IOWA STATE UNIVERSITY

MICHIGAN STATE UNIVERSITY

Determining Pavement Design Criteria for Recycled Aggregate Base and Large Stone Subbase

Bora Cetin

Halil Ceylan

William Likos

Tuncer Edil

Junxing Zheng

Ashley Buss

Askin Ozocak

Haluk Sinan Coban

MnDOT Project TPF-5(341)

Monthly Meeting September 5th, 2019

RESEARCH TEAM

Michigan State University

Principal Investigator – Bora Cetin

Assistant Professor – Department of Civil and Environmental Engineering

Iowa State University

- Principal Investigator Halil Ceylan Professor – Department of Civil, Construction & Environmental Engineering
- Co-Principal Investigator Junxing Zheng Assistant Professor – Department of Civil, Construction & Environmental Engineering
- Co-Principal Investigator Ashley Buss Assistant Professor – Department of Civil, Construction & Environmental Engineering
- Research Personnel Haluk Sinan Coban

PhD Candidate – Department of Civil, Construction & Environmental Engineering

University of Wisconsin-Madison

- Principal Investigator William Likos
 Professor Department of Civil and Environmental Engineering
- Co-Principal Investigator Tuncer B. Edil Professor Emeritus – Department of Civil and Environmental Engineering
- Visiting Scholar Askin Ozocak

Associate Professor – Sakarya University

AGENCY MEMBERS

- > MnDOT
- ➤ Caltrans
- > MDOT
- ≻ IDOT
- ≻ LRRB
- ➢ MoDOT
- > WisDOT
- > NDDOT
- ≻ Iowa DOT

ASSOCIATE MEMBERS

- Aggregate & Ready Mix of MN
- Asphalt Pavement Alliance (APA)
- Braun Intertec
- ➤ Infrasense
- Diamond Surface Inc.
- Flint Hills Resources
- > International Grooving & Grinding Association (IGGA)
- Midstate Reclamation & Trucking
- MN Asphalt Pavement Association
- Minnesota State University Mankato
- > National Concrete Pavement Technology Center
- Roadscanners
- University of Minnesota Duluth
- University of New Hampshire
- Mathy Construction Company
- Michigan Tech Transportation Institute (MTTI)
- University of Minnesota
- National Center for Asphalt Technology (NCAT) at Auburn University
- ➢ GSE Environmental
- ➢ Helix Steel
- Ingios Geotechnics
- > WSB
- > Cargill
- > PITT Swanson Engineering
- University of California Pavement Research Center

- Collaborative Aggregates LLC
- American Engineering Testing, Inc.
- Center for Transportation Infrastructure Systems (CTIS)
- Asphalt Recycling & Reclaiming Association (ARRA)
- First State Tire Recycling
- BASF Corporation
- Upper Great Plains Transportation Institute at North Dakota State University
- ► 3M
- Pavia Systems, Inc.
- All States Materials Group
- Payne & Dolan, Inc.
- ➤ Caterpillar
- The Dow Chemical Company
- The Transtec Group
- Testquip LLC
- ➢ Hardrives, Inc.
- Husky Energy
- Asphalt Materials & Pavements Program (AMPP)
- Concrete Paving Association of MN (CPAM)
- MOBA Mobile Automation
- Geophysical Survey Systems
- Leica Geosystems
- University of St. Thomas
- > Trimble

OUTLINE

- Follow-up
- Test cells
- Task 4 Laboratory testing
- Summary
- Future study

FOLLOW-UP

- Task 1 Literature review and recommendations
- Task 2 Tech transfer "state of practice"
- Task 3 Construction monitoring and reporting
- Task 4 Laboratory testing
- Task 5 Performance monitoring and reporting
- Task 6 Instrumentation
- Task 7 Pavement design criteria
- Task 8 & 9 Draft/final report

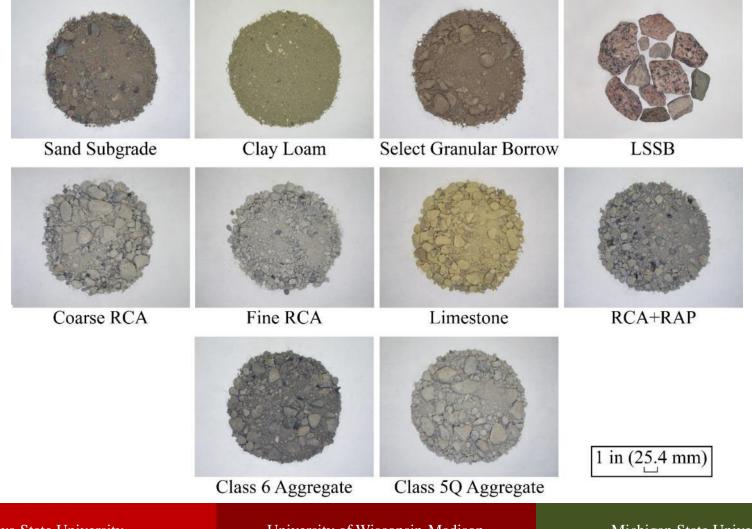
Green – Completed Red – In Progress

TEST CELLS

Recycled Aggregate Base				Large Stone Subbase		Large Stone Subbase with Geosynthetics				
185	186	188	189	127	227	328	428	528	628	728
3.5 in Superpave	3.5 in Superpave	3.5 in Superpave	3.5 in Superpave	3.5 in Superpave	3.5 in Superpave	3.5 in Superpave	3.5 in Superpave	3.5 in Superpave	3.5 in Superpave	3.5 in Superpave
12 in	12 in	10 :	10 1	6 in Class 6 Aggregate	6 in Class 6 Aggregate	6 in Class 5Q Aggregate	6 in Class 5Q Aggregate	6 in Class 5Q Aggregate	6 in Class 5Q Aggregate	6 in Class 5Q Aggregate
Coarse RCA	Fine RCA	12 in Limestone	12 in RCA+RAP	18 in LSSB (1 lift)		9 in LSSB	9 in LSSB	9 in LSSB	9 in LSSB	9 in LSSB
3.5 in S. Granular Borrow	3.5 in S. Granular Borrow	3.5 in S. Granular Borrow	3.5 in S. Granular Borrow		18 in LSSB (1 lift)	TX	TX+GT	BX+GT	BX	
Sand	Sand	Clay Loam	Clay Loam			Clay Loam	Clay Loam	Clay Loam	Clay Loam	Clay Loam
S. Granular Borrow = Select Granular Borrow						TX = Triaxial Geogrid BX = Biaxial Geogrid				
				Clay Loam	Clay Loam	GT = Nonwoven Geotextile				

Task 4 - Laboratory Testing

Iowa State University


- Sieve analysis & hydrometer test
- Atterberg limits
- Proctor compaction
- Specific gravity & absorption
- Image analysis
- Asphalt & cement content determination
- Gyratory compaction & percent crushing
- Contact angle measurement

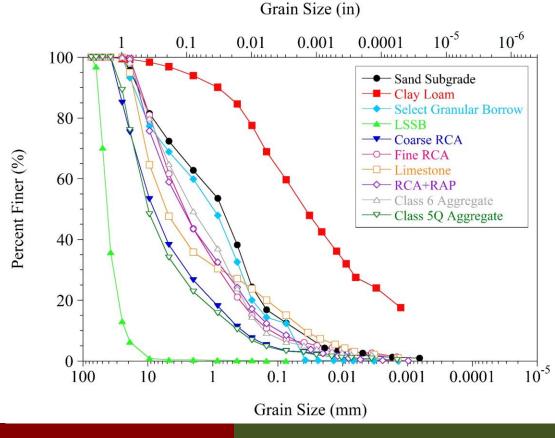
University of Wisconsin-Madison

- Permeability
- Soil-water characteristic curve

Green – Completed Red – In Progress

Test Materials

Iowa State University


University of Wisconsin-Madison

Deleterious Material Content

- Visual identification
 - Plant roots & leaves
 - Wood chips
 - Plastic
 - Fabric
- No reinforcing steel in RCA
 - Magnetization
- Weight of the deleterious materials < 0.1% by dry weight
- Suitability for the quality requirements (MnDOT 2018)
- RAP particles in all the materials
 - No removal

