Presentation Outline

- Introduction to MnROAD
- Phase-I Benefits
- Phase-II Benefits
- Phase-III Future
Presentation Outline

- Introduction to MnROAD
- Phase-I Benefits
- Phase-II Benefits
- Phase-III Future

(the so-what without the dirty details)
A long-term accelerated pavement testing facility that gives researchers a unique, real-life laboratory to study and evaluate the performance of materials used in roadway construction.
MnROAD Original Construction

History
- Original Funding ($25 million)
- Open to Traffic (1994)

Layout and Designs
- Mainline / Low Volume
- Asphalt / Concrete / Aggregate
- 3,5,10 Year Designs

Phase I (1994-2006)
Phase II (2007-present)
Phase III (?)
MnROAD Operations

- Facility/Buildings
- Construction coordination
- Traffic loadings
 - LVR 80K Truck and ML Traffic Switches
- Research project support
- Performance monitoring
- Sensors (9,000+ installed)
 - Static (Environmental)
 - Dynamic (Traffic Loading)
MnROAD Database

- **Oracle Database**
 - Over 1 Billion rows

- **Data Release 1.0 (January 2012)**
 - Test cell parameters
 - Monitoring/Performance
 - Lab testing results

- **Current Activities**
 - Sensor data
 - Table organization & data validation procedures
 - Web access
MnROAD Research Support

- Intelligent Transportation Systems (ITS)
- Pavement Marking (Striping)
- 60 inch Plastic Culverts
- Roadside Vegetation Studies
- SRF Loop Detector Installation
- Homeland Security Drills
- AGCO Corp. Machine Testing
- State Patrol Accident Reconstruction
- Profile and Noise Rodeo Support
- Site and District Snowplowing
- WIM Calibration, Truck Instrumentation
MnROAD Phase I Accomplishments

Saves 33 million Annually

- Seasonal Load Limits
 - Spring Restrictions / Winter Overloads
- Improved Design Methods
 - Mechanistic Empirical Designs
- Improved Construction Methods
 - Profiler Certification
 - Dynamic Cone Penetrometer
 - Intelligent Compaction
- Initial Findings
 - Environment Drives Pavement Performance
 - Current Designs are too Conservative
- Young Engineer Training & Education
Transportation Engineering and Road Research Alliance

- TERRA formed in 2004
- Helped develop Phase-II
- Currently 21 government, industry and academia members

MnROAD Benefits

- Attracts key public, industry, academic partners contributions
- Participation in working to develop future initiatives
Core Research Areas

- Innovative Construction
- Green Roads
- Preservation and Rapid Renewal
- Surface Characteristics
- Non-Pavement Research
MnROAD Phase II Major Research

- TPF-5(129) Recycled Unbound Materials
- TPF-5(134) PCC Characteristics (Rehabilitation)
- TPF-5(149) Composite Pavements
- TPF-5(148) Implements of Husbandry
- TPF-5(153) Preventive Maintenance
- TPF-5(132) Low Temperature Cracking
- TPF-5(165) Whitetopping Design
Recycled Unbound Materials

- **TPF-5(132) Pooled Fund**
 - Base Material Study
 - 4 Cells – (100% PCC, 50% PCC, 100% RAP, Class-5)

- **Observations**
 - All three sections performing well as control
 - Extensive lab testing

- **Benefits**
 - Better understanding of the seasonal material behavior
 - Inputs for future pavement designs
 - Modified MnDOT Granular Base Spec
 - Use of a greater percent of PCC in the base 75%
PCC Surface Characteristics (Rehab)

- **TPF-5(134) Pooled Fund**
 - Diamond Grinding Study - LVR to Mainline
 - Traditional, Innovative, Ultimate, Whisper,)

- **Observations**
 - Noise/Durable/Safety Improvements have been documented
 - Materials and Construction are starting to utilize
 - Working with the environmental groups
 - Cost are becoming more competitive with greater use

- **Benefits**
 - MnROAD, 94 Clearwater, 52 S. Airport, 35 Duluth
 - Noise/Durable/Safety
 - Good for areas where no room for noise walls
 - Other states are requesting our MnDOT spec
Composite Pavements

- **TPF-5(149) Pooled Fund & SHRPII**
 - Two lift designed systems
 - 4 Cells – (HMA/PCC, PCC/HMA)

- **Observations**
 - Good Performance – National Push
 - Demonstrated low quality aggregate, recycled concrete, flyash substitution options for underlying concrete mixes
 - Documented the reduced thermal gradient for HMA/Concrete and the future design possibilities

- **Benefits**
 - Economical option for locations with low quality/few aggregates
 - McCrossen Cost Estimate (2 PCC Pavers – Trucking Costs) are roughly equal
 - New designs options for long life, durable, rapid renewal
Implements of Husbandry

- TPF-5(148) Pooled Fund
 - Effects of farm equipment for roadways
 - 3 Cells – (HMA 7 and 9 ton and thin PCC)

