth throughout the dataset). To identify the 

temperature bounds, the range of soil temperatures (maximum and minimum) expected for each 

depth across the dataset was assessed. The RMSE (root mean squared error) values for both the 

initial Models and the models which include the developed filters for all six locations at the 

MNROAD test facility and several depths are shown in Figure 3. A smaller RMSE values equates 

to better model performance over the timespan of evaluation.  
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Figure 3. Comparison of RMSE values for initial Model 1 and 2, and Model 1 and 2 with filters 

applied, at depths of (a) 3 inches, (b) 4 inches, (c) 18.5 inches, (d) 24 inches, (e) 48 inches and (f) 

72 inches for all cell locations for Dataset 1 

 

The results show that, overall, across the models, the RMSE values for predicting the soil 

temperature decrease at deeper depths. In addition, in comparing the models, Model 1 generally 

has larger error than Model 2. The use of the filters helps to reduce this model error. For 3-inch 

and 4-inch depths, RMSE values for Model 1 without the filters was approximately 8 to 12°C. 

After implementing both filters, the RMSE values were reduced to half, or approximately 4 to 6 

°C. Model 2 has a significantly smaller RMSE values of 2 to 4°C with the use of filtering. For 

intermediate and deeper depths, Model 2 with the filters had the smallest RMSE values among the 

4 model variations evaluated for all the depths in all locations. For the deepest depths, the smallest 

RMSE values were approximately 1 to 2°C for 18.5- and 48-inch depths, and less than 1°C for the 

72-inch depth. These results demonstrate that Model 2 with filters provides the best prediction of 

temperature among the modeling methods implemented. 

 

A similar study was conducted using Dataset 2 which was the longer timescale data collected 

throughout Minnesota with a 1-hour timestep. The performance of both initial Model 1 and 2, and 

Model 1 and 2 with filters were evaluated for a time period starting from January 2000 to February 

2007. This is substantially longer time period than the Dataset 1. The performance of both Model 

1, Model 2 and the two models with filters are shown in Figure 4. As shown in the Figure, the 

RMSE values decreased at deeper depths as obtained for Dataset 1. However, the RMSE values 

were higher for this dataset compared to the model performance with previous set of data. The 

reason for these higher RMSE may be because the weather data used for model prediction was not 

collected on site and instead was obtained from the closest available weather station.   

 

 
 

Figure 4: Comparison of RMSE values for Dataset 2 

 

Based on the resulting performance of the models considered, the Model 2 with filters performed 

best in predicted temperatures at the various depths.   
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3.2. Prediction of number of freeze-thaw cycles: Based on substantial discussions with the project 

Technical Advisory Panel, a method was finalized to calculate the number of freeze-thaw cycles. 

To do this, 0°C was used as threshold temperature for melting and -1°C was used as the threshold 

temperature for freezing. Along with the temperature, a time delay is also considered in the 

calculation, where a 24 hour time delay is required after the -1°C threshold is passed, to ensure 

complete freezing. For thawing, a minimum 5 consecutive hours above 0°C was required.  

 

Based on the above-mentioned method, the number of freeze-thaw cycles was evaluated from 

Dataset 1 using the four considered modeling methods, and compared with the number of cycles 

obtained from measured soil temperature (Figure 5). This figure also depicts the freeze-thaw cycle 

comparison for 4 months in the beginning of 2019 which represents the end of the winter. As 

discussed above, the reason this time period was used for this dataset is because for training one 

whole year of data was utilized, and the rest of the data was used as testing dataset.  

 

As shown in Figure 5, the number of freeze-thaw cycles obtained from the Model 1 is similar to 

the number of freeze-thaw cycles obtained from the measured data. At deeper depths, the number 

of freeze-thaw cycles decreased, as expected. Model 2 generally slightly overpredicts the number 

of cycles for most soil depths and locations, as compared to Model 1. The number of freeze-thaw 

cycles was also calculated for the Dataset 2, as shown in Figure 6.  
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Figure 5. Comparison of the freeze-thaw cycle variations for the four Models 
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Figure 6. Number of freeze-thaw cycle comparison for Dataset 2 

 

As shown in Figure 6, apart from the 30-inch and 36-inch depths, the number of freeze-thaw cycle 

predicted by the Model 1 is similar to the actual number of freeze-thaw cycles. However, for the 

two mentioned depths, Model 1 and 2 overpredict the number of cycles. One possible reason for 

this is that, as mentioned in the previous section, the location of soil temperature collection and 

location of weather data was not same, which may impact the level of error in the input data. This 

result was consistent with the results obtained with the Dataset 1. Thus, from these two sections, 

we can conclude that the Model 1, is better suited to evaluate the number of freeze-thaw cycles 

effectively.  

