
1

User's Guide for MN/Model

Phase 4 S-Plus Software

Prepared by

Gary W. Oehlert and Brian Shea

July 2007

2

Table of Contents

1. Conventions 3
2. Organization of Files 3
3. Software Architecture 4
4. Work Flow 5
5. Modeling Steps 5

5.1 S-Plus Script Files 6
5.2 Read Data into S-Plus 7
5.3 Subset Choice 10
5.4 Variable Summaries 10
5.5 Fitting a Model 15
5.6 Fit Summaries 20
5.7 Export to GIS 38
5.8 Making Predictions 40

6. Appendix 41
6.1 Reading data 41
6.2 Summarizing variables 42
6.3 Fitting models 43
6.4 Summarizing model fits 46
6.5 Making Predictions 48

3

1. Conventions
This manual is intended for use with MN/Model Phase 4 S-Plus
functions, dated May 2007. It describes some of the preparation
necessary to use the S-Plus functions and the functions themselves.
An outline of model evaluation and an example are provided.
Conventions are that file names are shown in red, S-Plus output is
shown in green monospaced font, and S-Plus commands and variable
names are shown in blue monospaced font.

2. Organization of files

There are several kinds of files.
A. There are MN/Model data files. These are plain text (ASCII) files
that are usually created by sampling from the GIS database. A text
data file has one column for each variable and one row for each
location. There is an additional first row that contains variable names.
Variable names may contain periods but should not contain spaces or
other punctuation. Data values in the file should be separated by
white space, not commas.
MN/Model data files should contain variables named Phase3 and
Phase4. These variables code the nature of each location in the data
set. For Phase3 the codes are: 0 not used, 1 site centroid, 2 site
secondary point, 5 negative survey, 7 site used as survey, 8 random
point. For Phase4 the codes are: 0 not used, 1 site centroid, 2 site
secondary point, 3 line site, 4 polygon site, 5 negative survey, 6 DOT
survey, 7 site used as survey, 8 random point.
MN/Model data files may optionally contain variables named X and Y,
which indicate the Easting and Northing of the locations in UTM
coordinates. If these variables are present, they will be used to
construct the subsets used in spatial cross-validation of the models.
All MN/Model data files are named REGION_DAT.TXT, where REGION
is replaced with an abbreviation for the region name, for example,
BGWD_DAT.TXT would be Big Woods. The S-Plus functions are
expecting the _DAT.TXT to be upper case, but some operating systems
are case insensitive.
B. There are files containing S-Plus scripts. At present, there are
seven files with names phase4.core.S.txt, phase4.bmalogit.S.txt,
phase4.tree.S.txt, phase4.bagging.S.txt, phase4.double.S.txt,
phase4.bumping.S.txt, and phase4.naive.S.txt. These are plain text
(ASCII) files which contain definitions of S-Plus functions and a table
associating informative labels with variable names.

4

C. There are output/result files. These files are organized into
directories named according to the region and a user-specified label.
For example, a Phase 4 site model for Big Woods could have its output
files placed in the directory BGWD.mod4.site.summaries , while the
analogous survey model could use the directory
BGWD.mod4.surv.summaries.
This directory will contain text files as well as plot files in pdf format.
Some of these files summarize the variables in the data set, and
others summarize the results of model fits. The contents and
interpretation of the files will be discussed below.
D. There are internal S-Plus files that contain S-Plus variables. You
will not ordinarily work directly with these files, but rather access them
through S-Plus. S-Plus collects its files/variables into a data directory.
Given the number of S-Plus files/variables that will accumulate, you
may find it helpful to organize multiple S-Plus data directories.

3. Software Architecture

Phase 4 MN/Model S-Plus functions permit the use of seven different
prediction methods: logistic regression with BIC variable selection,
logistic regression with Bayesian model averaging, naïve Bayesian
classification, tree-structured classification (recursive partitioning),
bagging (bagged trees), double bagging, and bumping (bumped
trees). See Chapter 3 of "Statistical Methods for MN/Model Phase IV"
for more details. Users of the Phase 4 MN/Model S-Plus functions do
not interact directly with the different prediction methods. Instead,
there are four “front end” functions that users call. Two of these do
not depend on the prediction method used, and the other two have an
argument that indicates which prediction method to use. Thus, for
example, to fit once using logistic regression with BIC model selection
and once using bagging, the front end function is called twice, once
with the method argument set to “biclogit” and once with it set to
“bagging”.

The file phase4.core.S.txt contains the S-Plus functions that the user
interacts with directly. The other S-Plus files contain functions that are
used “behind the curtain” and are not called directly by the user. The
discussion describes the functions called directly by the user, and not
the method-specific functions that are called internally. (The method-
specific function files contain comments that document the arguments
should their direct use be required for some reason.)

5

4. Work flow

Before discussing specific S-Plus functions that will be used in
MN/Model, it will be helpful to discuss overall work flow.

Modeling begins by selecting a directory in which to work. You may
use a separate directory for each region, or you may put multiple
regions in a single directory.

You should copy into this directory the S-Plus script files and the
MN/Model data file(s). If you wish to use a separate S-Plus data
directory for this region, you should create one here from within S-
Plus.

Within S-Plus, work follows this pattern.

1. Copy the MN/Model S-Plus script files into the directory where you
wish to work, and then read the script files into S-Plus. This need only
be done once for each S-Plus data directory.

2. Read the data for the region into S-Plus.

3. Choose a subset of the data to work on (e.g., centroid site models,
all site models, survey models, etc).

4. (Optional) Compute summary statistics and descriptive graphics for
the variables in the data set and the subset selected.

5. Fit one or more prediction models using the modeling choices
available.

6. Summarize the fit of the model to determine its accuracy.

7. Export the prediction model in a form suitable for use in GIS (tree
or bagging).

8. (Optional) Make predictions from within S-Plus.

6

5. Modeling Steps

We now go through the eight modeling steps.

5.1 S-Plus Script Files

Your current directory should contain the files: phase4.core.S.txt,
phase4.bmalogit.S.txt, phase4.tree.S.txt, phase4.bagging.S.txt,
phase4.double.S.txt, phase4.bumping.S.txt, and phase4.naive.S.txt.

Start S-Plus. At the S-Plus command prompt, enter the following
commands:
source(“phase4.core.S.txt”)
source(“phase4.tree.S.txt”)
source(“phase4.bagging.S.txt”)
source(“phase4.double.S.txt”)
source(“phase4.bumping.S.txt”)
source(“phase4.naive.S.txt”)
source(“phase4.bmalogit.S.txt”)

These commands read the S-Plus script files into S-Plus itself and
make them available for use. You need do this only once for each S-
Plus data directory that you use. However, if you change any of the
script files, you will need to re-execute the source() command to get
the revised script into S-Plus.

These six files contain definitions of many S-Plus functions. You will
only use a handful of them directly, as most of them are called
internally and are not used by you at the command line.

