

2019 Pavement Workshop May 21-23, 2019

+ 57 Associate Members

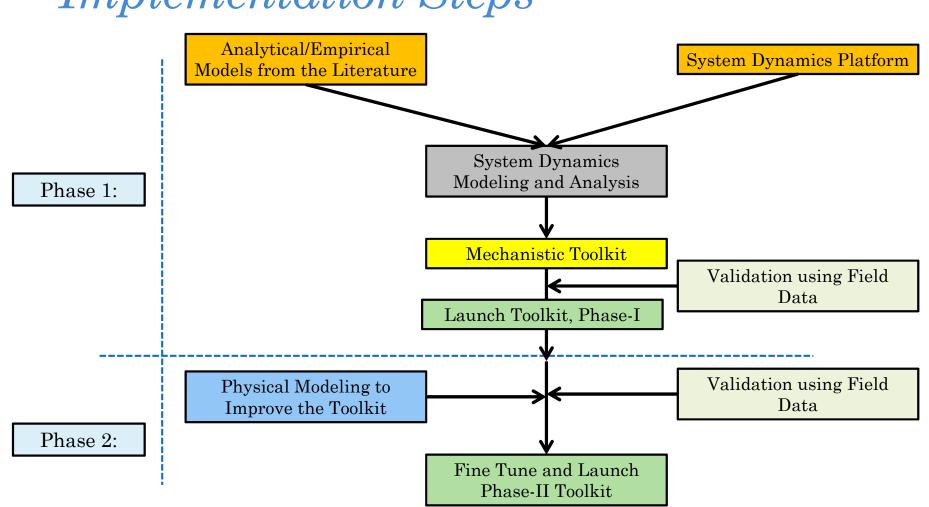
Research Project Geotechnical Team : Mechanistic Load Restriction Decision Platform for Pavement Systems Prone to Moisture Variations

Pls : Majid Ghayoomi and Eshan V. Dave University of New Hampshire 10/31/2019

Develop < Collaborate < Research < Implement < Sustain.

Motivation

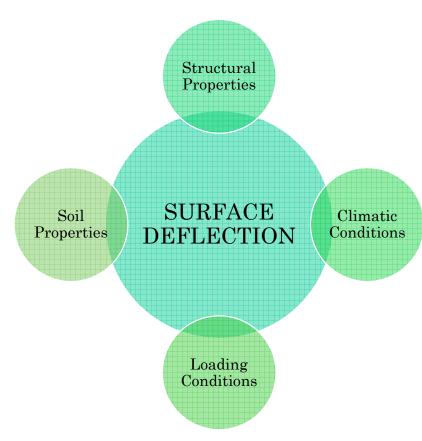
- A large portion of transportation agencies manage pavement systems with substantial subgrade moisture variations (both seasonal and post-storm)
- A large number of pavement subgrade moisture related Load/Traffic Restriction decisions are based on empirical approaches:
 - Fixed dates
 - Use of ground freeze data from select locations
 - Subjective opinion post-flooding
- Above approaches do not integrate <u>climate</u> <u>forecasting</u>, <u>soil-moisture state</u>, <u>pavement</u> <u>mechanics</u> and <u>traffic spectrum</u>

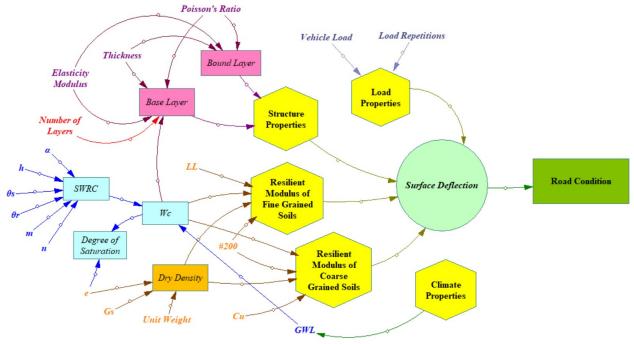


Motivation (cont.)

- Post-flooding traffic allowance and assessment
 - FHWA Flooded Pavement Assessment Study (Sias et al. 2018)
- Reliable pavement bearing capacity and performance assessment system for current and forecasted moisture conditions
- A mechanistic (real-time and forecasting) load restriction decisionplatform for:
 - Damage vulnerability determination
 - Access to emergency responders
 - Traffic decisions during and after periods of excessive moisture \rightarrow especially post-flooding
 - Maintenance and repair planning

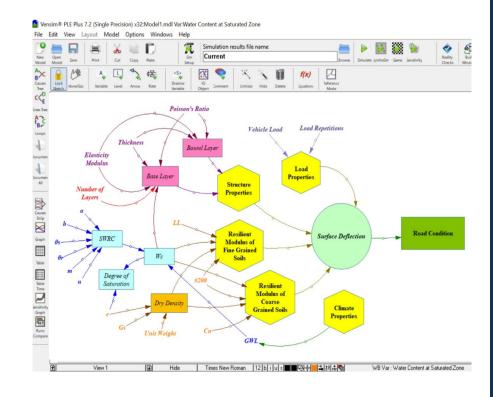
Expected Benefits


- Develop a mechanistic framework to improve robustness of the load restriction decision process.
- Improve post-flooding and seasonal pavement capacity assessment.
- Implement a flexible platform that incorporates multi-variant effects with forecasting capability
 - This will be achieved through system dynamics modeling and analysis
- Develop a toolkit validated using field data for load restriction decision, specially for post-flooding load closures and openings.