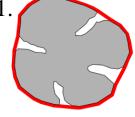
Particle Size Distribution

- ASTM C136 & D6913 Sieve analysis
- ASTM D7928 Hydrometer test

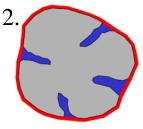
University of Wisconsin-Madison

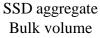
Classification

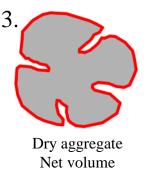
Gravel San		Sand	Sand Fines	Cu	Cc	LL	PL	PI	USC	AASHTO	
Material	(%)	(%)	(%)	(ASTM D2487)	(ASTM D2487)	(BS 1377-2)	(ASTM D4318)	(ASTM D4318)	Symbol	Definition	M 145
Sand Subgrade	27.6	59.8	12.6	33.1	1.24	19.9	NA	NP	SM	Silty Sand with Gravel	A-1-b
Clay Loam	3.1	37.2	59.7	NA	NA	36.3	23.9	12.4	CL	Sandy Lean Clay	A-6
Select Granular Borrow	31.1	56.5	12.4	30.3	1.10	18.9	NA	NP	SM	Silty Sand with Gravel	A-1-b
LSSB	99.6	0.3	0.1	2.08	1.14	NA	NA	NA	GP	Poorly-Graded Gravel	A-1-a
Coarse RCA	61.7	34.9	3.4	34.5	1.75	NA	NA	NP	GW	Well-Graded Gravel with Sand	A-1-a
Fine RCA	38.3	54.6	7.1	33.9	1.12	32.7	NA	NP	SW-SM	Well-Graded Sand with Silt and Gravel	A-1-a
Limestone	52.3	32.6	15.1	211.3	1.91	17.9	NA	NP	GM	Silty Gravel with Sand	A-1-b
RCA+RAP	41	50.4	8.6	49.4	0.98	27.4	NA	NP	SP-SM	Poorly-Graded Sand with Silt and Gravel	A-1-a
Class 6 Aggregate	35.1	58.6	6.3	23.8	0.60	27.4	NA	NP	SP-SM	Poorly-Graded Sand with Silt and Gravel	A-1-a
Class 5Q Aggregate	65.9	30.9	3.2	33.7	2.60	NA	NA	NP	GW	Well-Graded Gravel with Sand	A-1-a


Fines = silt and clay; C_u = coefficient of uniformity; C_c = coefficient of curvature; LL = liquid limit; PL = plastic limit; PI = plasticity index; NA = not available; NP = non-plastic; USCS = Unified Soil Classification System; AASHTO = American Association of State Highway and Transportation Officials

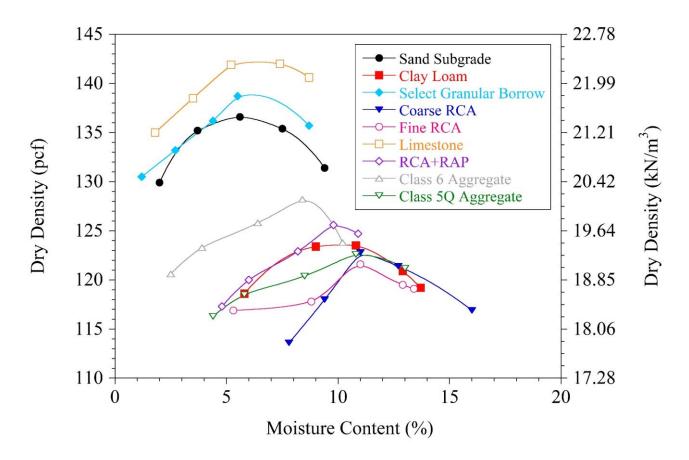
University of Wisconsin-Madison


Specific Gravity & Absorption


- ASTM C127 For coarse aggregates
- ASTM C128 For fine aggregates
- ASTM D854 For soil solids


Material	Oven-Dry G _s	Saturated- Surface-Dry G _s	Apparent G _s	Absorption (%)	
Sand Subgrade	2.60	2.64	2.72	1.84	
Clay Loam	2.68	NA	NA	NA	
Select Granular Borrow	2.62	2.66	2.72	1.53	
LSSB	2.60	2.61	2.63	0.36	
Coarse RCA	2.25	2.40	2.64	6.97	
Fine RCA	2.17	2.35	2.64	8.65	
Limestone	2.66	2.71	2.79	1.72	
RCA+RAP	2.28	2.38	2.52	4.34	
Class 6 Aggregate	2.35	2.44	2.58	3.86	
Class 5Q Aggregate	2.28	2.42	2.65	6.32	

Dry aggregate Bulk volume


 G_s = specific gravity; NA = not available

Iowa State University

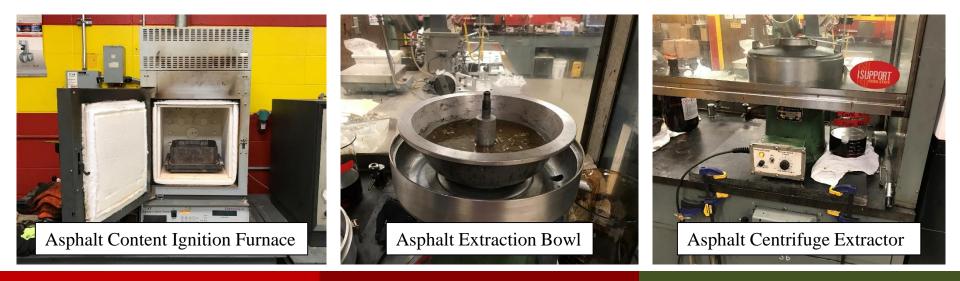
University of Wisconsin-Madison

Proctor Compaction

• ASTM D1557 – Modified Proctor

University of Wisconsin-Madison

Proctor Compaction

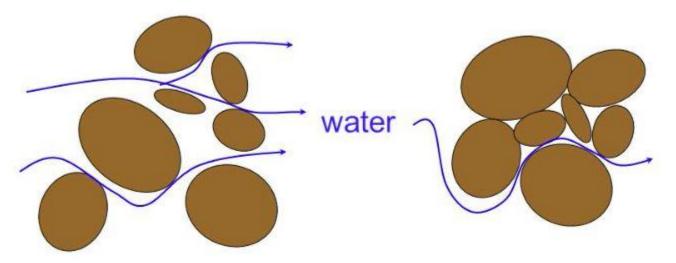

• ASTM D4718 – Correction for materials containing oversize particles

	Proctor	Compaction Results	on Test	Corrected for Oversize Particles			
Material	M	DD	OMC	Corrected MDD Co		Corrected	
	(pcf)	(kN/m^3)	(%)	(pcf)	(kN/m^3)	OMC (%)	
Sand Subgrade	136.6	21.46	5.7	137.7	21.63	5.6	
Clay Loam	123.9	19.46	10	124.9	19.62	10.0	
Select Granular	138.6	21.77	5.4	140.3	22.03	5.3	
Borrow	130.0						
LSSB	NA	NA	NA	NA	NA	NA	
Coarse RCA	122.9	19.31	11.3	128.6	20.19	9.5	
Fine RCA	121.6	19.10	11.1	121.7	19.12	11.1	
Limestone	142.2	22.34	6.2	143.2	22.49	6.3	
RCA+RAP	125.6	19.73	10	125.8	19.76	10.0	
Class 6 Aggregate	128.2	20.14	8.3	128.5	20.19	8.3	
Class 5Q Aggregate	122.6	19.26	11	128.0	20.11	9.6	

MDD = maximum dry density; OMC = optimum moisture content; NA = not available.