As mentioned above, you need to re-execute the source() command
when a script file changes. The principal reason why this should
happen is that you want to add a new variable description. The file
phase4.core.S.txt contains the definition of an object named
mnmodel.var.names.and.labels. This is a matrix of variable names
and longer variable descriptions. If your dataset contains a new
variable not in this list, you need to add a new variable name and
description. To do this, search in the file phase4.core.S.txt to find the
line beginning mnmodel.var.names.and.labels <- matrix(c(.
Below this you will find name and description pairs like
“X”,
 “Easting”,

7

Simply insert the new name and description into the list, for example
“X”,
 “Easting”,
”newvar”,
 “Nice long description”,
As shown here, the variable name and description should be enclosed
in quotes and separated by commas. It is not necessary to have the
short name/description pairs entered in any particular order, although
you may find it convenient to do so.

5.2 Read Data into S-Plus

Data are read into S-Plus using the function mnmodel.readdata().
The required argument for this function is a character string giving the
abbreviation for a region, so a typical usage would be
mnmodel.readdata(“BGWD”)
(“BGWD” for Big Woods). The function expects that there is a file in the
current directory with the name REGIONABBR_DAT.TXT, where the
region abbreviation replaces REGIONABBR in the name ---
BGWD_DAT.TXT in the example.

This function also has two optional arguments: rootvars and cmult.
If rootvars is NULL (the default), then a standard set of predictors will
be transformed by taking square roots (more below). This can be very
helpful for the logistic regression based methods biclogit and
bmalogit, but is of no advantage for tree based methods such as
tree, bagging, and bumping. Alternatively, you may specify rootvars
as a vector of character strings giving the names of variables that you
wish to have transformed, for example,
mnmodel.readdata(“BGWD”,rootvars=c(”Ded.blk1”,”Ded.cors”))
In this example, only variables Ded.blk1 and Ded.cors would be
square rooted. If you wish to take square roots of no variables, set
rootvars equal to some nonexistent variable name:
mnmodel.readdata(“BGWD”,rootvars=”no.such.variable”)

If possible, mnmodel.readdata() will form spatial clusters for use in
spatial cross-validation. If there is a variable named Clusters in the
data set, that variable will be used to indicate spatial cluster
membership. Those clusters will be randomly divided into 10 groups
for spatial cross-validation. If Clusters is not provided in the data,
mnmodel.readdata() will construct spatial clusters if X and Y (the UTM
easting and northing) are variables in the data set. The third

8

parameter cmult controls the number of clusters that will be created;
there will be 10*cmult clusters formed, which are then grouped into
10 groups for cross-validation. By default, cmult is 40.

The principal purpose of mnmodel.readdata() is to create three S-
Plus objects (variables): REGIONABBR.data.all, REGIONABBR.subsets,
and REGIONABBR.transformed.vars. The first of these is an S-Plus
data frame that contains all of the data that we just read in, plus any
new variables formed by transformation (see below). The second of
these is also an S-Plus data frame, but this frame contains variables
that indicate the membership of each location of the data in different
data types (see below). The last variable is an S-Plus character vector
giving the names of the variables that were transformed (or NULL if no
variables were transformed).

In addition to creating the side-effect variables, this function also
prints some summary information about the data. For example:

> mnmodel.readdata("BGWD4NEW")
Variables in BGWD4NEW.data.all are:
 [1] "Id" "X" "Y" "Abl" "Alluv" "Blg"
 [7] "Ht90" "Rdedblk1" "Rdedcors" "Rdedpriv" "Rdisasbi" "Rdiscon"
[13] "Rdishdw" "Rdislkse" "Rdismin" "Rdismix" "Rdisok" "Rdispibf"
[19] "Rdispr" "Rdisrb" "Rdissug" "Rel90a" "Rgh90" "Rlk1size"
[25] "Rlkinout" "Rlkpinou" "Rmajarea" "Rplk1siz" "Rwtpinou" "Slp"
[31] "Soilcat" "Terr" "Site.type" "Phase3" "Phase4"

Variables in BGWD4NEW.subsets are:
 [1] "p3.cent" "p3.sec" "p3.neg" "p3.aux"
 [5] "p4.cent" "p4.sec" "p4.line" "p4.poly"
 [9] "p4.surv" "p4.aux" "all.rand" "no.rand"
[13] "all.locations" "all3.sites" "all4.sites" "all3.survey"
[17] "all4.survey" "mod3.cent" "mod3.site" "mod3.surv"
[21] "mod4.cent" "mod4.site" "mod4.surv" "CVsets"
[25] "SCVsets"

Variables in BGWD4NEW.transformed.vars are:
NULL

Total number of locations: 7626

 Number of Phase 4 centroid sites: 711
 Number of Phase 4 secondary sites: 111
 Number of Phase 4 line sites: 0
 Number of Phase 4 polygon sites: 40
Total number of Phase 4 sites: 862

 Number of Phase 3 negative surveys: 1273
 Number of Phase 4 DOT surveys: 3707

9

 Number of Phase 4 sites as surveys: 169
Total number of Phase 4 non-site survey locations: 5149

Total number of random: 1615

Total number for Phase 4 site-centroid models: 2326
Total number for Phase 4 site models: 2477
Total number for Phase 4 survey models: 7626

Subsetting details. The principal subsetting variables available are:
mod3.cent, mod3.site, mod3.surv, mod4.cent, mod4.site,
mod4.surv. These are logical (TRUE/FALSE) variables wherein TRUE
indicates that the location is a member of the subset. The “mod”
indicates subsets suitable for modeling (that is, they contain both the
locations of interest and random locations). The “3” or “4” indicates
Phase 3 or Phase 4 archaeological site locations. The suffixes “cent”,
“site”, and “surv” indicate subsets for site centroids, centroids plus site
secondary points, or all surveyed places.

Somewhat parallel to these are all.rand, no.rand, all3.sites,
all4.sites, all3.survey, and all4.survey. These subsets indicate
the random locations, the non-random locations, and the locations of
interest (no random locations) for Phase 3 or 4, all site locations or all
survey locations. Finally, p3.cent, p3.sec, p3.neg, p3.aux,
p4.cent, p4.sec, p4.line, p4.poly, p4.surv, and p4.aux
indicate specific site categories: Phase 3 site centroids, secondary
points for Phase 3 sites, Phase 3 negative survey points, and Phase 3
sites used as surveys, and Phase 4 site centroids, Phase 4 site
secondary points, linear Phase 4 sites, polygon Phase 4 sites, Phase 3
and DOT negative surveys, and Phase 4 sites used as surveys.

In addition to the logical subsetting variables, there are three grouping
variables: Cvsets, SCVsets and clusters. The first two contain
integers from 1 through 10 that indicate the groupings that will be
used for cross-validation and spatial cross-validation respectively. The
last contains integers from 1 through the number of clusters giving
cluster membership used during spatial cross-validation. These are not
ordinarily accessed by the user.

