Innovative Pavement Design on TH 610

Chris Kufner, MnDOT

19th Annual TERRA Pavement Conference February 12, 2015

Layout

TH 610

- 30+ years of construction
- Final Connection I-94 to I-35w
- Funded in November 2013
- August 2014 letting
- 3 miles of new freeway
- On new alignment
- \$80 ~ \$100 million estimate
- Be Innovative

Layout

Innovative Pavement Design

Oxymoron

Or

It's about time!

Project Delivery "old"

- Design Bid Build
- Formal Pavement Type Selection
- MnDOT Pavement Design

Design-Build Overview

Design-Bid-Build

100% Design by MnDOT

Bid

Construction by Contractor

Design-Build

30% Design by MnDOT

RFP

Design & Construction by Contractor

Design Build Specifications

- Design-Bid-Build Specs are prescriptive.
 - □ "Build a 4-lane freeway exactly along the plan alignment"
 - □ "Construct four ponds at the plan locations"
 - □ "Use soil mixing to stabilize the slope"
- Design-Build Specs are ideally performance-based.
 - □ "Build a road from A to B"
 - "Treat runoff according to Drainage standards"
 - □ "Stabilize the slope to a global stability factor of 1.25"
- MnDOT had always prescribed pavement designs, even in Design Build projects

Pavement Type Selection

- Formal Pavement Selection
 - □ Extensive LCCA very dependent on first cost using "old" data
 - □ Pavement Selection guidance expired 2011 Alternate Bid policy
- Alternate Bid in lieu of Formal Pavement Selection
 - Provide both Concrete and Bituminous designs to bid on
 - □ Perform LCCA to develop a Maintenance Factor
 - Allows for optimum timing of pavement type decision time of bid
 - MnDOT had done the pavement design for all Alt Bid projects
 - Tech Memo to consider Design Build on all Alternate Bid projects

2014 Management Challenge

Allow more pavement design innovation in Design-Build without decreasing quality.

Innovative Pavement Design

Conservative Engineer

+

Uncertainty (a.k.a. Innovation)

Certain Heart Attack

- "Pre-Accepted Element"
- Mechanism to approve/accept a design concept prior to bid
 - ☐ "Acceptance" versus "Equal or Better"
 - □ Two-way discussion at 1 on 1 meetings
- Previously used for risky bridge elements
- What about Pavement Design??
 - □ Contractor Pavement Design

Project Delivery "old"

- Design Bid Build
- Formal Pavement Type Selection
- MnDOT Pavement Design

Project Delivery - "new"

- Design Build
- Alternate Bid
- Contractor Pavement Design

Conservative Engineer:

Pavement PAE

- Contractor Pavement Design
 - Submit up to 2 pavement PAEs for acceptance
 - □ Decide on the one PAE when submitting Technical Proposal

- Design the following roadways
 - ☐ TH 610 Mainline
 - ☐ TH 610 Shoulders
 - ☐ TH 610 Ramps at I-94
 - □ TH 610 Ramps/Loops at Maple Grove Parkway
 - □ TH 610 Ramps at CSAH 81

PAE Particulars

- Must use MnDOT Pavement Design programs
 - ☐ FlexPave and RigidPave, or
 - □ MnPAVE-Flexible and MnPAVE-Rigid
 - Some inputs fixed: M_R, weather, traffic loading, etc.
 - However, Pavement Design Manual had not been released yet

Pavement Design Programs

Bituminous & Concrete Requirements

- SMA wearing course for top 2"
- PG xx-34 binder, air voids
- Mainline & shoulder minimum thickness
- 30" or 36" frost free
- Drainable base layer under concrete

A Conundrum...

Subgrade Soils

Challenges

- Non-Uniform Soils
 - ☐ Highly plastic material
- Shallow Water Table
- Organics
- R-Value?
- Frost Depth

Solutions/Requirements

- Final grade 4.5 ft above water table
- Excavate 4 ft minimum
 - □ "Provide uniform soils"
- Deeper for silty soils, which were numerous
- Minimum 12" Select Granular
- Subcut drains
- Submit material samples

PAE Results

- 3 DB teams with 2 Accepted pavement designs per team:
 - □ 5 Concrete, 1 Bituminous
- Similar to MnDOT designs, except:
 - ☐ FDR vs Class 6 (ATC)
 - □ Geocomposite vs OGAB (ATC)
 - □ Select Grading Material vs 4' Sand

ATC'S

ATC-03 Aggregate Base Materials

Description: A detailed description and schematic drawings of the configuration of the ATC or other appropriate descriptive information (including, if appropriate, product details [i.e., specifications, construction tolerances, special provisions] and a traffic operational analysis).

This ATC proposes to allow the use of full depth reclamation containing up to 100% asphalt millings in lieu of the specified Class 6 Aggregate Base on the project. The full depth reclamation (FDR) we are proposing would have a maximum top size of 3 inches.

- Approved as equal or better
- Estimated \$200k savings

ATC's

- Geocomposite Drainage Layer vs. OGAB
 - ☐ Estimated \$500k \$700k reduction in costs
 - □ Idea came from MnROAD!

PAEs Submitted

PAE #		Pavement Thickness		Shoulder Thickness	Agg Base Type	Agg Base Thickness	
A-1	Bituminous	7.0"	Bituminous	4"	FDR/RAP	8"	24"
A-2	Concrete	8.5"	Concrete	6"	Geocomposite, FDR/RAP	4"	12"
B-1	Concrete	8.5"	Concrete	6"	OGAB	4"	12"
B-2	Concrete	8.5"	Bituminous	6"	OGAB	4"	12"
C-1	Concrete	8.5"	Concrete	6"	OGAB	4"	12"
C-2	Concrete	8.5"	Bituminous	6"	OGAB	4"	12"

ALTERNATE BID RESULTS

Contractor	Technical Proposal Score	Bid	Maintenance Factor	Proposal Price	Adjusted Score (Price / Technical Score)			
Α	93.77	\$79,362,000	\$1,461,239	\$80,823,239	861,930.67			
, ,	00	ψ. 0,002,000	Ψ.,.σ.,=σσ	Ψοσ,σ2σ,2σσ	001,000101			
В	94.55	\$84,947,000	\$0	\$84,947,000	898,434.69			
0	02.02	¢ 00 705 000	\$ 0	\$90.72E.000	050 446 50			
С	93.93	\$80,725,000	\$0	\$80,725,000	859,416.59			
Apparent Best-Value = Lowest Adjusted Score								

Summary

- Pre-Accepted Element process encouraged innovation
- Added up-front effort is not unreasonable
- Cost savings were realized with the same or enhanced quality

This process (or something similar) will likely be used on other Design Build projects moving forward.

Questions?

Chris Kufner 651-366-5507

chris.kufner@state.mn.us