Asphalt Binder Content

Material	Ignition Method (AASHTO T 308)	Quantitative Extraction (AASHTO T 164)			
Coarse RCA	2.02	0.10			
Fine RCA	2.98	0.38			
Limestone	1.61	0.35			
RCA+RAP	3.18	1.58			
Class 6 Aggregate	3.17	1.77			
Class 5Q Aggregate	2.15	0.28			

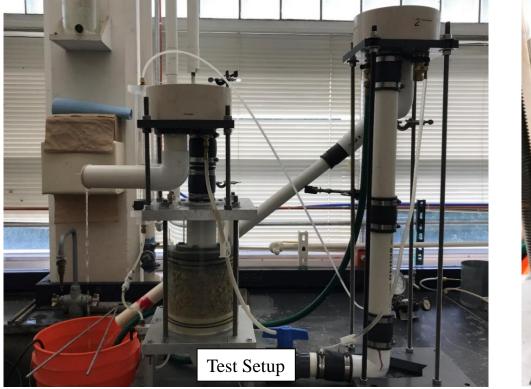


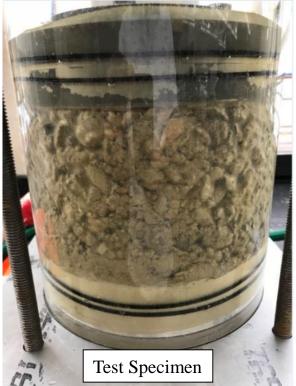
Iowa State University

University of Wisconsin-Madison

Permeability Test

- ASTM 5084 Flexible wall permeameter
 - Constant head permeability test
 - Falling head permeability test

