Quantifying the Sustainable Benefits of Pavement Preservation

Tom Kazmierowski, P.Eng
Ministry of Transportation Ontario

16th Annual TERRA Pavement Conference
February 9, 2012
Outline

• Past - What have we learned
• Present - Current practices and improvements
• Case Study - PaLATE
• Sustainable Future – Challenges
Green Pavement Initiatives

Environmentally friendly pavement design, preservation and rehabilitation strategies include:

• Reuse and recycling of materials
 - Pavement recycling
 - Roof shingles, rubber tires, glass and ceramics
 - Blast furnace slag, fly ash and silica fume

• Warm mix asphalt concrete

• Drainable/permeable pavements

• Reduced noise and perpetual pavements
What is Pavement Preservation?

• Coordinated approach to pavement maintenance/rehabilitation:
 • Planned not reactive
 • Treatments are performed before the appearance of significant distresses
 • Extends the service life
Preservation vs. Routine Maintenance

• Preservation treatments are designed to be proactive, applied while the pavement is still in good condition and maintains the pavement at a high level of service

 Versus

• Worst-first & reactive types of major maintenance
 • repairs made to existing distresses
 • most common approach to pavement maintenance
Strategy Definitions

- **Preservation**
 - planned strategy to extend the life of the pavement
 - preserves the system, retards deterioration, and maintains or improves the functional condition of the system (without increasing structural capacity)

- **Rehabilitation**
 - renews the life of the pavement
 - work undertaken to restore serviceability and improve an existing pavement to a condition of structural or functional adequacy

- **Reconstruction**
 - removal and replacement of the existing pavement structure

- **Holding**
 - strategy that prolongs the life of an asset (for a planned period of time). Strategy employed to maintain acceptable levels of functionality or safety until full rehabilitation or reconstruction can be completed.
Pavement Treatment Strategies

- Preservation
- Rehabilitation
- Reconstruction

Time

Pavement Condition

Holding

Ontario
“Mix of Fixes”

- **Preservation**
 - Microsurfacing
 - Mill 50 mm, Pave 50 mm (Recycled Hot Mix, Warm Mix)
 - Hot In-Place Recycling, chip seals, crack sealing, etc.

- **Rehabilitation**
 - Mill 50 mm, Pave 90 mm (Recycled Hot Mix)
 - Cold In-Place Recycling and Pave 50 mm

- **Reconstruction**
 - Rubblize, granular grade raise, and thick HMA overlays
 - Full depth reclamation (FDR) and HMA paving
 - Full depth removal and replacement with new pavement structure

- **Holding**
 - Hot Mix Patching
 - Thin Resurfacing
Holding Strategies

Pavement Condition vs Time

Holding Strategies
Preservation Strategies
Preservation Strategies - Examples

• Thin Surfacing
 • Micro-surfacing
 • Slurry Seal
 • Chip Seal
 • Fibre modified Chip Seal
 • Ultra thin Bonded Friction Course

• Crack Sealing

• Hot In-place Recycling

• Warm Mix Asphalt
Crack Sealing

Typically used to prevent water and debris from entering cracks in the HMA pavement surface
Thin Surfacing

Typically used to:
- seal cracks
- waterproof surface
- improve friction
- improve rideability
- rejuvenate surface

- Slurry seal
- Micro-surfacing
- Chip seal / Dynapatch
- Novachip
- FMCS
- Ultrathin (premium sand mix)
Slurry Seal

• Description
 • mixture of well-graded aggregate and slow setting asphalt emulsion

• Purpose
 • seal surface cracks
 • address raveling/oxidation
 • fill minor surface irregularities
 • restore friction
Micro-Surfacing

- a polymer-modified cold slurry paving system
- a mixture of dense-graded aggregate, asphalt emulsion, water and mineral fillers
- typically 10 mm thick
Micro-Surfacing

Purpose

• address raveling and surface oxidation
• improve surface friction
• fill ruts/minor surface irregularities
• seal pavement surface
Chip Seals (Dynapatch)

Description

• Mechanical spray patching application of asphalt and single-sized aggregate chips rolled onto the pavement

Purpose

• seal pavement surface
• enrich hardened/oxidized asphalt
• improve surface friction
Ultrathin Bonded Friction Course (Nova Chip)

Description
- gap-graded, polymer-modified HMA placed on a heavy, emulsified asphalt tack coat

Purpose
- address surface distress
- increase surface friction
Fiber Modified Chip Seal (FiberMat)

Description

- FMCS consists of a chip seal application incorporating chopped fiberglass strands in the polymer modified emulsion and a covering aggregate layer.
Fiber Modified Chip Seal

Purpose

• Sealing the surface to prevent water ingress
• Control reflective cracking on new overlay
Hot In-Place Recycling - HIR
Warm Mix Asphalt

• **Description**
 - Reduction in the asphalt mixtures temperatures (~50 °C) while still achieving adequate compaction

