Evolution of Whitetopping Design in Minnesota

16th Annual TERRA Pavement Conference

February 9th, 2012

Tom Burnham, P.E.

Minnesota Department of Transportation

Outline

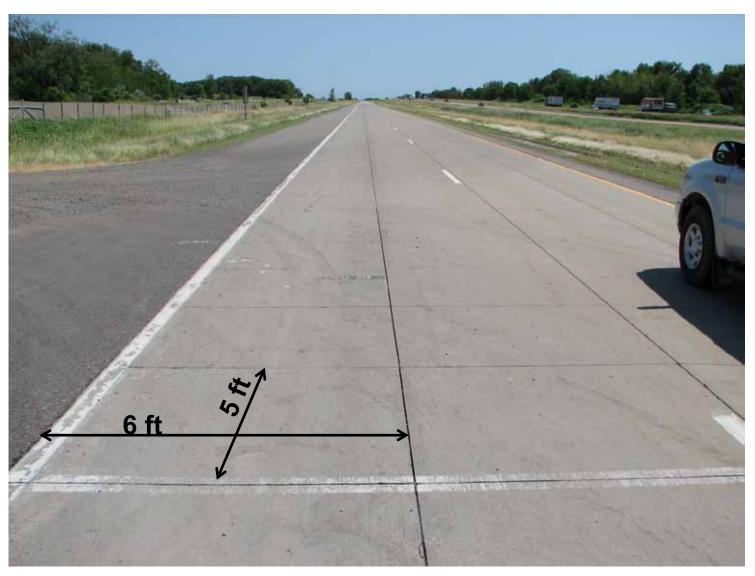
- Definitions
- History of whitetopping in Minnesota
- Lessons Learned
- TPF 5-165 project status

Whitetopping

PCC OLD HMA

- § A pavement rehabilitation technique
- § Concrete over distressed asphalt pavement
- § Asphalt milled to maintain grade and improve layer bonding
- § More often an "inlay" than an "overlay"
- § Typically concrete layer thicknesses range = 3" to 7.5"
- § Smaller panel sizes for thinner overlays

Whitetopping


PCC OLD HMA

Typical terms

- Ø Ultrathin Whitetopping (UTW) = 3" to 4.5" [Requires bond]
- Ø Thin Whitetopping (TWT) = 5" to 7.5" [Bond adds life]
- Ø Bonded Concrete Overlays of Asphalt Pavements (BCOA) = UTW
- Ø Unbonded Concrete Overlays of Asphalt Pavements (UBCOA) = TWT

MnROAD Cell 61

History in Minnesota

- § First "modern" project
 - Ø Olmsted County CSAH 10 (1982) [6" TWT]
- § First Mn/DOT project (included test sections)
 - TH30 Amboy (1993) [6" TWT]
- § Test Sections
 - MnROAD UTW & TWT (1997) [3", 4", 6"]
 - MnROAD TWT (2004) [4" to 5"]
 - Ø MnROAD TWT (2008) [6"]
- § First Mn/DOT "production" project
 - ø I-35 North Branch (2009) [6" TWT]

History in Minnesota

- § Recent Minnesota projects
 - © CSAH 7 Hutchinson (2009)
 - ø CSAH 46 Albert Lea (2009)
 - ø TH23 Marshall (2009/10)
 - ø CSAH 9 Harris (2010)
 - ø TH 56 West Concord (2010)
 - Ø Olmsted County CSAH 22 (2011)
 - a Anoka County CSAH 22 & CSAH 18 (2011)
 - McLeod County CSAH 2 & CSAH 25 (2011)