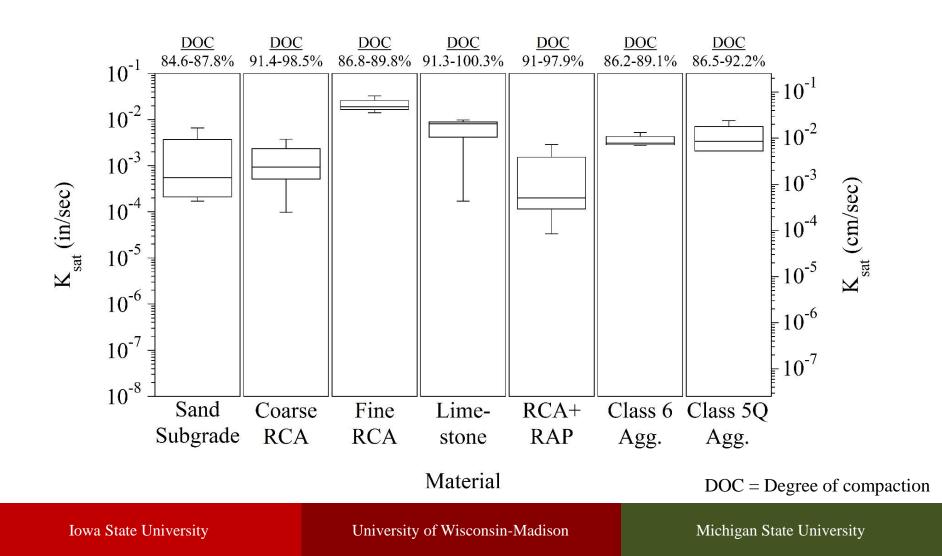

https://slideplayer.com/slide/6104388/


Iowa State University

University of Wisconsin-Madison

Constant Head Permeability Test

- 6-in diameter and 4-in height specimens
- In the membrane by light hammering

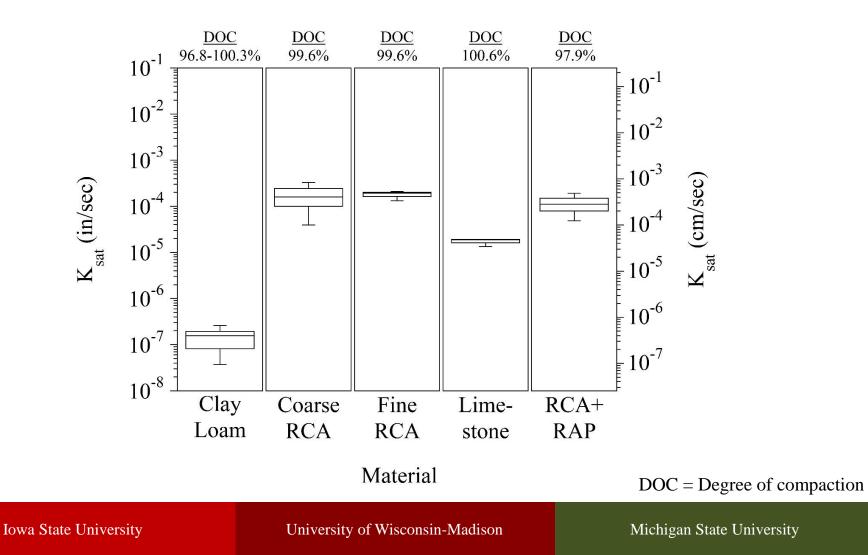


Iowa State University

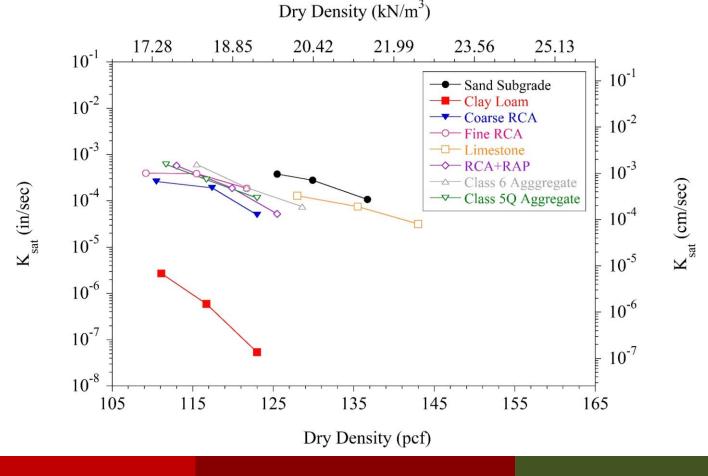
University of Wisconsin-Madison

Constant Head Permeability Test

Falling Head Permeability Test


- 6-in diameter and 4-in height specimens
- In the compaction mold

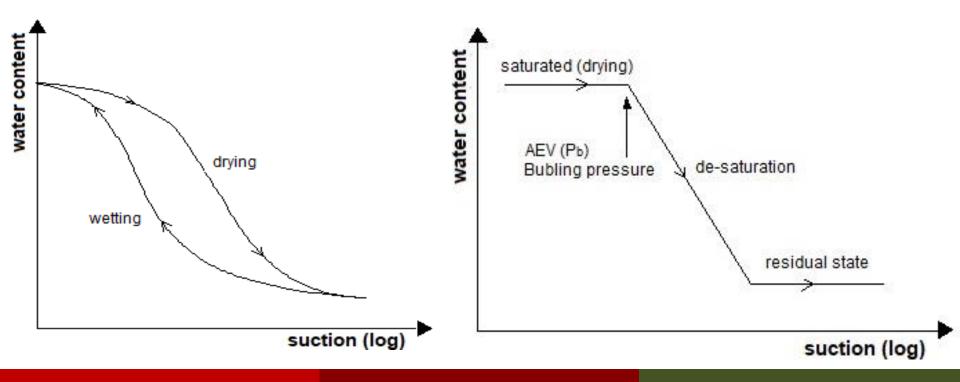
Iowa State University


University of Wisconsin-Madison

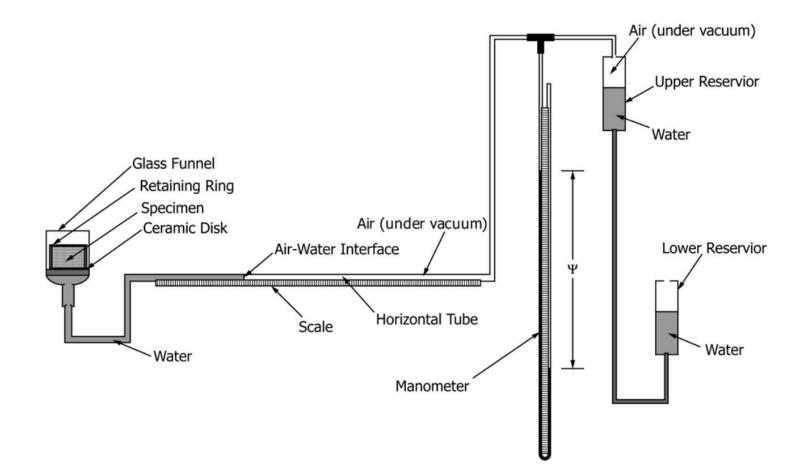
Falling Head Permeability Test

Falling Head Permeability Test

• Degree of compaction

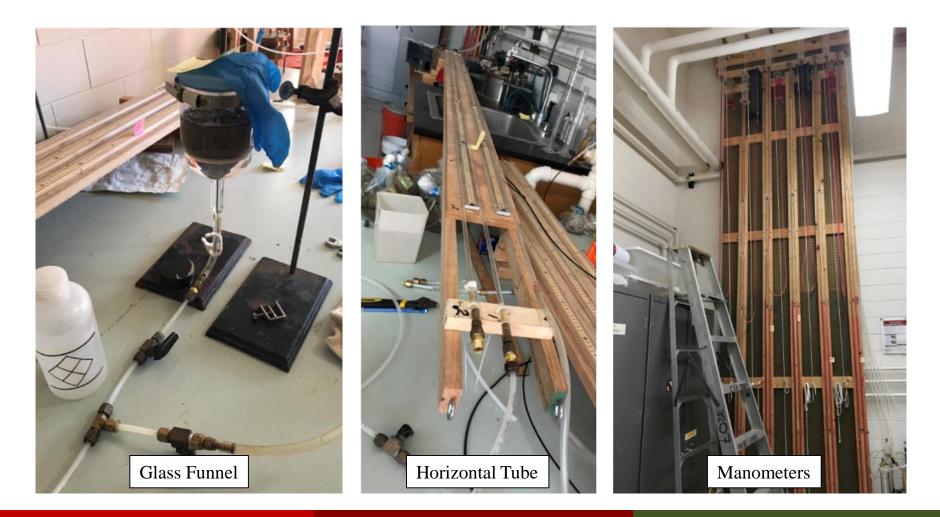


Iowa State University


University of Wisconsin-Madison

Soil-Water Characteristic Curve (SWCC)

- ASTM D6836
 - Hanging column test
 - Pressure plate and activity meter test

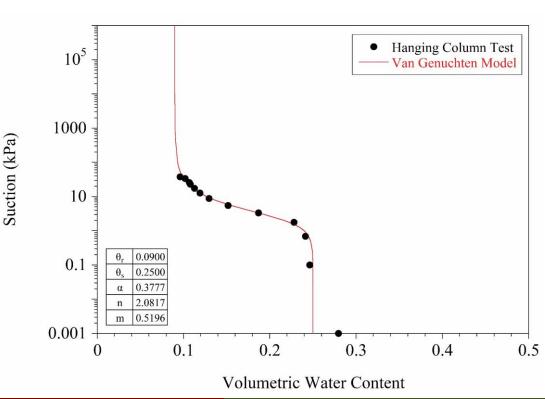

Hanging Column Test

Iowa State University

University of Wisconsin-Madison

Hanging Column Test

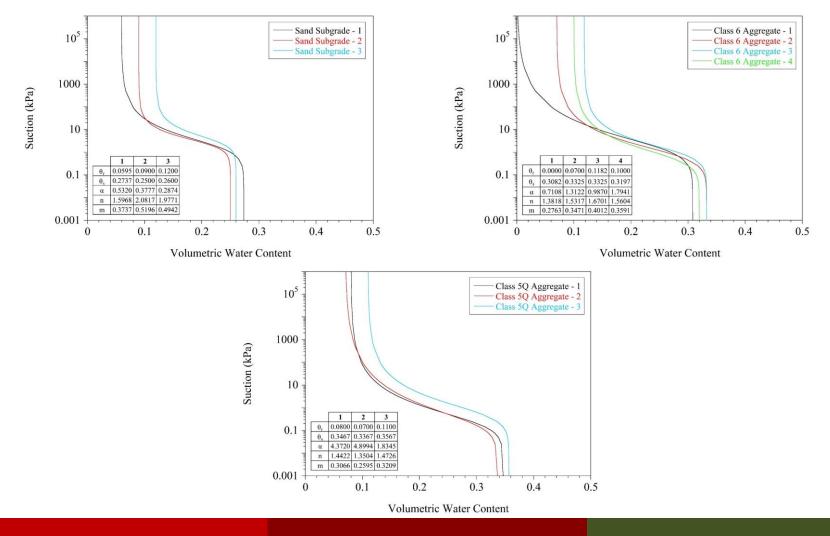
Iowa State University


University of Wisconsin-Madison

Hanging Column Test

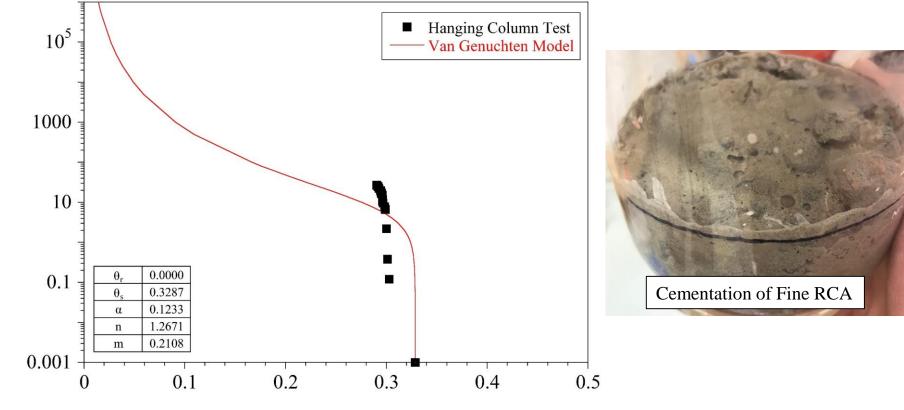
• van Genuchten (1980) model

$$\Theta = \frac{\theta - \theta_{\rm r}}{\theta_{\rm s} - \theta_{\rm r}} = \left[\frac{1}{1 + (\alpha \psi)^{\rm n}}\right]^{\rm m}$$


- Θ = Normalized volumetric water content
- θ = Soil volumetric water content
- θ_r = Residual volumetric water content
- $\theta_{s} = Saturated volumetric water content$
- Ψ = Matric suction
- α , n, and m = van Genuchten fitting parameters