Transformation details. Some prediction schemes (in particular,
those based on logistic regression) may work poorly when the
predictor variables are skewed. Many of the landscape-based
predictors used in MN/Model are skewed to the right, so
mnmodel.readdata() automatically tries to make some variables less

10

skewed by taking their square roots and adding the square-rooted
variables to the predictor set. By default, mnmodel.readdata() will
take the square roots of variables named D.dra30, Ded.blk1,
Dedbwet1, Ded.cors, Ded.or30, Ded.priv, Ded.swm, Dint,
Dis.asbi, Dis.br, Dis.bw, Dis.con, Dis.hdw, Dislksed, Dis.mix,
Dis.ok, Dis.pibf, Dis.pr, Dis.rb, Lkinout, Lk1.size, Lkpinout,
Plk1size, Riv.conf, Wtpinout, Dis.pap, Dis.sug, Dis.maj,
Dis.min, Maj.area, and Min.area.

All newly square-rooted variables are named sqrt.originalname, for
example, sqrt.Plk1size or sqrt.Dis.pap.

Some predictors are directions in compass degrees. We assume that a
name beginning with Dir. is a direction variable; for example, Dir.ww
is the direction to nearest wetland or water. All direction variables are
replaced by their sines and cosines, and the new variables are named
as the old variable with sin. or cos. prepended; for example
sin.Dir.ww and cos.Dir.ww . Some of the prediction techniques
could adapt to compass degrees, but most will work better with these
transformed variables.

5.3 Subset Choice Modeling is done either to produce a model for
surveys or for sites. The standard choices for subsetting variables are
mod3.cent, mod3.site, mod3.surv, mod4.cent, mod4.site,
mod4.surv. The “3” or “4” indicates Phase 3 or Phase 4 archaeological
site and/or survey location data. The suffixes “cent”, “site”, and “surv”
indicate subsets for site centroids, all cells occupied by a site, or all
surveyed places. Thus, when functions below call for a subset, the user
will nearly always use one of these six variables.

Nearly always is not always, and users may from time to time wish to
use a subset a bit off of the beaten track. For example, suppose that
a user wishes to model DOT survey points (only) against random
points. To do this, the user can combine subsetting variables
described in the preceding section using the logical “or” operation in S-
Plus, which is denoted by the operator | (the vertical bar). To form a
subset consisting of locations that are either DOT survey points
(p4.surv) or random points (all.rand), the subset can be chosen via
p4.surv | all.rand . Of course, more than two variables can be
OR-ed together to combine more than two groups. For example,
p4.cent | p4.surv | all.rand would produce a subset consisting

11

of all locations that are either Phase 4 site centroids, or Phase 4 DOT
survey points, or random points. For more complex combinations, S-
Plus has a full set of Boolean operations including ! for logical NOT
(inverse) and & for logical AND.

5.4 Variable Summaries

After reading data into S-Plus, you may choose to make some simple
summaries of the variables. The summarization process looks at the
data separately for sites, negative surveys, and random points, so it is
important that you choose a survey-subset for this step,
because only the survey subsets have data from all three types.
(Should the subset you choose not include locations of all three types,
the function will stop and print an informative message.)

The command to produce these summaries is
mnmodel.var.summaries(), and it takes three arguments. The first
argument is a region abbreviation, such as “BGWD”. The second
argument is a subsetting variable, such as mod4.surv . (A subsetting
expression can be used, for example, by OR-ing two or more
subsetting variables.) The last argument is a character string label
used in constructing the name of the directory where the output
should be stored. When using a single subsetting variable, it may be
simplest just to label the results with the subsetting variable. Thus a
typical usage is

mnmodel.var.summaries(“BGWD”,mod4.surv,”mod4.surv”)

and a more unusual usage might be

mnmodel.var.summaries(“BGWD”,p4.cent | p4.surv | all.rand,
”centroids.and.DOTneg”)

The output from this command is stored in a directory named
REGIONABBR.label.summaries, where the region argument replaces
REGIONABBR and the label argument replaces label. In our examples,
we get directories names BGWD.mod4.surv.summaries and
BGWD.centroids.and.DOTneg.summaries. If this directory does not
exist, the S-Plus function creates it.

mnmodel.var.summaries() produces summaries for all data in the
region and subset, except that it first eliminates any previously

12

transformed variables and any variables with names X, Y, Easting,
Northing, Site.type, Phase3, Phase4, Id, and Centroid (along with
various capitalizations of those names).

The first summary is descriptive statistics. All descriptive statistics are
placed in a file named variable.summary.txt in the (previously created)
output directory. The output to this file begins with means and
standard deviations of the variables, reported separately for sites,
negative survey points, and random points. For example, output for
the first two variables is:

Means and standard deviations of variables:

, , Abl
 Sites Negative Surveys Random Points
mean 943.43155 927.56963 987.37895
 sd 91.55414 98.68696 76.14381

, , Alluv
 Sites Negative Surveys Random Points
mean 0.07656613 0.09263935 0.0247678
 sd 0.26605614 0.28995453 0.1554649

After means and variances come two-sample Wilcoxon rank-sum tests
for each variable comparing site data to random location data, and
negative survey data to random location data. The two-sample
Wilcoxon test is a nonparametric test of location (center or median).
That is, it asks whether there is evidence that two groups (that are
otherwise comparable) are centered at different values, and the test
does not rely on the shape of the underlying group distributions. Small
p-values indicate that the groups have different centers. For both
comparisons, the Wilcoxon statistic and the p-value are reported. For
example, output from the first two variables is:

Wilcoxon tests of variables:

, , Abl
 Sites vs Random Surveys vs Random
Wilcoxon -1.201355e+01 -2.267643e+01
 p-value 3.016131e-33 7.655441e-114

, , Alluv
 Sites vs Random Surveys vs Random
Wilcoxon 6.066053e+00 8.956191e+00
 p-value 1.310920e-09 3.360875e-19

Finally, the Spearman rank correlation matrix of the variables is
printed. The Spearman rank correlation coefficient indicates how two
variables vary together: positive values indicate that they vary

13

directly; negative values indicate that they vary inversely. The further
the coefficient is from zero, the stronger the relationship. The rank
correlation coefficient is bounded between one and negative one. For
example, output for five variables is (most data sets will have more
than five variables, so there will be more than five rows and columns):

Spearman rank correlations:
 Abl Alluv Blg Ht90 Rdedblk1
 Abl 1.000 -0.440 0.005 0.017 -0.369
 Alluv -0.440 1.000 0.070 -0.016 0.356
 Blg 0.005 0.070 1.000 -0.022 0.027
 Ht90 0.017 -0.016 -0.022 1.000 -0.033
Rdedblk1 -0.369 0.356 0.027 -0.033 1.000

After summary statistics, mnmodel.var.summaries() produces a PDF
graphics file for each variable that is a stack of three histograms
showing the distribution of the variable separately for sites, negative
survey points, and random locations. The file is named var.1.pdf,
where “var” is the variable name. For example, Figure 1 shows
Abl.1.pdf for one region (elevation, 20 histogram classes).

