Project Selection and Mix Design Guidelines for Road Rehabilitation using Full-Depth Reclamation with Foamed Asphalt

David Jones, PhD and Pengcheng Fu, PhD
University of California Pavement Research Center

16th Annual TERRA Pavement Conference
Minneapolis MN, February 2012
Summary

Ø Introduction
Ø Project selection overview
Ø Desktop study
Ø Preliminary site investigation
Ø Detailed site investigation
Ø Mix design
Ø Conclusions
Introduction

Ø FDR-FA
 + Growing interest
 + Not a "fix-all" solution

Ø Project investigation is essential

Ø Existing guidelines
 + Wirtgen Manual
 + South Africa TG2
 + California FDR-FA Guide
 + Other
 • RMRC
Summary

Ø Introduction
Ø Project selection overview
Ø Desktop study
Ø Preliminary site investigation
Ø Detailed site investigation
Ø Mix design
Ø Conclusions
Ø Performance related to:
+ Materials
+ Strength of underlying layers
+ Drainage
+ Mix and structural designs
+ Construction procedures

Ø Project selection based on
+ Desktop study
+ Preliminary site investigation
+ Detailed investigation
 • Field testing
 • Preliminary laboratory testing
 • Analysis
Introduction
Project selection overview
Desktop study
Preliminary site investigation
Detailed site investigation
Mix design
Conclusions
Desktop Study

- Collect all relevant data
 - As-built plans
 - Photolog and pavement condition reports
 - Traffic data
 - Climate data
 - Maintenance records
 - Land-use plans

- Desktop study report
 - Project information, road information, potential problems, fatal flaws, decision
Summary

Ø Introduction
Ø Project selection overview
Ø Desktop study
Ø Preliminary site investigation
Ø Detailed site investigation
Ø Mix design
Ø Conclusions
Preliminary Site Investigation

Ø Who
 + Project engineer and maintenance superintendent

Ø When
 + Early in project scope, rainy season

Ø What
 + Windshield survey
 • Cracking and pumping
 • Rutting
 • Previous maintenance
 • Height of road above subgrade
 • Drainage efficiency
 • Land use adjacent to road
 • Cause of failure
 + Subgrade sampling and testing
 + Report
 • Results
 • Fatal flaws
 – Structure
 – Drainage
 – Subgrade failure
 – Excessive deep patching
Summary

- Introduction
- Project selection overview
- Desktop study
- Preliminary site investigation
- Detailed site investigation
- Mix design
- Conclusions
Detailed Site Investigation

Ø Who
 + Project engineer, district staff

Ø When
 + Rainy season

Ø What
 + Subgrade stiffness assessment
 + Visual assessment
 + Pavement layer thickness assessment
 + Material sampling
 + Indicator tests
 + Analysis and report
 + Life-cycle cost analysis
Subgrade Stiffness - FWD

Ø Why
 + Evaluate subgrade
 + Identify variability and weak areas
 + Identify locations of test pits

Ø When
 + Rain season

Ø What
 + Worst lane
 + Between wheel paths
 + 20m interval (1 km/h)
Subgrade Stiffness - FWD

Ø Analysis

+ Pavement layer modulus backcalculation not appropriate
+ Subgrade deflection modulus

\[E_{\text{def}}(r) = \frac{(1-v^2) \times P}{\pi \times r \times d} \]

+ Plot results against distance
 - > 45MPa – no subgrade problems
 - 25 – 45MPa – subgrade problems likely
 - <25MPa – more detailed survey
Subgrade Stiffness - FWD

Zone A: >45MPa, no improvement necessary
Zone B: 25MPa - 45MPa, improvement required before recycling
Zone C: <25MPa, detailed study and improvement before recycling
Visual Assessment

Ø Cracking
 + Extent and nature
 + Pumping
 + Loose blocks
Visual Assessment
Visual Assessment

Ø Cracking
 + Extent and nature
 + Pumping
 + Loose blocks

Ø Rutting
Visual Assessment

Ø Cracking
 + Extent and nature
 + Pumping
 + Loose blocks

Ø Rutting

Ø Previous maintenance
Visual Assessment
Visual Assessment

Ø Cracking
 + Extent and nature
 + Pumping
 + Loose blocks
Ø Rutting
Ø Previous maintenance
Ø Areas with subgrade modulus <45MPa
Visual Assessment