Iowa State University

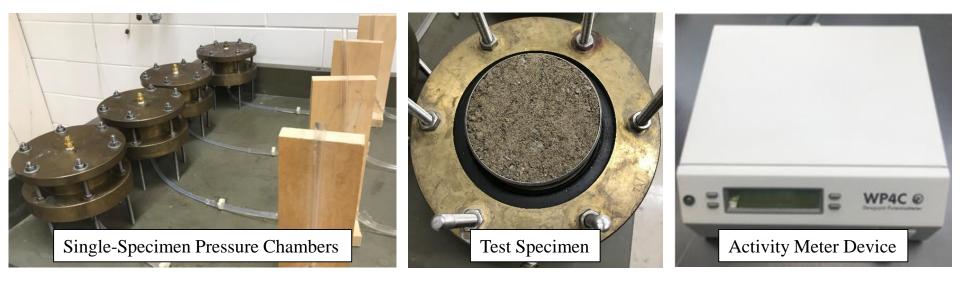
University of Wisconsin-Madison


Hanging Column Test

Iowa State University

University of Wisconsin-Madison

Hanging Column Test


Volumetric Water Content

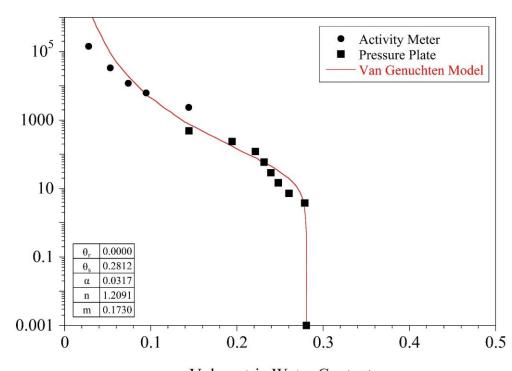
Iowa State University

Suction (kPa)

University of Wisconsin-Madison

Pressure Plate and Activity Meter Test

Iowa State University

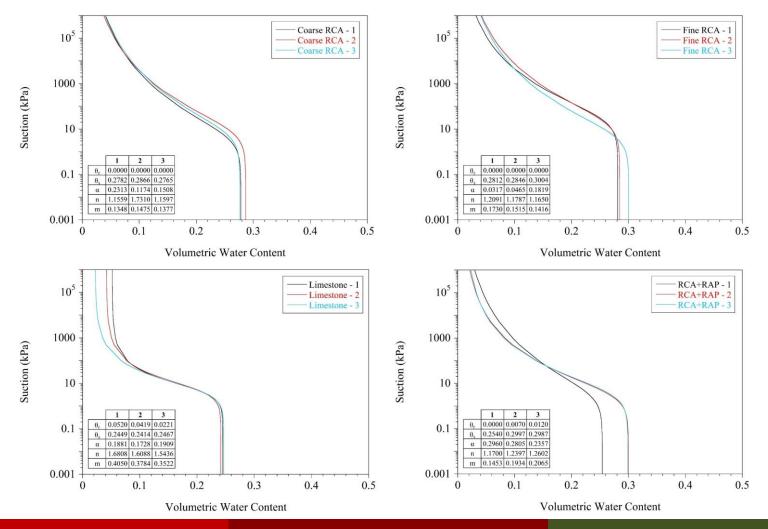

University of Wisconsin-Madison

Pressure Plate and Activity Meter Test

• van Genuchten (1980) model

$$\Theta = \frac{\theta - \theta_{\rm r}}{\theta_{\rm s} - \theta_{\rm r}} = \left[\frac{1}{1 + (\alpha \psi)^{\rm n}}\right]^{\rm m}$$

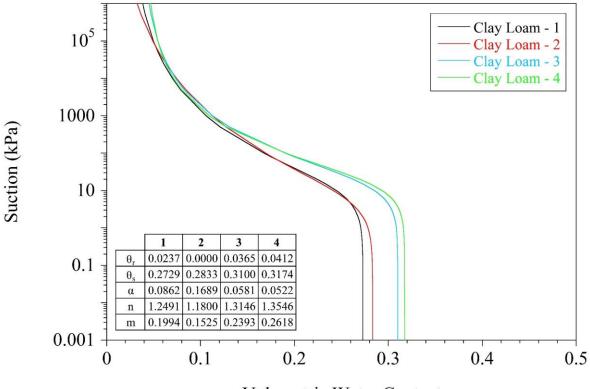
- Θ = Normalized volumetric water content
- θ = Soil volumetric water content
- θ_r = Residual volumetric water content
- $\theta_{s} = Saturated volumetric water content$
- Ψ = Matric suction
- α , n, and m = van Genuchten fitting parameters



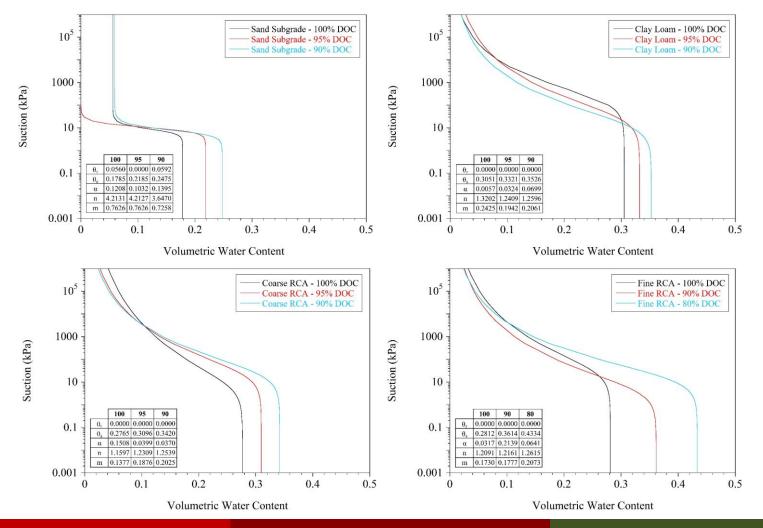
Volumetric Water Content

University of Wisconsin-Madison

Suction (kPa)