Many others currently under consideration as option in Alternate Bid projects

M

MnROAD Test Cells

Cell #	Type	PCC thickness (in)	HMA thickness (in)	Panel size (ft)	Sealed joints	Fiber reinforcement type	Year Start-End
93	UTW	4	9	4 x 4	Y	Polypropylene	1997-2004
94	UTW	3	10	4 x 4	Y	Polypropylene	1997-2004
95	UTW	3	10	5 x 6	Y	Polyolefin	1997-2004
96	TWT	6	7	5 x 6	Y	Polypropylene	1997-present
97	TWT	6	7	10 x 12	Y	Polypropylene	1997-2010
92	TWT	6	7	10 x 12 (dowels)	Y	Polypropylene	1997-2010
60	TWT	5	7	5 x 6	Y	None	2004-present
61	TWT	5	7	5 x 6	N	None	2004-present
62	TWT	4	8	5 x 6	Y	None	2004-present
63	TWT	4	8	5 x 6	N	None	2004-present
114-914	TWT	6	Var. (5-8)	6 x 6, 6Wx12L w/plate dowels	N	None	2008-present

Mainline = I-94 traffic

Lessons Learned

- § Keep wheel loads away from corners in ultrathin (≤ 4" thick) whitetopping
- § Non-structural fibers do not prevent or hold cracks together well under heavy traffic

Lessons Learned

- § Large panels (10'Lx12'W) can develop joint faulting
- § Longitudinal cracking is a prominent distress in thin (4"-6") whitetopping*

*Now thought to be for UTW also

19

Lessons Learned

Sections with sealed/filled joints perform better!

Panel Cracking (Fall 2010)

Unsealed Joints

4" PCC = (55%) cracked panels

5" PCC = 8% cracked panels

Sealed Joints

4" PCC = 11% cracked panels

5" PCC = 11% cracked panels

Cell 61 (2010)

5 inch PCC with unsealed joints

Unbonded, with some HMA deterioration

Lessons Learned

- § 6"x5'Lx6'W can withstand over 10 million ESALs
- § Minnesota's climate can cause reflective cracking

I-35 North Branch

Improved Design Procedure

- § Goal= Mechanistic-Empirical design procedure
 - Want to better predict long term performance and life cycle costs
- § Pooled Fund Project TPF 5-165: Development of Design Guide for Thin and Ultrathin Concrete Overlays of Existing Asphalt Pavements

Participating states:

Minnesota, Mississippi, Missouri, New York, Pennsylvania, Texas

Project began in Fall 2008. Completion Fall 2012.

Existing Design Procedures

Task 2 of TPF 5-165 project

- § Colorado DOT
 - More mechanistic than empirical
- § New Jersey DOT
 - Relies on engineer's judgment of layer bonding
- § PCA (Portland Cement Association)
 - Temperature dependency of HMA stiffness and contribution of fibers not considered
- § ACPA/ICT (Illinois Center for Transportation)
 - More empirical
 - HMA stiffness and fatigue not considered

Existing Design Procedures

§ AASHTO 1993

- Considers HMA as (gravel) base
- Does not allow for smaller thicknesses or panel sizes

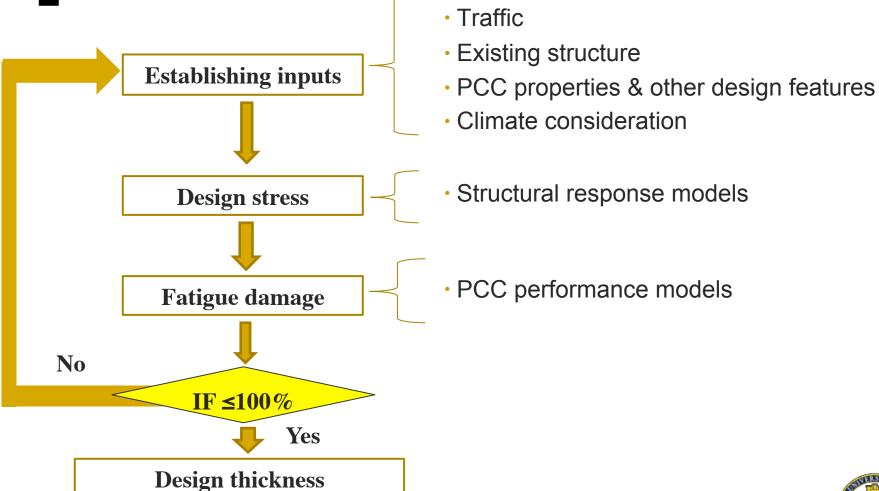
§ MEPDG (DARWin ME)

- Analysis limited to panel sizes ≥ 10 feet
- Refers to ACPA design method for thin whitetopping

§ Mn/DOT (Updated April 2011)

 "Concrete pavement thickness is calculated using current Mn/ DOT concrete thickness procedures with an adjusted R-Value, developed from bituminous design procedures, to account for the support of the existing pavement."