- Observations
 - More damage in the afternoon
 - More damage with roads without shoulders
 - Larger equipment tends to show greater damage than a 5-axle semi
 - Equipment manufactures are moving towards smaller tanks

- Benefits
 - Wisconsin is implementing local meetings to stress communication of the issues, use of one-way roads, morning travel, road improvements
 - Potential for high savings of the local roadway system
Preventative Maintenance

- **TPF-5(153) Pooled Fund**
 - Understand asphalt aging
 - HMA Cells and other state roadways

- **Observations**
 - Study just got underway
 - Asphalt Institute
 - Laboratory study using cores
 - Roadways observed to age from top down and bottom up

- **Benefits**
 - Key to understanding when is the most effective time for maintenance
Low Temperature Cracking

- **TPF-5(132) Pooled Fund**
 - National mix test and specification
 - HMA cells and other state roadways

- **Observations**
 - Fracture Energy we are able to measure
 - Changes noticed for
 - Aggregate Type
 - Aggregate Gradation Size
 - Binder Grade
 - Binder Modification
 - Air Voids
 - Use of Recycle

- **Benefits**
 - Fracture energy key to thermal cracking but also all cracking
 - Give engineers more insight in the materials they select
 - Help eliminate the #1 reason we rehab roads in Minnesota
Whitetopping Design

- **TPF-5(165) Pooled Fund**
 - National design

- **Observations**
 - Learned the important factors – accelerated testing
 - Thickness
 - Panel size
 - HMA condition and seasonal behavior
 - Importance of bond
 - Importance of sealing

- **Benefits**
 - Positive Design for HMA Full depth repairs
 - Possible option if alternate bids become standard
Recycled Materials in Asphalt

- **MnROAD**
 - LVR and Mainline
 - Shingles and Fractionated RAP

- **Observations**
 - Demonstration
 - 5% Shingle shoulder mix cracked (both types)
 - Fractionated vs Non-Fractionated RAP – 30%
 - PG 58-28 (small amount of cracking) PG 58-34 (less)

- **Benefits**
 - Effect on base asphalt binder selection for RAP
 - Shingles can be a viable option
Permeable/Porous Pavements

Potential Applications
- Park & Ride Lots
- Local Access Roads
- Roundabout Aprons
- Emergency Pull-off Areas
- In lieu of retention ponds

Observations for both HMA/PCC
- Good pavement durability
- Voids remain open (traffic and maintenance)
- Maintained (2-3 times/year)
- Run-off and Water Quantity benefits
- Traffic Safety (Noise and Spray)
Permeable HMA Pavement

- **MPR-6(024) Single State**
 - 2 Cells (Sand – Clay Subgrade)

- **Observations**
 - 2008 MnROAD First (MnDOT, Contractor)
 - Held up to freeze/thaw
 - Good Performance (rutting, raveling, no cracks)

- **Benefits**
 - MnDOT Spec
 - Demonstrated construction
 - Demonstrated performance
Pervious PCC Pavement

- **MPR-6(027) Single State**
 - 2 cells (Sand – Clay Subgrade)
 - 1 cell (overlay)

- **Observations**
 - Progression of technology
 - Construction process
 - Held up to freeze/thaw
 - Good Performance (raveling, cracks)

- **Benefits**
 - MnDOT Spec
 - Demonstrated construction
 - Demonstrated performance
 - Construction – Industry certification classes
Thin Concrete

- **Pavements**
 - LVR and Mainline Cells

- **Observations**
 - LVR – 5” working better than expected
 - Mainline 5 and 5.5” failure in 2.5 years
 - Mainline 6 and 6.5” working for now
 - Note 7.5” mainline has worked for 17 years

- **Panel Size**
 - Flat dowel bars demonstrated

- **Benefits**
 - Can thinner overlays be a more economical solution?
 - Supported by concrete industry
 - Working on rational design tools
MnROAD Phase II Major Research

<table>
<thead>
<tr>
<th>Date</th>
<th>Initiative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan-07</td>
<td></td>
</tr>
<tr>
<td>Jan-08</td>
<td></td>
</tr>
<tr>
<td>Jan-09</td>
<td></td>
</tr>
<tr>
<td>Jan-10</td>
<td></td>
</tr>
<tr>
<td>Jan-11</td>
<td></td>
</tr>
<tr>
<td>Jan-12</td>
<td></td>
</tr>
<tr>
<td>Jan-13</td>
<td></td>
</tr>
<tr>
<td>Jan-14</td>
<td></td>
</tr>
<tr>
<td>Jan-15</td>
<td></td>
</tr>
<tr>
<td>Feb 2012</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CTRE Partnership - PCC Pervious Overlay MPR-6(015)</td>
</tr>
<tr>
<td></td>
<td>RoadScience Partnership - FDR Repairs using Engineer Emulsion</td>
</tr>
<tr>
<td></td>
<td>NRRI Partnership - Taconite Aggregates MPR-6(023)</td>
</tr>
<tr>
<td></td>
<td>Innophos and FHWA Partnership - Acid Modification of HMA</td>
</tr>
<tr>
<td></td>
<td>Bloom - FDR - Fly Ash Stabilization</td>
</tr>
<tr>
<td></td>
<td>ARA Partnership - SHRP2 Composite Pavements</td>
</tr>
</tbody>
</table>