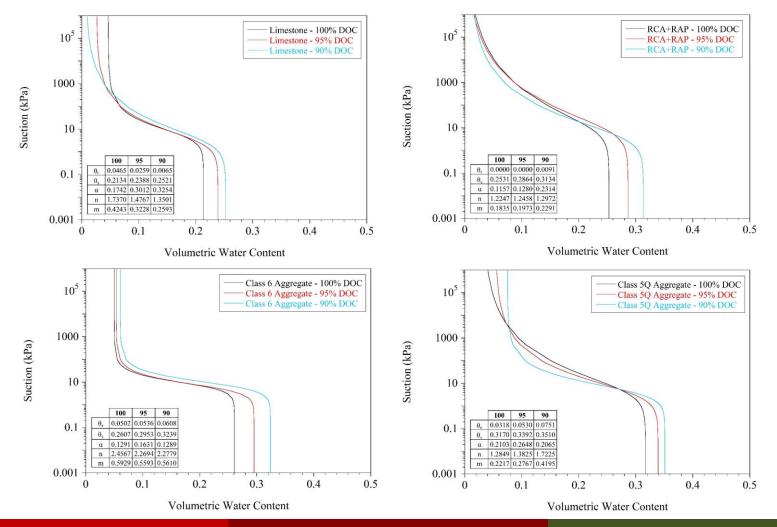

Pressure Plate and Activity Meter Test

Iowa State University


University of Wisconsin-Madison

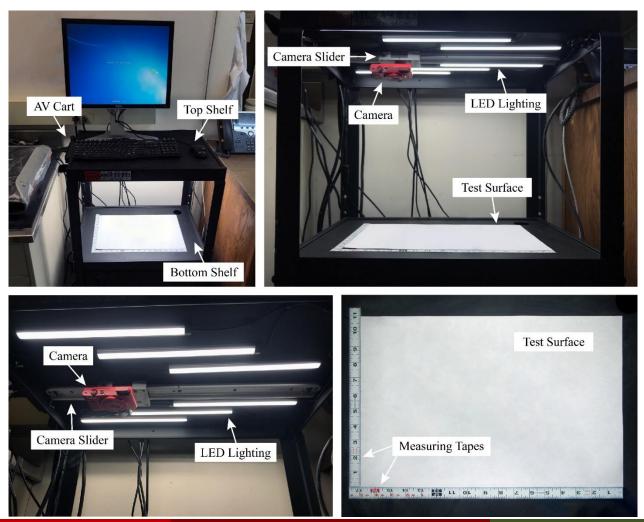
Pressure Plate and Activity Meter Test

Volumetric Water Content


Pressure Plate and Activity Meter Test

Iowa State University

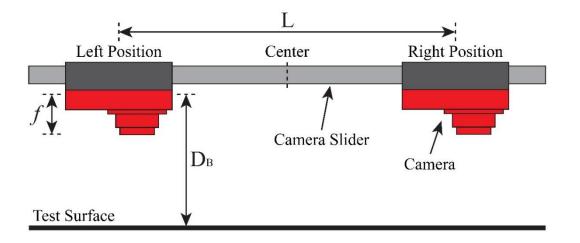
University of Wisconsin-Madison


Pressure Plate and Activity Meter Test

Iowa State University

University of Wisconsin-Madison

Stereophotography



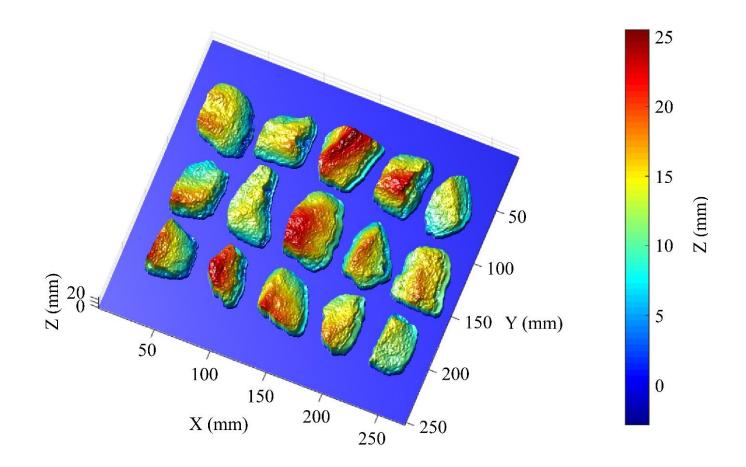
Iowa State University

University of Wisconsin-Madison

Stereophotography

- Parameters
 - D_B = vertical distance between the camera center and the test surface
 - L = camera separation distance
 - -f =focal length of the camera

Stereophotography



Iowa State University

University of Wisconsin-Madison

Stereophotography

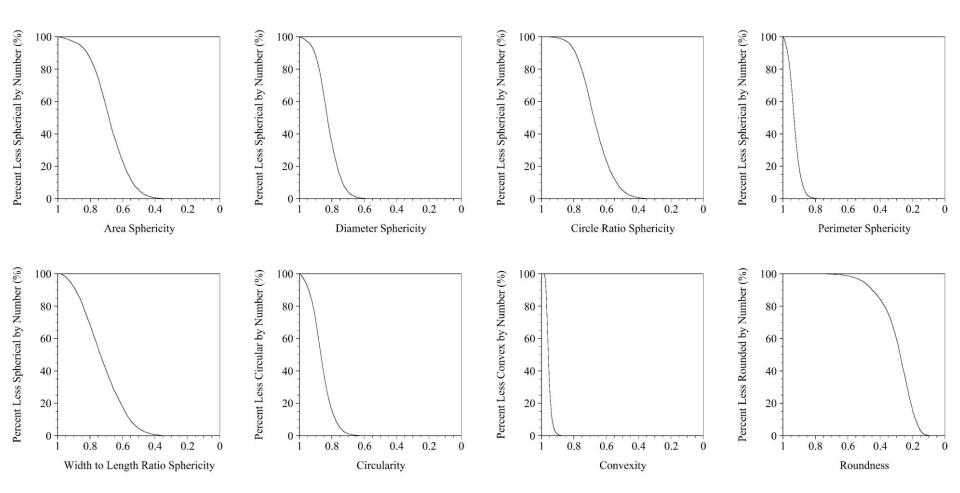


Iowa State University

University of Wisconsin-Madison

Stereophotography

• Ellipsoidal particle model


Stereophotography

- Shape parameters
 - Area sphericity
 - Diameter sphericity
 - Circle ratio sphericity
 - Perimeter sphericity
 - Width to length ratio sphericity
 - Circularity
 - Convexity
 - Roundness

Parameter	Formula	Description	Reference			
Area Sphericity	$S_A = \frac{A}{A_{cir}}$	The ratio of the area of the particle (A) to the area of the smallest circumscribing circle (A_{cir}) .	Riley (1941)			
Diameter Sphericity	$S_D = \frac{D_e}{D_{cir}}$	The ratio of the diameter of a circle having the same area as the original particle (D_e) to the diameter of the minimum circumscribing circle (\underline{D}_{cir}).	<u>Wadell</u> (1935)			
Circle Ratio Sphericity	$S_{C} = \frac{D_{ins}}{D_{cir}}$	The ratio of the diameter of the largest inscribed circle of the particle (D_{ins}) to the smallest circumscribing circle of the particle (\underline{D}_{cir}) .	Santamarina and Cho (2000)			
Perimeter Sphericity	$S_P = \frac{P_e}{P}$	The ratio of the perimeter of the circle having the same area as the particle (P_e) to the real perimeter of the particle (P) .	Kuo and Freeman (2000)			
Width-to-Length Ratio Sphericity (Aspect Ratio, Elongation)	$AR = \frac{W}{L}$	The ratio of the width of the particle (W) to the length of the particle (L).	Krumbein and <u>Sloss</u> (1951)			
Circularity	$C = \frac{4\pi A}{P^2}$	The ratio of the area of the particle (A) to the area of the circle having the same perimeter as the particle $(P^{2/4}\pi)$.	ISO (2008)			
Convexity (Solidity)	$C_x = \frac{A}{A_c}$	The ratio of the area of the particle (A) to the area of the minimum convex boundary circumscribing the particle (A_c) .	Mora and Kwan (2000)			
Roundness (Angularity)	$\mathbf{R} = \frac{\frac{\sum_{i=1}^{N} r_i}{N}}{r_{ins}}$	The ratio of the average radius of corner circles of the particles (\underline{r}_i is the radius of <u>i-th</u> corner and N is the number of corners) to the radius of the maximum inscribed circle (\underline{r}_{ins}).	Wadell (1932, 1933, and 1935)			