TPF 5-165 Design Procedure


- § P.I. Julie Vandenbossche, University of Pittsburgh
- § Design breakthroughs
 - Developed using long term field performance data from existing projects (throughout U.S.) and test facilities like MnROAD, FHWA (Turner Fairbanks), and Illinois ICT
 - Time and temperature dependent HMA stiffness
 - Separate fatigue models for thin and ultrathin whitetopping
 - Accommodates smaller panel sizes
 - Guidelines for pre-overlay repairs
 - Time dependent layer bonding (future version)
 - Design inputs for <u>structural</u> fibers (future version)

§ Stand alone design spreadsheet

Designed to be easily adopted into DARWin ME in future

2. Design philosophy

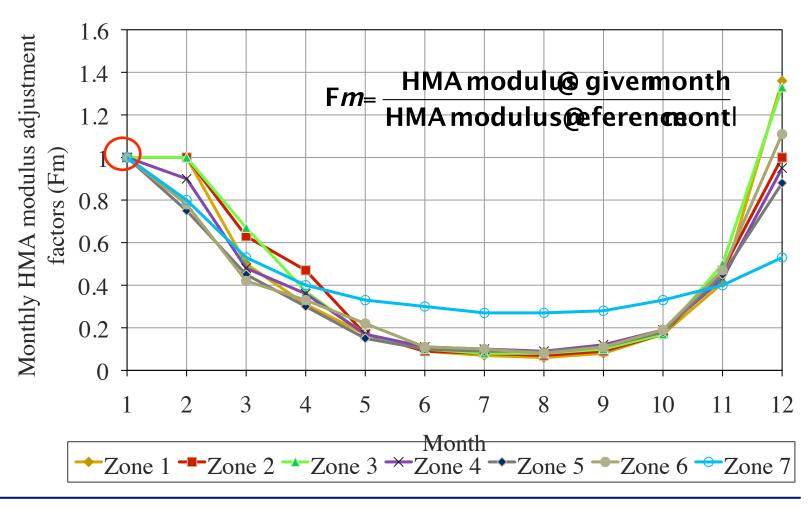
Factors affecting HMA temp.


HMA temperature is a function of

- 1. Pavement structure
- 2. Sunshine
- 3. Humidity
- 4. Wind speed
- 5. Ambient temperature

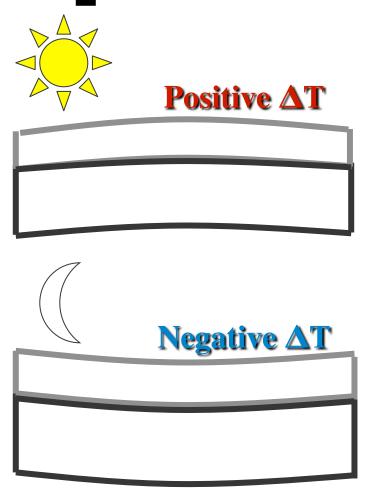
Seven zones based on AMDAT

AMDAT = Annual mean daily average temp.