Other Initiatives Include
- Warm mix asphalt (WMA)
- Effect of drainage on joint performance
- Open graded aggregate base (OGAB)
- Roller compacted concrete
Full Depth Reclamation

- **Bloom and FHWA Partnership**
 - 3 Cells (Low Volume Road)

- **Observations**
 - Use of fly ash and non-treated FDR provides
 - Increase in base strength
 - Demonstrated rapid, cost effective construction experience

- **Benefits**
 - Eliminates reflective cracking
 - Construction Insurance
Full Depth Reclamation

- **Road Science Partnership**
 - 3 Cells (mainline)
 - 1 Cell (LVR)

- **Observations**
 - 2.75” Interstate surface on engineered FDR
 - Engineered emulsion provides a balance stiffness and flexibility.

- **Benefits**
 - Design method for HMA Full depth repairs
 - Design method for distressed pavements
 - Sustainable construction practice
Taconite Aggregates

- **MnROAD**
 - LVR and Mainline
 - Base, PCC, HMA

- **Observations**
 - Both HMA and PCC working well
 - Large stone base (along with pervious) has about half the frost depth
 - Taconite 4.75mm SMA is very rut resistant
 - Working on a high quality patch material and system

- **Benefits**
 - Good high quality aggregate used in any layer of the roadway
 - Limited by transportation cost (trucking)
 - Consistent production for aggregate size
Warm Mix Asphalt

- **Base asphalt used at MnROAD**
 - 6 Cells (mainline) - Evotherm

- **Observations**
 - First to demonstrate its use in Minnesota
 - MnDOT regular specification used with little change
 - Contractor Plant and paving operations were smooth

- **Benefits**
 - Reduction of mixing and compaction temperatures
 - Compaction aid
 - Future aging reduction
Effect of Drainage on Joint Performance

- **Original Concrete Cells**
 - **Observations – deterioration (high traffic)**
 - None when PASB used
 - Some when Class-5 / well sealed joints / edge drain
 - High amount when Class-5 / no edge drains

- **Observations – deterioration (low volume)**
 - If sealed class-5 is not as destructive
 - If not-sealed class-5 can develop joint damage

 (Distress occurred with out significant joint faulting)
 (confirmed by similar pavements throughout Minnesota)

- **Benefits**
 - Importance of Drainable bases
 - Importance of joint sealing
 - Effect of Traffic
Open Graded Aggregate Base

- OGAB used at MnROAD
 - Mainline Cell

- Observations
 - First to demonstrate its use in Minnesota
 - MnDOT developed a new specification
 - Drainable and stable for construction
 - Contractor liked

- Benefits
 - Prevention of water damage (HMA - PCC Joints)
 - Improved construction efficiency
Roller compacted Concrete

- **2010 MnROAD Shoulders**
- **Observations**
 - First to demonstrate its use in Minnesota
 - MnDOT special provision – based on other states
 - Contractor liked
 - Material – labor – equipment costs lower
- **Benefits**
 - Shoulder surface
 - Composite pavement lower layer
 - Low Volume Road option
 - Strength of concrete with rapid construction
Future Trends

- Rehabilitation
- Construction Uniformity
- Sustainability
 - Reduce
 - Reuse
 - Recycle
- Surface Characteristics
Proposed Pooled Fund Studies

- Development of an Improved Design Guide for Unbonded Concrete Overlays
 - Solicitation 1309 – Posted Fall 2011
 - Identify suitable interlayer materials
 - Develop M-E design guidelines
 - National Design

- Development and Implementation of Non-Destructive Testing
 - Solicitation 1310 – Posted Fall 2011
 - Research NDT ready for implementation
 - Enhance data analysis and visualization tools
MnROAD By-Pass Rehabilitation Opportunity

- 3 miles of 40 year old concrete
- 2013/2014 District Repairs Planned
- Concrete Condition
 - Very few shattered panels or cracking
 - Poor Load Transfer
 - Rotting Joints
 - ½” up to 1” Faulting (Poor Ride)
 - 4 Concrete Dips
- 2009 Research Project
 - CPR and DBR with Grinding on 1,800 feet
- Best fit for MnROAD?
Proposed Studies

- **What will be MnROAD 3rd Phase?**
 - Current Efforts
 - Working with Research Partners
 - MnDOT
 - LRRB
 - TERRA

- **Continue to Develop Partnerships**
 - Please contact us – we are interested in your input
Thank You

Questions?

5 days till Valentine’s Day