University of Wisconsin-Madison

Stereophotography

Iowa State University

University of Wisconsin-Madison

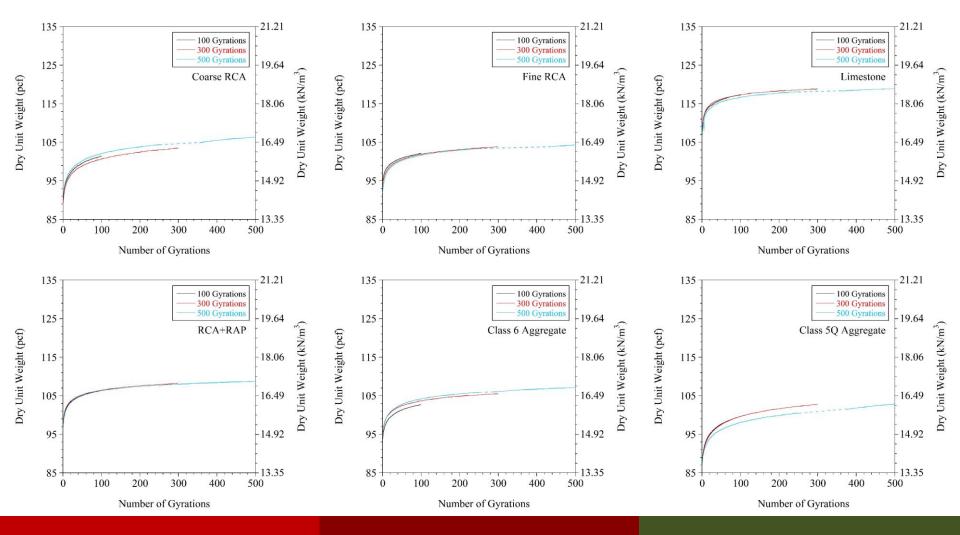
Gyratory Compaction

- ASTM D6925
- 4500 g of each material
- 100, 300, and 500 gyrations

Parameter	Value									
Compaction Mold Diameter	6 in (150 mm)									
Specimen Height	6 - 7.25 in (150 – 185 mm)									
Vertical Applied Pressure	12,530 psf (600 kPa)									
Number of Gyrations	100, 300ª, 500 ^b									
Angle of Gyration	$1.25^{\circ} \pm 0.02$									
Frequency of Gyration	30 ± 0.5 gyrations/min									
Number of Dwell Gyrations	2									

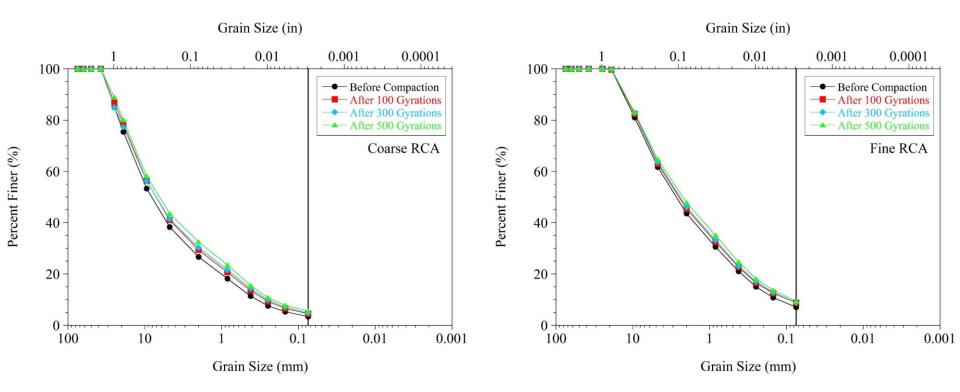
^aIn fact, 299 gyrations (maximum number of gyrations that can be applied per test) were applied. However, the number is rounded to 300 for simplicity.

^bApplied in two consecutive tests with 250 gyrations each.