14

Figure 1. Sample histograms for elevation separately for sites,
negative surveys, and random locations.

15

5.5 Fitting a Model

Now we get to the meat of the modeling exercise, and the user has
several potential directions to go. The function that does model fitting
is mnmodel.fit(). This function has eight arguments, but we usually
only use four of them and let the others take their default values. We
begin with the four standard arguments and discuss the uncommon
arguments later.

The first argument is a region abbreviation, such as “BGWD”. The
second argument is a subsetting variable, such as mod4.surv . (A
subsetting expression can be used, for example, by OR-ing two or
more subsetting variables.) The third argument is a character string
label used in constructing the name of the S-Plus variable where the
results should be stored. These first three arguments are exactly
analogous to the first three arguments of mnmodel.var.summaries().

The fourth argument is a character string indicating which modeling
technique to use. The available choices are “biclogit”,
“bmalogit”, “naive”, “tree”, “bumping”, “bagging”, and
“double”.

We recommend using “bagging”.

The method used in Phase 3 of Mn/Model is essentially “biclogit”.
Also, “biclogit” and “bmalogit” are equivalent during the fitting
stage, so you only need to do one of them. Details of how these
methods work are given in Chapter 3 of "Statistical Methods for
MN/Model Phase 4".

A typical use of mnmodel.fit() is thus

mnmodel.fit(“BGWD”,mod4.site,”mod4.site”,”bagging”)

which would use the bagging method on the Big Woods data to fit a
model to all Phase 4 site data. Remember: you must have read the
region's data into S-Plus before attempting to fit a model.

The mnmodel.fit() function can be quite slow, depending on the
method (“biclogit” and “bmalogit” are the slowest; “tree” is the
fastest). However, it is doing a lot of work during that time. First,

16

mnmodel.fit() prints out some notification about the variables used
and the numbers of cases being used, for example,

> mnmodel.fit("BGWD",mod4.site,"mod4.site","tree")
Constructing BGWD.mod4.site.results

Available predictors:
 [1] "Id" "X" "Y" "Abl" "Alluv" "Blg"
 [7] "Ht90" "Rdedblk1" "Rdedcors" "Rdedpriv" "Rdisasbi" "Rdiscon"
[13] "Rdishdw" "Rdislkse" "Rdismin" "Rdismix" "Rdisok" "Rdispibf"
[19] "Rdispr" "Rdisrb" "Rdissug" "Rel90a" "Rgh90" "Rlk1size"
[25] "Rlkinout" "Rlkpinou" "Rmajarea" "Rplk1siz" "Rwtpinou" "Slp"
[31] "Soilcat" "Terr" "Site.type" "Phase3" "Phase4"

Total number of locations: 7626
Total number of sites: 862
Total number of survey points: 0
Total number of non-random: 862
Total number of random: 1615
Eliminating 'Id', 'Easting', 'Northing', 'Phase3', and 'Phase4' from predictors

Eliminating previously transformed variables from predictors:
NULL

Eliminating collinear and/or nearly constant variables from predictors:
[1] "Rdismix"

Fitting with these variables:
 [1] "Abl" "Alluv" "Blg" "Ht90" "Rdedblk1" "Rdedcors"
 [7] "Rdedpriv" "Rdisasbi" "Rdiscon" "Rdishdw" "Rdislkse" "Rdismin"
[13] "Rdisok" "Rdispibf" "Rdispr" "Rdisrb" "Rdissug" "Rel90a"
[19] "Rgh90" "Rlk1size" "Rlkinout" "Rlkpinou" "Rmajarea" "Rplk1siz"
[25] "Rwtpinou" "Slp" "Soilcat" "Terr"

After the notifications, it gets down to the business of fitting. First, it
fits the model to the full data set; this is the “base” model. Then it
does 10-fold cross-validation. In this process, the data are randomly
divided into 10 subsets (this was done when the subsetting variable
CVsets was formed for this region). Then we fit the model using only
9 of the 10 groups, and use the model fit from 90% of the data to
predict on the one group held back. Next we cycle through the
remaining 9 groups, hold each one out, fitting the model based on the
other 9 groups, and predicting to the held out group. When finished,
we have constructed 10 different prediction models beyond the base
model and a set of predictions that were made without using the data
being predicted.

17

If the variable SCVsets is available in the subsets for this region, we
then do spatial cross-validation. This is similar to cross-validation
except that the 10 groups consist of small spatial clusters instead of
individual locations.

While all this fitting is going on, mnmodel.fit() will print out some
progress information. For example, in the following output, a tree
model has been fit, cross-validation has been completed, and we are
now working on the sixth spatial cross-validation fit

Doing tree ... done.
Cross-validating, please be patient: 1 2 3 4 5 6 7 8 9 10 done.
Spatially cross-validating, please be patient: 1 2 3 4 5 6

When the fitting is done, mnmodel.fit() creates an S-Plus object
(variable) named REGIONABBR.label.method.results. In the
example above, this would be BGWD.mod4.site.tree.results. The S-
Plus variable is an S-Plus list with seven named members. The first
member is always a method-specific member containing the fitting
results (variables, coefficients, etc) for the fitting method that was
used. Methods “biclogit” and “bmalogit” both use a member
named bmaresults; methods “tree” and “bumping” both use a
member named treeresults; methods “bagging” and “naive” use
members named baggingresults and naiveresults, respectively.
Details of these members are rather arcane and will not be detailed
here. As we are recommending “bagging”, we simply state that
baggingresults is an S-Plus list object (usually with 11 elements),
with each element of the list being an S-Plus tree object. Details of
the tree object are documented within S-Plus.

The other six members of the list are named preds, cvpreds,
scvpreds, cvsets, scvsets, nonrandzero, and groups. The
members cvsets and scvsets correspond to the variables CVsets and
SCVsets in the subsetting data frame. The groups member is 0/1 with
1 indicating a target location (typically a site or survey location), and 0
indicating a non-target location (usually a random location); this is the
response in the fitting problem. The preds member is the vector of
predicted values using the full model. The cvpreds member is a
matrix with 11 columns. The first 10 columns are the predictions (for
all locations in the subset) using the 10 models derived during cross-
validation. The last column is the cross-validated predictions
combining the “out of sample” predictions in the first 10 columns. The

18

scvpreds member is analogous but is for spatial cross-validation. The
nonrandzero member is a logical vector indicating nonrandom
locations that are used as non-target locations.