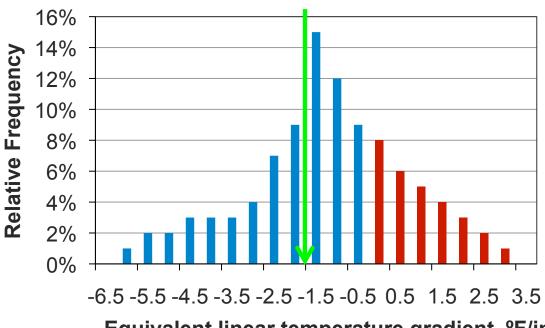


Region ID	Color code	AMDAT(%F)
1		32.0-45.0
2		45.1-50.0
3		50.1-55.0
4		55.1-60.0
5		60.1-65.0
6		65.1-70.0
7		>70.0

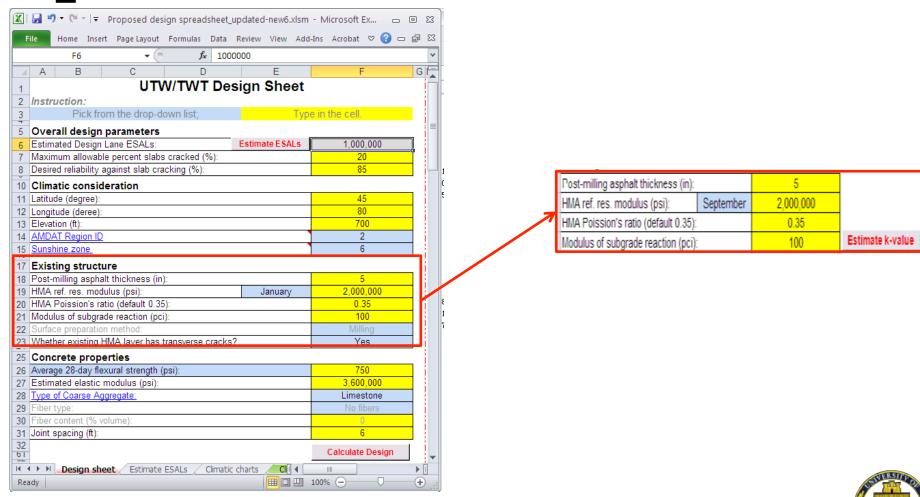
(http://cdo.ncdc.noaa.gov/climaps/temp0313.pdf, accessed on January, 2010).



Monthly HMA modulus adjustment factor

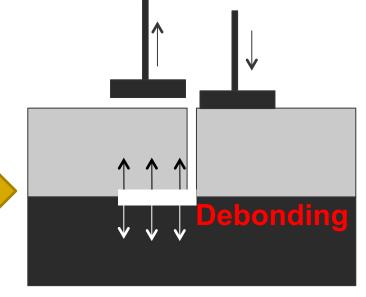


Climate: Effective temp. gradient


Design input required: Effective temp. gradient (ETG)

Equivalent linear temperature gradient, °F/in

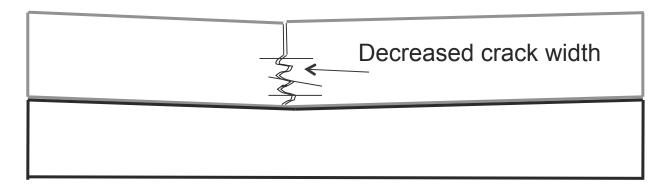
Existing structure in spreadsheet



Accelerated load testing

Fatigue of the interface due to:

- Ø Repetitive loading
- Ø Moisture
- **Ø** Temperature
- Ø Surface preparation



Load transfer

Contribution of Structural Fibers?

Potentially increase shear transfer at joints/cracks

TPF 5-165 Timeline

- § March 2012 : First version of design procedure spreadsheet delivered to TAP for review.
- § July 2012: Task 3 bond characterization and fiber contribution experiments to be completed.
- § August 2012: Draft final report completed.
- § December 2012: If approved by TAP, first release of design procedure, user manual, and final report.
- § Spring 2012: Work on Phase "1B?" proposal to incorporate findings from Task 3 and other recommended updates into next version of design procedure. Requires additional time/funds.

TPF 5-165 Implementation

- § Expected to be implemented immediately by most participating states
- § Will complement ISU CP Tech Center's publications:
 - "Guide to Concrete Overlays"
 - "Design of Concrete Overlays Using Existing Methodologies"

Acknowledgements

- Julie Vandenbossche Univ of Pittsburgh (& Mn/DOT alumni)
- Julie's students over the years
- States participating in TPF 5-165

Questions?