- Cracking
 - Extent and nature
 - Pumping
 - Loose blocks
- Rutting
- Previous maintenance
- Areas with subgrade modulus <45MPa
- Drainage
Visual Assessment

Ø Cracking
 + Extent and nature
 + Pumping
 + Loose blocks
Ø Rutting
Ø Previous maintenance
Ø Areas with subgrade modulus <45MPa
Ø Drainage
Ø Road side activity
Visual Assessment
Visual Assessment

Ø Cracking
 + Extent and nature
 + Pumping
 + Loose blocks

Ø Rutting

Ø Previous maintenance

Ø Areas with subgrade modulus <45MPa

Ø Drainage

Ø Road side activity

Ø Test pit and core locations
 + Test pits – each uniform section + problem areas
 + Cores – every 500m + where required
 + DCP measurements through core holes
Layer Thickness Assessment

Ø GPR
 + Continuous
 + Calibrated with cores

Ø Core
 + Measure and photograph
 + Record special characteristics
 • Rubber, stripping, fabrics, etc

Ø Analysis
 + Plot results against distance
Subgrade Stiffness - DCP

Ø Test in core holes
 + Beware effect of core drill water

Ø Analysis
 + Various calculations available
 + Suggest DCP number
 • (Rate of penetration [mm/blow])
 + Plot DCP number against distance
 + Compare to FWD
Test Pits

Ø Number of purposes
 + Pavement cross section
 + Subgrade moisture conditions
 + Source of material for mix design
 • 1m x 1m x 1m

Ø Remove asphalt with milling machine
Test Pits
Laboratory Testing

Ø Indicator tests
 + Grading analysis
 • Top 250mm – 300mm + underlying layers + subgrade
 + Subgrade Atterberg Limits
 + California Bearing Ratio
 • Underlying layers + subgrade

Ø Analysis
 + 5 to 12% passing 0.075mm (#200) in top layer
 + Subgrade PI <12
 + Subgrade CBR ≥ design requirement
 + Consider adding base material if necessary
Analysis Summary

Ø FWD and DCP Analysis
 + % of project falling into different zones
 + Prefer <10% of project in Zone C
 + Consider costs of improving weak areas

Ø Visual and test pit assessment
 + Extent of problems
 + Life of repairs
 + Effect of road side activities

Ø Layer thickness
 + Sufficient material to recycle?
 + Pre-milling on thick pavements if necessary
 • Not pre-pulverization!
Life-Cycle Assessments

Ø Life-cycle cost assessment
 + Quantify economic benefits
 + E.g. Realcost

Ø Environmental life-cycle analysis
 + No guidelines available for FDR-FA
 + Will be important on future projects
Project Investigation Report

Ø Summary of findings
Ø Recommendation
+ Flow chart
Summary

Ø Introduction
Ø Project selection overview
Ø Desktop study
Ø Preliminary site investigation
Ø Detailed site investigation
Ø Mix design
Ø Conclusions
Mix Design

Ø Nine part process
Ø Asphalt and active filler contents determined separately
 + Determine the grading of the pulverized material
 + Select the active filler type
 + Determine the compaction curve of the pulverized material
 + Select the asphalt binder and determine the foaming parameters
 + Determine the mixing moisture content (MMC)
 + Determine the asphalt binder content
 + Determine the active filler content
 + Determine the reference density for field compaction & ITS for QA
 + Determine the tensile strength retained and temperature sensitivity of the mix design (optional)
Summary

Ø Introduction
Ø Project selection overview
Ø Desktop study
Ø Preliminary site investigation
Ø Detailed site investigation
Ø Mix design
Ø Conclusions
Conclusions

Ø FDR-FA is a viable rehabilitation option
Ø Not a "fix-all" solution
Ø Project investigation is required to determine if FDR-FA is appropriate
Ø Combination of FWD, Visual assessment, coring, DCP, test pit and indicator testing required
Ø Decision based on results
Ø Proceed with mix design after decision is taken
Ø California FDR-FA Guidelines
 + www.ucprc.ucdavis.edu
Thank you!

David Jones
djjones@ucdavis.edu
www.ucprc.ucdavis.edu

16th Annual TERRA Pavement Conference
Minneapolis MN, February 2012