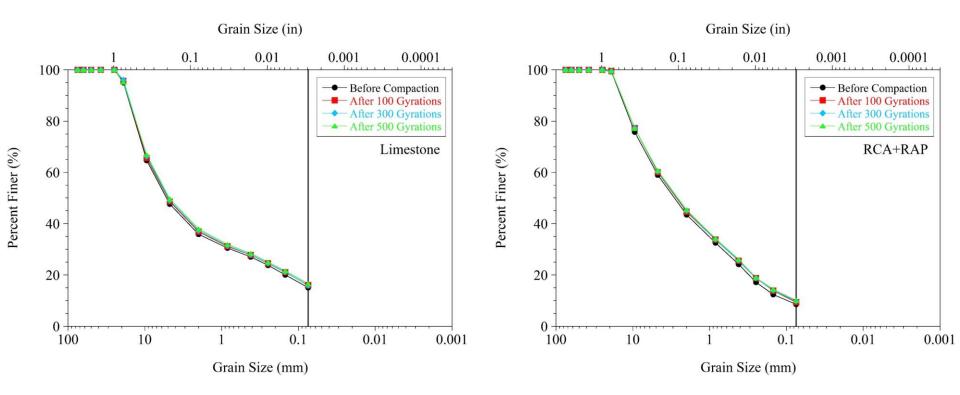

Gyratory Compaction

Iowa State University

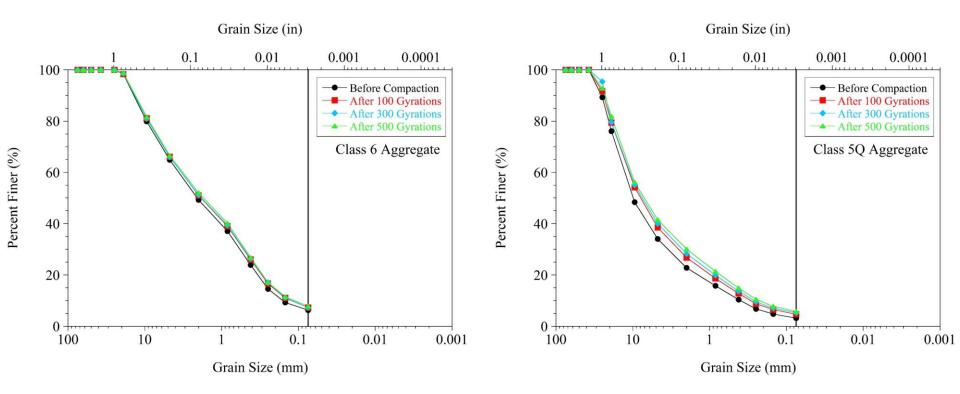
University of Wisconsin-Madison


Gyratory Compaction

Iowa State University

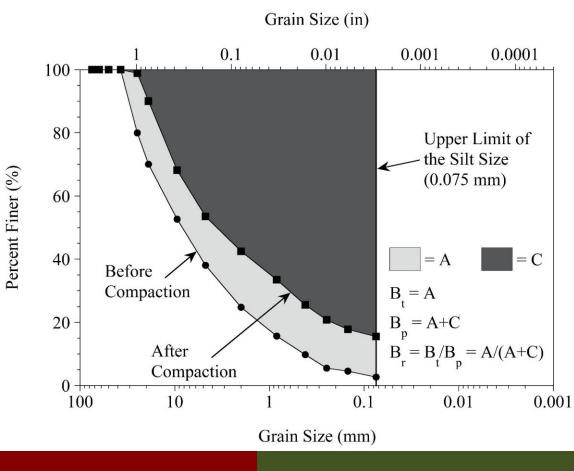

University of Wisconsin-Madison

Gyratory Compaction

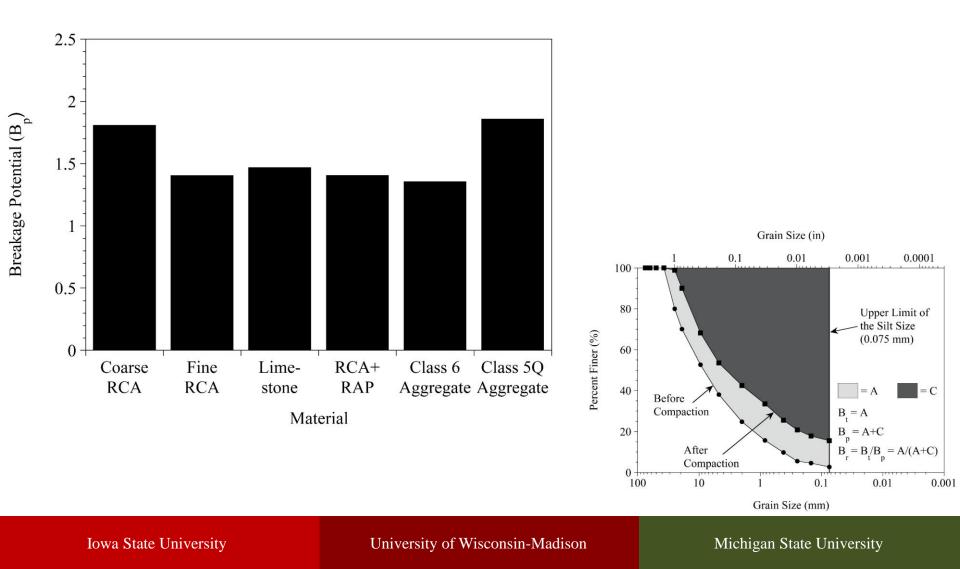

University of Wisconsin-Madison

Gyratory Compaction

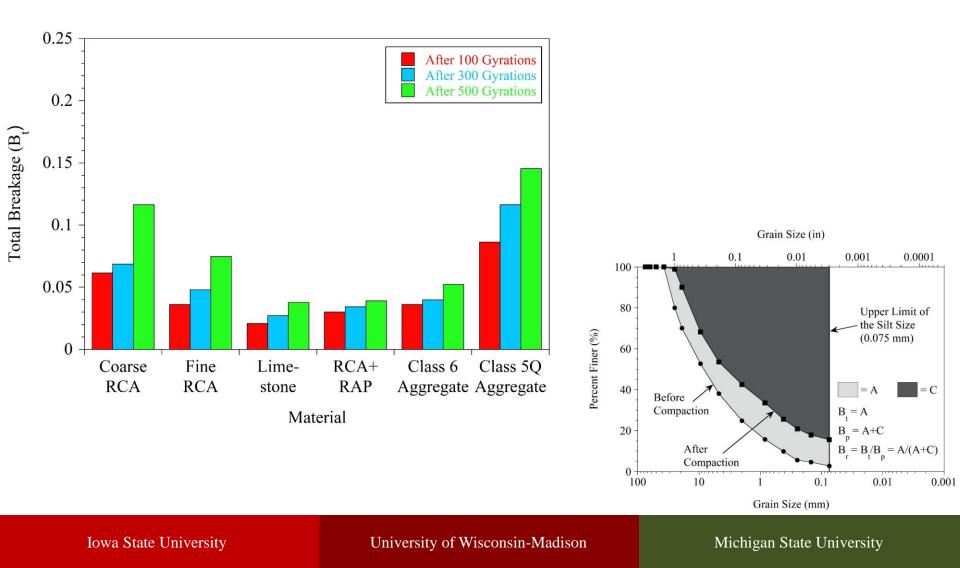
University of Wisconsin-Madison


Gyratory Compaction

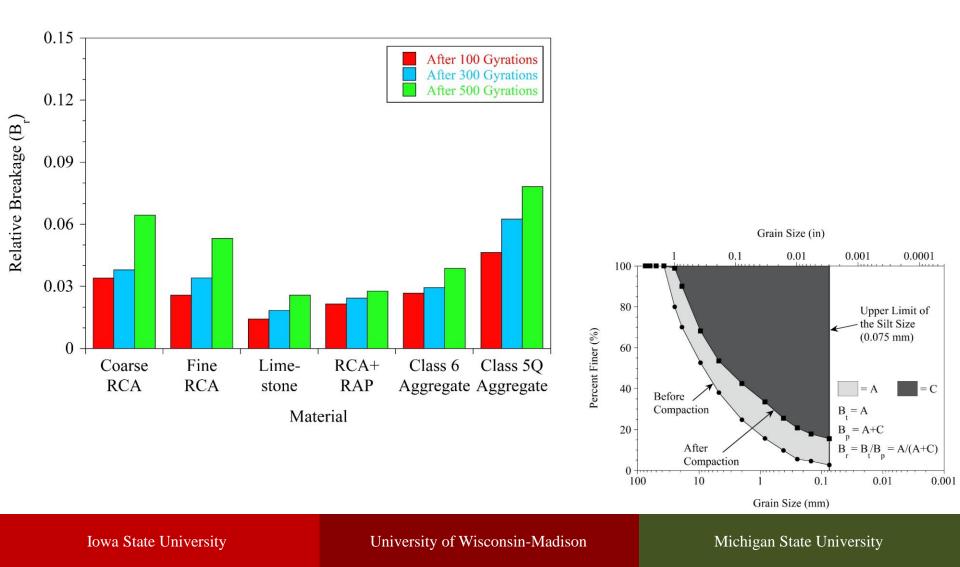
University of Wisconsin-Madison


Gyratory Compaction

- Hardin (1985)
 - Breakage potential (B_p)
 - Total breakage (B_t)
 - Relative Breakage (B_r)



University of Wisconsin-Madison


Gyratory Compaction

Gyratory Compaction

Gyratory Compaction

- Deleterious materials < 0.1% by dry weight
- G_s
 - Fine RCA < coarse RCA < RCA+RAP & class 5Q aggregate < class 6 aggregate < limestone
- Absorption
 - Fine RCA > coarse RCA > class 5Q aggregate > RCA+RAP > class 6 aggregate > limestone
- MDD
 - Fine RCA < RCA+RAP < class 5Q aggregate < class 6 aggregate < coarse RCA < limestone
- OMC
 - Fine RCA > RCA+RAP > class 5Q aggregate > coarse RCA > class 6 aggregate > limestone

- Class 6 & class 5Q aggregates \rightarrow not natural
- Asphalt binder content
 - Ignition method > quantitative extraction
 - Class 6 aggregate > RCA+RAP > fine RCA > limestone > class 5Q aggregate > coarse RCA
- Constant head permeability
 - Insufficient compaction by light hammering in the membrane
 - Fine RCA > limestone, class 6 aggregate, & class 5Q aggregate > coarse RCA & RCA+RAP
- Falling head permeability
 - Better compaction in the compaction mold
 - Coarse RCA, fine RCA, & RCA+RAP > limestone

- Falling head permeability different DOC
 - DOC↓ permeability↑
 - Fine RCA > coarse RCA
- Hanging column test (for SWCC)
 - Lower suctions
 - Not suitable for RCA cementation
- Pressure plate and activity meter test (for SWCC)
 - Higher suctions
 - − DOC \downarrow initial VWC \uparrow
- Stereophotography
 - Compatible with sieve analysis
 - Good for shape analysis

- Gyratory compaction
 - − Number of gyrations ↑ dry unit weight ↑
- Breakage potential (B_p)
 - Class 5Q aggregate > coarse RCA > limestone > fine RCA & RCA+RAP
 > class 6 aggregate
- Total breakage (B_t)
 - Number of gyrations $\uparrow B_t \uparrow$
 - Class 5Q aggregate > coarse RCA > fine RCA > class 6 aggregate > RCA+RAP > limestone
- Relative breakage (B_r)
 - Similar to B_t

FUTURE STUDY

- Determination of the unhydrated cement contents
- Determination of the residual mortar contents
- Contact angle measurements
- Gradation of the materials used in permeability and SWCC tests
- Stereophotography for other materials
- Changes in morphology due to gyratory compaction

Thank You! QUESTIONS??

Iowa State University

University of Wisconsin-Madison

SCHEDULE

TASKS	MONTHS																																
	1	2	3	4	5	6	7	8	9	1 0	1 1	1 2	1 3	1 4	1 5	1 6	1 7	1 8	1 9	2 0	2 1	2 2	2 3	2 4	2 5	2 6	2 7	2 8	2 9	3 0	3 1	3 2	3 3
Task 1																																	
Task 2																																	
Task 3																																	
Task 4																																	
Task 5																																	
Task 6																																	
Task 7																																	
Task 8																																	
Task 9																																	