The predictions (and cross-validated and spatial cross-validated
predictions) are numbers, not categories, with larger values
corresponding to locations less likely to be random points. The user
must choose a threshold, and then declare locations with predictions
above that threshold to be sites. Guidance on choosing the threshold
is given below in the discussion of the mnmodel.fit.summaries()
function.

Additional arguments. There are four additional arguments to
mnmodel.fit(): site.prob, use.sampling.wts, verbose, and
response. When you fit without specifying site.prob, you get
predicted values that are larger when the location is more likely to be
a site and smaller otherwise, but the actual predicted value cannot be
interpreted. If you know the a priori probability that a location is a
site, you may specify that probability using site.prob, for example,
by including site.prob=.01 in the argument list for mnmodel.fit().
Specifying the a priori probability reweights the points during fitting so
that the total fraction of weight given to sites is equal to the a priori
probability. In that case, the model predictions can be interpreted as
the probability of a location being a site. By default, the proportions of
sites and non-sites in the sample are assumed to be the same as those
in the population.

Using the argument verbose=FALSE will suppress the printed output.

The default model-fitting behavior is to assume that the random points
in the subset are the non-target points and all other points in the
subset are the target points. This is usually what we want to do, but
may not always be what we want to do. For example, we might wish
to fit a model with all Phase 4 sites as the targets, but use both the
random points and the Phase 4 DOT survey points as the non-targets.
Under the default behavior, the Phase 4 DOT points, being nonrandom,
would be used as targets. To change this behavior, we must explicitly
specify the response by setting the response argument. The
response should be a logical vector where TRUE indicates a target
location and FALSE indicates a non-target location. Continuing the
example above, we would choose the subset of data to include in our

19

model via subset=(mod4.site | p4.surv) (all Phase 4 site points, all
random points, and all Phase 4 DOT survey points), and we would set
the response via response=mod4.site (only archaeological site points
used as targets).

The last argument is sampling.wts, which permits us to re-weight the
non-random points during fitting. Classical sampling theory says that
points should be weighted by the reciprocal of their probability of
inclusion into the sample when computing summary statistics. The
survey models show us that not all locations are equally likely to be
surveyed for archaeological artifacts, so it might be worthwhile to re-
weight the sites we do have by the reciprocals of their probabilities of
being surveyed.

When sampling.wts is NULL, then all data points receive the same
weight during model fitting. You may optionally set different weights
for the non-random locations by setting the sampling.wts argument
equal to your chosen weights. (Random locations all get weight 1.
They were selected by a different mechanism than the survey and site
locations and are all equally likely regardless of the mechanism that
produced the survey and site locations. You may adjust the relative
weight of the random and non-random locations by setting
site.prob.) For example, suppose that we have previously fit a
survey model to Big Woods data and that we now wish to use the
sampling probabilities from that model when fitting a site model for
the Big Woods. The region abbreviation is “bgwd4”, the survey model
subset is “mod4.surv” and the site model subset is “mod4.site”. The
regional data are in bgwd4.data.all, and the subsetting variables are
in bgwd4.subsets. We can access a subsetting variable, say
mod4.site, via bgwd4.subsets$mod4.site. The first thing we must
do is extract the data for the non-random locations included in the site
modeling subset and store it in a new data frame, say
bgwd4.site.data.

> bgwd4.site.data <- bgwd4.data.all[bgwd4.subsets$mod4.site &
bgwd4.subsets$no.rand,]

In this command, we have selected the rows of bgwd4.data.all
([rows,cols] indicates element selection) that are used in the site
model (mod4.site is true) and are nonrandom (no.rand is true).

20

We next use the mnmodel.predict() function (see Section 5.8 below)
to apply the survey model to the selected data to estimate the survey
probabilities for these site locations and then store the probabilities in
bgwd4.sampling.prob. The output of mnmodel.predict() is a two
column matrix, with the first column being the estimated probabilities
of survey and the second column our actual prediction of surveyed or
not. We only need the first column, so we select that using [,1] .

> bgwd4.sampling.prob <- mnmodel.predict("bgwd4","mod4.surv","bagging",
 bgwd4.site.data)[,1]

Next we compute the reciprocals and store them in
bgwd4.sampling.wts

> bgwd4.sampling.wts <- 1/bgwd4.sampling.prob

Finally, we fit the site model using these sampling weights.

> mnmodel.fit("bgwd4",mod4.site,"mod4.site.wtd",method="bagging",
 sampling.wts=bgwd4.sampling.wts)

Warning: The usefulness of this approach depends on getting good
weights. If we use reciprocal sampling probabilities, then we need
good sampling probabilities. Getting those good probabilities can be a
problem. Our models will mostly be used to classify locations into low,
medium, and high probabilities of having a site or having a survey.
When we are interested in this kind of classification, then only the
order of our estimated probabilities matters, not their actual
magnitudes. However, when we are going to use these probabilities to
form weights, then we need to get the magnitudes correct as well.
This is more difficult, and in particular requires an accurate value for
site.prob when the survey model is fit. (When fitting a survey
model, site.prob indicates the proportion of the study area that has
been surveyed.)

5.6 Fit Summaries

After fitting a model, you may use the mnmodel.fit.summaries()
function to obtain several evaluations of fit quality, guidance on
selecting the cutoff for producing classifications, and information on
how the actual fit is done (variables, coefficients, and so on). The
arguments to mnmodel.fit.summaries() are a region abbreviation, a
label, a method, and an optional a priori probability for sites. The
region, label, and method are character strings used to identify the

21

results to summarize. The a priori probability is used only to prepare
the gain curves (as described in the chapter on model evaluation).
This probability is set separately and independently from the a priori
probability used to fit the model, which is not carried forward to the
summary stage. If you want to use the same a priori probability at
both the model fitting and model evaluation stages, you must set them
both to your desired value; you may set them to differing values if you
desire. (The a priori probability specified during model fitting adjusts
the overall level of the estimated probabilities up and down; the a
priori probability specified here affects the gain curves only.) Thus, a
typical usage might be
mnmodel.fit.summaries(“BGWD”,”mod4.site”,”bagging”,.001) .
This summary would be computed based on information stored in the
S-Plus variable REGIONABBR.label.method.results, or in our
example, BGWD.mod4.site.bagging.results.

Output from mnmodel.fit.summaries() goes into the
REGIONABBR.label.summaries directory, which in our example is
BGWD.mod4.site.summaries. The output consists of a text file named
method.summary.txt (bagging.summary.txt in the example) and
either 8 or 13 summary graphics in pdf format, the number depending
on whether spatially cross-validated predictions are available in the
results variable (REGIONABBR.label.method.results).

Let us begin with a discussion of the graphs, which are produced for
the predictions, cross-validated predictions, and, if available, spatially
cross-validated predictions. For these kinds of predictions we produce
cumulative plots, ROC curves, and gain curves. (See Chapter 2 of
"Statistical Methods for Mn/Model Phase 4" on model evaluation for an
explanation of these plots, their construction, and their interpretation.)
For cross-validated data, we also produce graphs with multiple
cumulative curves and ROC curves, one for each cross-validation
subset. The graphs are stored in the files with the names:

1. appcumpred.method.pdf, appgain.method.pdf,
approc.method.pdf.