• **Purpose**
 - Lower temperature
 - Reduce fuel consumption
 - Reduce GHG emissions
Warm Mix Asphalt
Coordinated Approach to Investment

Coordinated Approach to Investment

Preservation or Holding + Rehabilitation

= Optimized Asset Performance
10 Years Pavement Preservation Treatment Quantities

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Quantities (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Micro-surfacing</td>
<td>7,050,310</td>
</tr>
<tr>
<td>Slurry Seal</td>
<td>918,430</td>
</tr>
<tr>
<td>Chip Seal</td>
<td>1,037,590</td>
</tr>
<tr>
<td>FMCS</td>
<td>126,670</td>
</tr>
<tr>
<td>Ultra-thin</td>
<td>425,400</td>
</tr>
<tr>
<td>HIR</td>
<td>324,120</td>
</tr>
<tr>
<td>Total</td>
<td>9,882,520</td>
</tr>
</tbody>
</table>
Current Practice

Recent improvements in design, materials and construction processes have significantly increased the benefits of pavement preservation techniques.

Improvements in technology have provided cost effective designs and optimization of preservation strategies.
Design Improvements

Comprehensive Construction and Material Specifications

• OPSS 341 and 369, Crack Sealing
• OPSS 303 and 304, Chip Seal and Surface Treatment
• OPSS 337, Slurry Seal
• OPSS 336, Micro-Surfacing
• OPSS 332, Hot in-place recycling
• OPSS 333, Cold in-place recycling
• OPSS 335, CIR with Expanded Asphalt

Available online: http://www.mto.gov.on.ca/english/transrd
Sustainability Concepts within Pavement Preservation
Towards a Sustainable Future

What is Sustainable Development?

“…. Development that meets the needs of the present without compromising the ability of future generations to meet their own needs.”
Towards a Sustainable Future

To achieve sustainability, every corporate decision should consider the impact of the triple-bottom-line.

“What are the Social, Economic, and Environmental (SEE) Impacts of the decision”
GHG Emissions and Global Warming

Variation in Mean Surface Temp and CO₂ Concentration
Sustainable Pavement Criteria

“....safe, efficient, environmentally friendly pavements meeting the needs of present-day users without compromising those of future generations”

• Pavement preservation technologies address the main criteria for a sustainable pavement:
 • Optimizing the use of natural resources
 • Reducing energy consumption
 • Reducing greenhouse gas emissions
 • Limiting pollution
 • Improving health, safety and risk prevention
 • Ensuring a high level of user comfort and safety
Energy Used per Lane-Kilometer of Material Laid Down

Adapted from ‘The Environmental Road of the Future, Life Cycle Analysis’
Case Study

Quantifying the Sustainable Benefits of Preservation Treatments Versus Traditional Mill and Overlay
Impact Evaluation

• **PaLATE** software - Pavement Life-cycle Assessment for Environmental and Economic Effect
• Created by Dr. Horvath of the University of California at Berkley
• Assists decision-makers in evaluating the use of pavement materials in highway construction (both LCC and Environmental Impacts).
Case Study

- Three pavement preservation treatments are compared to conventional “Shave & Pave”:
 - Mill 50 mm and overlay 50 mm WMA
 - 50 mm HIR
 - 10 mm Micro-surfacing

Versus

- Mill 50 mm and overlay 50 mm HMA
Quantify Environmental Effects

- Using PaLATE model, the following emissions were calculated and compared for each treatment:

- Based on typical 7.0 meter wide 2-lane km section of hwy.

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Energy (MJ)</th>
<th>CO₂ (tonne)</th>
<th>NOₓ (kg)</th>
<th>SOₓ (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mill 50mm, Pave 50 mm</td>
<td>674,925</td>
<td>35</td>
<td>307</td>
<td>9,581</td>
</tr>
<tr>
<td>Mill 50 mm, Pave 50 mm WMA</td>
<td>477,822</td>
<td>20</td>
<td>161</td>
<td>6,708</td>
</tr>
<tr>
<td>50 mm HIR</td>
<td>566,937</td>
<td>27</td>
<td>239</td>
<td>7473</td>
</tr>
<tr>
<td>10 mm Microsurfacing</td>
<td>56,451</td>
<td>2</td>
<td>45</td>
<td>1,970</td>
</tr>
</tbody>
</table>
CO₂ Emissions

- Mill & Pave 50 mm
- Mill & Pave 50 mm (WMA) Treatments
- 50 mm HIR
- 10 mm Microsurfacing

Tonne / 2-lane km
NO\textsubscript{X} Emissions

- Mill & Pave 50 mm
- Mill & Pave 50 mm (WMA)
- 50 mm HIR
- 10 mm Microsurfacing

Tonne / 2-lane km

[Graph showing NO\textsubscript{X} Emissions for different treatments]
Environmental Benefits

- Per 2-lane km, micro-surfacing consumes only 8% of the energy, emits approximately 6% of the CO$_2$, 15% of the NO$_x$, and 20% of the SO$_2$ and costs 40-50% less when compared to a conventional mill and overlay treatment.