Implementation Steps

A comprehensive surface deflection platform incorporating components with major effects on pavement systems:

- 1. Structural Properties
 - Pavement layer types, Modulus, Poisson's Ratio, Thickness, etc.
- 2. Climatic Conditions
 - Evaporation, Infiltration, Runoff, etc.
- 3. Soil Properties
 - Soil Type, Density, PI, etc.
- 4. Loading Conditions
 - Vehicle Type, Load Repetitions, etc.



- 1. System Dynamics for sensitivity assessment and to refine implementation
 - Vensim

System Dynamics Approach

- Vensim is industrial-strength simulation software for improving the performance of real systems.
- Capable of conducting
 - Sensitivity Analysis
 - Reality Checks
 - Instant output with continuous simulation
- Different Models adopted from literature are related with each other using mathematical relationship among them.

2. Decision Tool

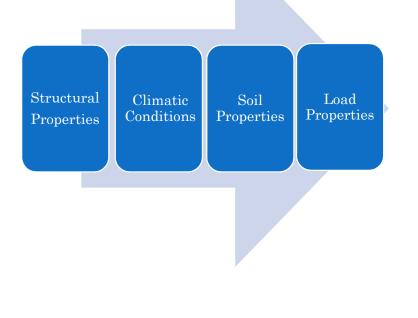
• Vensim to User-friendly GUI

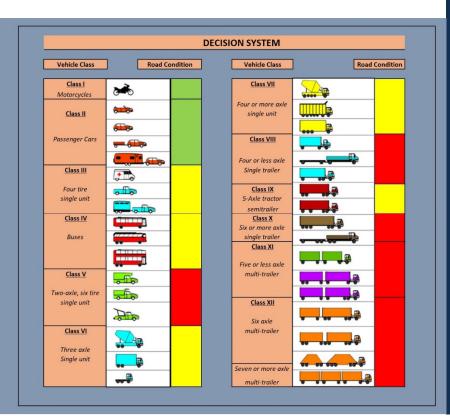
	<i>.</i>		
			Passing 3" (g) 12
	PAVEMEI	NT LOAD RESTRICTION PROTOCOL	
			Passing #10 (g) 25
	I. General Information		Passing #40 (g) 33
		Roadway Characteristics	Passing #40 (g) 33
	Roadway Parameters		Passing #200 (g) 5
	Roadway ID:	MP EMP Select Road Type: Flexible Pavement	Passing #200 (g)
Bound Layer	OR Location:	FLEXIBLE PAVEMENT None Low Medium Severe	
		Edge Raveling:	Liquid Limit (LL)
Stiffness, Ec: 30000 psi	Roadway Class: Station:	Shoving:	
Poisson's Ratio, m: 0.35	Description:		Plastic Limit (PL) 5
Thickness: 2 inches	<u>City:</u>	IIGID PAVEMENT None Low Medium Severe Joint Cracking: I I I I	
	State: New Hampshire 🔻	Paved Shoulder/Turnout:	Add Clear Close
	Bound Layer	Subgrade Layer 1	
	Stiffness, Ec: 30000 psi	Thickness: 2	
Traffic Data ×	Poisson's Ratio, m: 0.35 Thickness: 2 inches	Thickness: 2 inches	N
	<u>imickness:</u> <u>z</u> inches		PI: 6
		Soil Classification	Cu: 5
	Base Layer	Select Soil Type: A-6	Cc: 6
Vehicle Class Buses	Select Number of Layers: 2	If you do not know soil type; Add Information	Opt. Moisture Content: 18 %
	Base Layer 1		Opt. Resilient Modulus: 17000 lbs/in^2
Dercent of ADT 0.15	Stiffness, Eb: 30000 psi Thickness, Hb: 2 inches	PI: 6	Max. Dry Density: 110 lb/ft^3
Percent of ADT 0.15	Base Layer 2	Cu: 5 Cc: 6	RM at different DoS: 25
Annual % Growth	Stiffness, Eb: 20000 psi	Ont. Maisture Content: 18%	Specific Gravity: 2.75
Annual % Growun	Thickness, Hb: 4 inches	Opt. Resilient Modulus: 17000 lbs/in^2 Max. Dry Density: 110 lb/ft^3	Select Hydraulic Model: Fredlund & Xing (1994)
Average Initial Truck Factor 1.2	Base Layer 3	RM at different DoS: 25	
	Stiffness, Eb: 0 psi Thickness, Hb: 0 inches	Specific Gravity: 2.75 Select Hydraulic Model: Fredlund & Xinu (1994)	
Annual % Growth in Truck Factor 2		a: 0.345 α: 3.92	θs: 0.345 m: 0.146
		0: 0.345 m: 0.146 0r: 2.01 n: 0	θr: 2.01 n: 0
	Climate Data		
Add Clear Sese	Ave. Annual GWT Depth: 2 ft		
	Traffic Data	See Results	
	Calculated ESALs 21.87 million		

Sieve Analysis & Atterberg Limits

100

25


Dry Weight (g)


After Wash (g)

 \times

2. Decision Tool

• Vensim to User-friendly GUI

10

- 3. Calibration and Preliminary Validation
 - MnROAD data for preliminary validation

NRRA Study Research Tasks (24 months)

- Task 1: Initial Memorandum (due 10/31/2019)
- Task 2: Literature Review (due 10/31/2019)
- Task 3: System Dynamics Framework Development (due 3/31/2020)
- Task 4: Sensitivity Analysis and Framework Refinement (due 8/31/2020)
- Task 5: Toolkit Development (09/30/2020)
- Task 6: Calibration and Preliminary Validation of the Toolkit using MnROAD Data (11/30/2020)
- Tasks 7-10: Final Reporting

Thank You!

Contact Information: majid.ghayoomi@unh.edu / eshan.dave@unh.edu

13