2. cvcumpred.method.pdf, cvgain.method.pdf, cvroc.method.pdf,
cvcumpred.multi.method.pdf, cvroc.multi.method.pdf.

22

3. scvcumpred.method.pdf, scvgain.method.pdf,
scvroc.method.pdf, scvcumpred.multi.method.pdf,
scvroc.multi.method.pdf.

The “app” prefix stands for “apparent” and indicates results for
predictions constructed using all the data. The “cv” and “scv” prefixes
indicate results for cross-validated and spatially cross-validated
predictions. The “multi” indicates separate curves for each cross-
validation subset. In all cases, the “method” is replaced with the
method of interest, for example, approc.bagging.pdf.

The cumulative predicted plots allow us to see the actual values
predicted for different locations and to compare the distributions of
predictions for sites and non-sites. An example cumulative predicted
plot is shown in Figure 2.

We see two bands of points, the lower band for random points and the
upper band for sites. The curves show the cumulative distributions,
that is, fractions of points with values less than or equal to the current
value, for random points (dashed) and sites (solid). For a good
prediction, the random points should cluster to the left and their
cumulative should rise steeply and then flattening near 1; and the
sites should cluster to the right, with their cumulative staying low and
then rising sharply on the right. The greater the area between the two
curves, the better the prediction method is doing.

The “multi” form of the plot shows the same points, but the cumulative
curves are plotted separately for the 10 cross-validation subsets. This
illustrates the variability in the quality of the prediction. This is
illustrated in Figure 3. In this example, the curves are fairly stable
across the subsets.

23

Figure 2. Cumulative predicted plot showing separate curves for sites
(solid) and non-sites (dotted).

24

Figure 3. Multiple form of cumulative predicted plots, showing
separate curves for each cross-validation subset.

25

The ROC curve plots the true positive rate (the rate for sites, vertical
axis) against the false positive rate (rate for random locations,
horizontal axis) for a large number of potential thresholds. The curve
starts in the lower left hand corner and moves to the upper right hand
corner. Ideally, the curve should move up to the top very quickly and
then move along the upper boundary. This gives us maximum true
positive rate with minimum false positive rate. The diagonal line
corresponds to randomly guessing site versus random. The false
positive rates for .7 and .85 true positive rates are highlighted. While
our principal figure of merit is the false positive rate at a .85 true
positive rate, the area under the ROC curve gives an overall summary
of the quality of the prediction. Figure 4 shows a sample ROC curve
based on cross-validated predictions.

The “multi” form of the graph plots the ROC curve separately for each
cross-validation subset. Figure 5 shows an example of these multiple
ROC curves for the same data shown in Figure 4. Again we see that
the ROC curves are fairly stable.

The final graph is the gain curves. These curves are already
somewhat complex, so we only plot them for the full data set, and not
separately by cross-validation subsets. The gain curve for the same
data used above and assuming an a priori probability of .01 is shown
in Figure 6.

26

Figure 4. ROC curve for cross-validated predictions.

27

Figure 5. ROC curves separately for each cross-validation subset.

28

Figure 6. Gain curves for sites and non-sites.

29

In addition to graphical summaries, we also have text/numeric
summaries of the results in a text file named method.summary.txt
(bagging.summary.txt in the example). These files consist of a
method-specific part and a generic part. We begin with an example of
the generic part and describe the contents.

Apparent false positive rates and cutoffs
at .70 and .85 true positive rates
 Cutoff TPR FPR
 HIGH 0.5425123 0.70 0.06
MEDIUM 0.4015590 0.85 0.13

The output begins with apparent false positive rates, which are based
on predictions from the full data set. Here is how to interpret the
output. For this prediction (bagging in this example), if we use a
cutoff of .5424 and declare locations with predictions greater than the
cutoff to be sites, then we capture 70% of the sites (true positive rate
of 70%) but only 6% of the random points (false positive rate of 6%).
Similarly, if we choose a cutoff of .4016, then we capture 85% of the
sites and 13% of the random points.

If there are non-random locations that are also non-target locations,
then the FPR will also be computed separately for the random non-
target locations and the non-random, non-target locations.

These rates are called apparent rates, because it appears that those
are the rates that we will obtain. However, these rates are based on
predictions applied to data used to build the predictions, and that leads
to overly optimistic estimates of the quality of prediction.

To get around that, we use cross-validation. Our 10-fold cross-
validation fits the model using 90% of the data and then uses that
model to predict the 10% of the data held out. We cycle through 10
different subsets of hold out data until all locations were predicted
using models fit excluding the points of interest. Cross-validated
results are summarized next.

Cross-validated true and false positive rates and
cutoffs at nominal .70 and .85 true positive rates

, , HIGH
 Cutoff TPR FPR
 1 0.5631354 0.620 0.120
 2 0.5608065 0.660 0.150
 3 0.5445611 0.610 0.110
 4 0.5719469 0.650 0.090
 5 0.5702637 0.520 0.100

30

 6 0.5490074 0.650 0.080
 7 0.5730262 0.530 0.100
 8 0.5436854 0.520 0.110
 9 0.5745496 0.560 0.100
 10 0.5516697 0.600 0.110
 Average 0.5602652 0.592 0.107
Combined 0.4685972 0.700 0.150

, , MEDIUM
 Cutoff TPR FPR
 1 0.4419980 0.700 0.180
 2 0.4047221 0.750 0.190
 3 0.3844049 0.710 0.190
 4 0.4217128 0.850 0.190
 5 0.4093691 0.710 0.170
 6 0.4227110 0.800 0.160
 7 0.4164569 0.720 0.170
 8 0.3916342 0.740 0.230
 9 0.4150209 0.690 0.210
 10 0.4208373 0.770 0.160
 Average 0.4128867 0.744 0.185
Combined 0.2901404 0.850 0.290

Begin with the “High” results, which are supposed to capture 70% of
the sites, and consider group 1. Here we fit a model to the other 90%
of the data and find the cutoff that gives us 70% true positive rate in
the data used to fit the model. Here the cutoff is .5631. We now
apply this model and cutoff to the 10% of the data held back. When
we do this, we find that we actually obtain a 62% true positive rate
(instead of the nominal 70%) and a 12% false positive rate. Similarly,
when we hold back group 10, we select a cutoff of .5517 and obtain a
TPR of 60% and a FPR of 11%. Averaging across the 10 groups (the
line labeled “Average”), the cutoff is .5603, the TPR is 59%, and the
FPR is 11%. The average cutoff of .5603 is pretty close to the
apparent cutoff from above (.5425), so that is reassuring, but the TPR
that we actually attain is well below the 70% that we wanted. To get
70% TPR, we must reduce the cutoff to .4686 (the line labeled
“Combined”), which gives us a FPR of 15%. Thus the apparent cutoffs
are too optimistic, and we really should use a lower cutoff to attain
70% TPR when predicting to new data.