- Since the implementation of micro-surfacing contracts, assuming a 7 year life for micro-surfacing and a 10 year life for conventional mill and overlay, MTO has reduced GHG emissions by:
 - 32,224 t of CO$_2$
 - 245 t of NO$_x$
 - 6,817 t of SO$_2$

And saved 634,410 tonnes of aggregates.
Economic Benefits

• Over the past 10 years, MTO has constructed 7,050,310 m² of micro-surfacing. If MTO were to have performed a traditional mill and overlay instead of micro-surfacing over the past 10 years, $57,037,000 more would have been spent based on initial construction costs.

• From a life cycle costing perspective, the 10 year annualized cost associated with using mill and overlay would be $35,947,580 more than the cost of micro-surfacing.
Sustainable Pavements

• MTO currently uses numerous innovative pavement preservation technologies that conserve aggregates, reduce GHG emissions, and minimize energy consumption

• A key MTO sustainability strategy is to implement these technologies on a larger scale and encourage their use province wide.

• These technologies support a “zero waste” approach and will assist in meeting our GHG reduction commitments while addressing the triple-bottom-line (SEE).
What's next?

- Current Life Cycle Costing (LCC) includes:
 - Initial, and discounted main/rehab costs and remaining life costs
 - User costs
- We now have the tools to calculate GHG emissions and energy savings – PaLATE software
- MTO has developed a rating system to quantify and encourage pavement sustainability
- We are moving towards including an environmental component into LCC (Environmental benefits/credits).
- Insures that the best treatment is selected to benefit economic, social and environmental needs
What is it?

• A simple points based rating system designed to assess the “greenness” of pavements.

Our Goal:

• To provide an assessment of the sustainability of pavement designs and pavement construction for the purpose of promoting greener pavements.
Existing Green Rating Systems

• LEED® for Buildings
• University of Washington Green Roads
• NYSDOT GreenLITES Project Design Certification Program
• Alberta/Stantec Green Guide for Roads
• TAC Green Guide for Roads
GreenPave Categories

<table>
<thead>
<tr>
<th>Category</th>
<th>Goal</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pavement Design Technologies</td>
<td>To optimize sustainable designs. These include long life pavements, permeable pavements, noise mitigating pavements, and pavements that minimize the heat island effect.</td>
<td>9</td>
</tr>
<tr>
<td>Materials & Resources</td>
<td>To optimize the usage/reusage of recycled materials and to minimize material transportation distances.</td>
<td>11</td>
</tr>
<tr>
<td>Energy & Atmosphere</td>
<td>To minimize energy consumption and GHG emissions.</td>
<td>8</td>
</tr>
<tr>
<td>Innovation & Design Process</td>
<td>To recognize innovation and exemplary efforts made to foster sustainable pavement designs.</td>
<td>4</td>
</tr>
</tbody>
</table>

Maximum Total: 32
GreenPave Overview

Category

Pavement Technologies
9 Points

Materials & Resources
11 Points

Energy & Atmosphere
8 Points

Innovation & Design Process
4 Points

Sub-Category

Long-Life Pavements
3 Points

Recycled Content
5 Points

Reduce Energy Consumption
3 Points

Innovation in Design
2 Points

Permeable Pavements
2 Points

Undisturbed Pavement Structure
2 Points

GHG Emissions Reduction
3 Points

Exemplary Process
2 Points

Noise Mitigation
2 Points

Local Materials
2 Points

Pavement Smoothness
1 Point

Cool Pavements
2 Points

Construction Quality
2 Points

Pollution Reduction
1 Point

Blue font designates sections applicable only to constructed pavements
Summary

We will better achieve our sustainable pavement goals through:

- Building on current industry/agency partnerships in the development of improved specifications and design/construction procedures
- Encouraging continued innovation by the province's pavement preservation contractors
- Supporting dedicated research programs to advance the technology
- Increasing technology transfer to accelerate adoption of pavement preservation concepts
Conclusions

• Pavement preservation solutions satisfy the definition of sustainable pavements:
 • Pavement preservation programs begin with the concept that the treatments are proactive and they are applied when the pavement is still in relatively good condition
 • Thinner, faster, less disruptive, less contract administration, less GHG emissions and less energy consumption
 • With coordinated pavement preservation/rehabilitation programs the value of the road network will increase
Conclusions

• There is an increased focus on sustainable asset preservation, both at the state/provincial and municipal levels.

• Pavement preservation and rehabilitation treatments applied at the right time can significantly extend pavement life and result in improved network performance over time.

• Implementation of sustainable AM principles and performance measures are critical to addressing infrastructure investment requirements and environmental stewardship over the long-term.
Thank you!

Questions?

Tom Kazmierowski, P. Eng.
Manager,
Materials Engineering and Research Office
Tel: 416-235-3512
Fax. 416-235-3919
Email:
tom.kazmierowski@ontario.ca