 

3.3. Isotherm calculation: 0°C isotherm distribution for different depths and different time periods 

were calculated from the measured data. The results of cell 185 are shown in Figure 7. Rest of the 

figures are shown in Appendix section. The 0°C isotherm curve reaches its deepest depth during 

the months of December to February and then the depth of the isotherm curve reduces. A similar 

trend can be seen for all cell locations. 
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Figure 7. 0°C isotherm for cell 185 in Dataset 1 

 

 

3.4. Time duration of freezing and thawing phase and their occurrence: The duration of the 

frozen period including the start and end dates, was calculated for each soil depth along with the 

freezing and thawing periods for each test location. Using Dataset 1, these were evaluated for 

approximately 18 months of data, from September 2017 to April 2019 and shown in Table 2. It 

was obtained that for some years, for shallower depths, such as 6.5 inch in both Cell 189 and 127, 

the soil froze intermittently, in some cases for as little as 1-day periods. As expected, for deeper 

depths the temperatures fluctuate less thus there are not short freeze periods at these depths. 

  

The starting and ending time of freezing phase and their duration was compared for the predicted 

soil temperatures with the actual values. The performance of both the Model 1 and Model 2 were 

evaluated, as shown in Table 3. Model 1 performed significantly better compared to the Model 2. 

The performance of the Model 1 and its comparison with respect to the actual values is shown in 

Table 3. Note the freeze and thaw periods calculated for these cells assume the use of the 

shallowest soil depth that is not within the pavement foundation layers (i.e. base, subbase and 

subgrade layer) (e.g. cell 189 uses a soil depth of 6.5 in to calculate when the freezing and thawing 

period starts and ends).  
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Table 2. Starting and ending day of frozen soil surface with the duration for the location of (a) cell 

185, (b) cell 186, (c) cell 188, (d) cell 189, (e) cell 127, (f) cell 728 
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Table 3. Comparison of freezing time for actual and predicted soil temperatures for Dataset 1 for 

the location of (a) cell 185, (b) cell 186, (c) cell 188, (d) cell 189, (e) cell 127, (f) cell 728 
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As shown in Table 3, Model 1 can generally predict the freezing start and end day and the duration 

of the freezing phase for the Dataset 1. The freezing and thawing period for all cell locations are 

shown in Table 4 and compared their performance using Model 1. It can be seen from Table 4 that 

the Model 1 can predict the freezing period efficiently for most of the cell locations. However, it 

underpredicts the time for the thawing period.  

 

Table 4. Comparison of freezing and thawing period for all cell locations using Dataset 1 

 

 
 

4. Conclusion  

 

In this task, 4 different variations of data-driven model algorithms were developed and 

implemented to predict soil temperature and the number of freeze thaw cycles at different soil 

depths. Overall, Model 2 with filters performs better for predicting soil temperatures. Model 1 with 

filters performs better in predicting the number of freeze-thaw cycles. For calculating the freezing 

and thawing periods, both the models performed fairly well, but Model 1 performed better. Moving 

forward in future work, based on the availability of the soil temperature and climate variable data, 

the performance of these models can be evaluated in further detail.  
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6. Appendix 
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       (c) 

 
            (d) 
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            (e) 

 

Figure. 0°C isotherm for test sites (a) cell 186, (b) cell 188, (c) cell 189, (d) cell 127 and (e) cell 

728 in Dataset 1  
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Table A1. Significant coefficients used in regression equations for temperature prediction at 

different soil depths for Dataset 1, Cell 186.   

 

 

 

 

 