The “Medium” results tell a similar story. They should have a TPR of
85%, but when cross-validated the TPR only averages about 74%. We
need to lower the threshold to .2901 to capture 85% of the sites when
predicting to new data.

Results from spatial cross-validation are even more pessimistic, but
that is because they simulate a much more challenging modeling

31

situation. In cross-validation, we predict using models fit without
benefit of the data we are trying to predict. However, since the 10
subsets are chosen randomly, there is a good chance that landscapes
similar to where we are trying to predict are included in the modeling
subset. In spatial cross-validation, we exclude data in small spatial
clusters rather than one point at a time. Spatial cross-validation
simulates predicting into landscapes where we've never had any data
before! We have to expect that our predictions will work more poorly,
and, unfortunately, our expectations are met.

Spatial cross-validation results are reported just like the cross-
validation results. For example, when trying to capture 85% of the
sites, our average threshold is .412 and we achieve an average TPR of
67% with a FPR of 20%. To get our desired TPR of 85%, we must
lower the threshold to .235, which also gives us a FPR of 36%. These
results should be compared with .290 and FPR of 29% for simple
cross-validation.

Spatial cross-validated true and false positive rates and
cutoffs at nominal .70 and .85 true positive rates

, , HIGH
 Cutoff TPR FPR
 1 0.5596008 0.44 0.080
 2 0.5643144 0.49 0.130
 3 0.5588316 0.59 0.140
 4 0.5548809 0.55 0.100
 5 0.5436384 0.44 0.070
 6 0.5487280 0.62 0.170
 7 0.5603275 0.33 0.080
 8 0.5615844 0.53 0.100
 9 0.5505675 0.50 0.040
 10 0.5500290 0.51 0.130
 Average 0.5552503 0.50 0.104
Combined 0.3914553 0.70 0.210

, , MEDIUM
 Cutoff TPR FPR
 1 0.4405121 0.480 0.160
 2 0.4155323 0.660 0.270
 3 0.4074808 0.760 0.240
 4 0.4073247 0.760 0.210
 5 0.4140435 0.590 0.130
 6 0.4046139 0.790 0.250
 7 0.3948178 0.440 0.180
 8 0.4083685 0.740 0.200
 9 0.4052451 0.760 0.140
 10 0.4205485 0.700 0.200
 Average 0.4118487 0.668 0.198
Combined 0.2351554 0.850 0.360

Overall, we recommend using the cross-validated cutoffs.

32

If you know that you are predicting into a landscape unlike the rest of
your data set, you could consider the more pessimistic spatial cross-
validated threshold.

Method-specific output. There are three basic types of output
reflecting the three basic types of predictions: logistic regression, tree
structured regression, and naïve Bayes classification.

Summaries for “bmalogit” and “biclogit” are nearly identical.
Internally, they search for different subsets of predictor variables that
will form good models. Usually, there are several plausible models,
with some models more likely and others less likely. The “biclogit”
technique chooses the single most likely model, and the “bmalogit”
technique takes a weighted average of the coefficients of the most
likely models (weighted by the probability of the model).

The summary output begins with information about the most likely
models: their probability, the number of predictors, and their BIC. BIC
is the Bayesian Information Criterion, and models with lower BIC are
generally preferred.

Basic model comparison:
 Post. Prob. BIC Size of model
 1 0.26493293 -16912.09 12
 2 0.16364680 -16911.13 13
 3 0.08981361 -16909.93 13
 4 0.05780320 -16909.04 13
 5 0.04630060 -16908.60 14
 6 0.04212704 -16908.41 13
 7 0.03932683 -16908.27 13
 8 0.03921897 -16908.27 14
 9 0.03542374 -16908.06 13
10 0.03316238 -16907.93 14
11 0.02868477 -16907.64 14
12 0.02226626 -16907.14 14
13 0.01834238 -16906.75 13
14 0.01804442 -16906.72 14
15 0.01800146 -16906.71 14
16 0.01755544 -16906.66 11
17 0.01725541 -16906.63 14
18 0.01665255 -16906.56 14
19 0.01609317 -16906.49 15
20 0.01534805 -16906.39 13

The next summary list information about which variables appear in
which models. For each variable, we get the probability that its
coefficient is non-zero and an indication of in which of the top three
models that the variable appears. (Variables may appear in later

33

models. For example, below we see that Blg has a 14.2% probability
of being nonzero, but it does not appear in the top three models.)

Variables present in top 3 models:
 probne0 1 2 3
 Abl 100 X X X
 Alluv 1.8
 Blg 14.2
 Ht90 100 X X X
Rdedblk1 100 X X X
Rdedcors 0
Rdedpriv 100 X X X
Rdisasbi 100 X X X
 Rdiscon 100 X X X
 Rdishdw 0
Rdislkse 7.4
 Rdismin 9.3
 Rdisok 98.2 X X X
Rdispibf 94.4 X X X
 Rdispr 0
 Rdisrb 0
 Rdissug 9.2
 Rel90a 0
 Rgh90 0
Rlk1size 21.6 X
Rlkinout 100 X X X
Rlkpinou 100 X X X
Rmajarea 0
Rplk1siz 100 X X X
Rwtpinou 39.5 X
 Slp 1.5
 Soilcat 100 X X X
 Terr 0

Next comes the coefficients in the top three models, and the posterior
mean coefficients (the weighted average mentioned above). The
“bmalogit” method uses the posterior mean coefficients, and the
“biclogit” method uses the coefficients from model 1.

Coefficients in top 3 models:
 Post. mean 1 2 3
Intercept 1.854609e+00 1.422326670 1.2141522745 1.5496547151
 Abl -7.560788e-03 -0.008040118 -0.0068289419 -0.0080729536
 Alluv -8.763240e-03 0.000000000 0.0000000000 0.0000000000
 Blg -3.048708e-04 0.000000000 0.0000000000 0.0000000000
 Ht90 5.918020e-02 0.059978366 0.0584924367 0.0601699716
 Rdedblk1 -3.220591e-02 -0.032390598 -0.0322334545 -0.0329433940
 Rdedcors 0.000000e+00 0.000000000 0.0000000000 0.0000000000
 Rdedpriv -1.575067e-02 -0.015570510 -0.0166737554 -0.0143074235
 Rdisasbi -5.371819e-02 -0.051261278 -0.0616858985 -0.0511421582
 Rdiscon 3.720780e-02 0.030264146 0.0468975321 0.0304027313
 Rdishdw 0.000000e+00 0.000000000 0.0000000000 0.0000000000
 Rdislkse -3.765354e-04 0.000000000 0.0000000000 0.0000000000
 Rdismin 8.668204e-04 0.000000000 0.0000000000 0.0000000000
 Rdisok -6.923538e-03 -0.006627322 -0.0078798367 -0.0065628494
 Rdispibf 3.393696e-02 0.037717899 0.0346270936 0.0374464515
 Rdispr 0.000000e+00 0.000000000 0.0000000000 0.0000000000

34

 Rdisrb 0.000000e+00 0.000000000 0.0000000000 0.0000000000
 Rdissug -6.909364e-04 0.000000000 0.0000000000 0.0000000000
 Rel90a 0.000000e+00 0.000000000 0.0000000000 0.0000000000
 Rgh90 0.000000e+00 0.000000000 0.0000000000 0.0000000000
 Rlk1size -9.036624e-05 0.000000000 0.0000000000 -0.0004105098
 Rlkinout -2.201561e-02 -0.021014656 -0.0237648855 -0.0207090667
 Rlkpinou 1.333016e-02 0.012958104 0.0146946673 0.0114264030
 Rmajarea 0.000000e+00 0.000000000 0.0000000000 0.0000000000
 Rplk1siz 4.439313e-04 0.000364858 0.0003730413 0.0007049974
 Rwtpinou -2.252879e-03 0.000000000 -0.0050202120 0.0000000000
 Slp 6.081871e-04 0.000000000 0.0000000000 0.0000000000
 Soilcat 9.387926e-02 0.091343506 0.0954787101 0.0939202058
 Terr 0.000000e+00 0.000000000 0.0000000000 0.0000000000

The final summary differs between the “bmalogit” and “biclogit”
methods. This summary lists the rank correlation between the
predictors and the linear combination of predictors (the logit or linear
predictor) used in the apparent model, the cross-validated model, and
the spatial cross-validated model. The logits differ for the two
modeling approaches, so these correlations will differ between
“bmalogit” and “biclogit”.

Rank correlations between data and logits
 logits cvlogits scvlogits
 Alluv 0.230266867 0.22981774 0.23084153
 Blg -0.074374290 -0.07711332 -0.07386792
 Ht90 0.452984945 0.44949740 0.45874668
Rdedblk1 -0.501243748 -0.50312317 -0.50093067
Rdedcors -0.152337766 -0.15124266 -0.15897507
Rdedpriv -0.320652511 -0.31537619 -0.31508663
Rdisasbi -0.172859240 -0.17439194 -0.17912158
 Rdiscon -0.184700500 -0.18545665 -0.18766181
 Rdishdw -0.048516413 -0.05139217 -0.05244087
Rdislkse -0.290043226 -0.29156415 -0.28080221
 Rdismin 0.114881869 0.11460543 0.11858553
 Rdisok -0.069104809 -0.05987480 -0.05352862
Rdispibf -0.102472790 -0.10359924 -0.10793041
 Rdispr -0.006630704 0.00102292 0.01403406
 Rdisrb -0.265350004 -0.26699279 -0.25956227
 Rdissug -0.129842966 -0.13469836 -0.14501984
 Rel90a 0.472220221 0.46907741 0.48163937
 Rgh90 -0.058003506 -0.06046620 -0.05061741
Rlk1size 0.348888164 0.34916660 0.34219420
Rlkinout -0.489080227 -0.48932536 -0.48921647
Rlkpinou -0.371260503 -0.37728736 -0.39687056
Rmajarea -0.056736081 -0.05762397 -0.05563201
Rplk1siz 0.365974589 0.36701180 0.35511252
Rwtpinou -0.165211381 -0.16761171 -0.17133908
 Slp 0.363403454 0.36099889 0.37230756
 Soilcat 0.139554376 0.13648177 0.13144280
 Terr 0.075990737 0.07374489 0.07888598

Both “bumping” and “tree” use a single S-Plus tree object to do
prediction, and this tree object is summarized in the method-specific
output file. We first show the output and then explain it.

35

Summaries for region: BGWD4NEW subset: mod4.site method: tree

Regression tree:
snip.tree(tree = out, nodes = c(59., 233., 10., 198., 98., 199., 56., 23.,
 13., 931., 22., 117., 30., 9.))
Variables actually used in tree construction:
 [1] "Rdedblk1" "Ht90" "Rdiscon" "Rdislkse" "Rdisasbi" "Abl"
 [7] "Rdedpriv" "Rplk1siz" "Soilcat" "Rwtpinou" "Rdispibf" "Slp"
Number of terminal nodes: 24
Residual mean deviance: 0.1354 = 332.1 / 2453
Distribution of residuals:
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 -8.465e-01 -2.108e-01 -4.687e-02 -7.122e-17 1.667e-01 9.615e-01

The output begins with some overall summary information. The most
useful bits of information are which variables are actually used in the
making splits in the tree (in this example, only 12 of the 28 available
variables were actually used), and the number of terminal nodes (24
here). One way of thinking of the terminal nodes is that each terminal
node is one element of a partition of the predictor space. In this
example, there are 24 distinct but exhaustive regions of predictor
space, each of these regions gets its own predicted value, and every
location within those regions is predicted with the same value. Each
split adds one terminal node, so there must be 23 splits in this tree.

The next part of the output is the tree itself. The tree is labeled node
by node, beginning with the root node (all data). Each node is
described by a node number, the split criterion that formed the node
from its parent node, the number of data cases in the node, the
deviance (here the sum of squares of the 0/1 data around the mean
value of the node), and the mean value of the response for the data in
the node. When a node is a terminal node, it is marked by an
asterisk, and any case that would fall into that node is predicted by the
mean value for the node. In the example below, node 8 includes 24
cases and has a predicted value of .8333. The locations that fall into
this node have Rdedblk1 < 17.5 and Ht90 < 5.5 and Rdiscon <
234.5.

The general structure of the tree is that node 1 is the root node. It is
split into nodes 2 and 3. Node 2 is split into nodes 4 and 5, while node
3 is split into nodes 6 and 7. Node 4 is split into 8 and 9, 5 is split into
10 and 11, 6 is split into 12 and 13, and 7 is splint into 14 and 15.
This continues until the nodes are too small to split (minimum of 40
locations in order to split a node). However, only some of the splits
actually improve the predictive ability of the tree, and the unneeded

36

splits are pruned off. The tree that remains contains only the useful
splits and nodes.

The split criterion tells how to split the parent node. For example, the
root node 1 splits into nodes 2 and 3 with criteria Rdedblk1 < 17.5
and Rdedblk1 >= 17.5. So the first node is split based just on the
Rdedblk1 variable and whether or not it meets a threshold split value.
Node 2 splits into nodes 4 and 5, which have criteria Ht90 < 5.5 and
Ht90 >= 5.5. So all the cases in node 2 (which are those with
Rdedblk1 < 17.5) are split into two groups according to the value of
the variable Ht90 and the threshold split value 5.5.

node), split, n, deviance, yval
 * denotes terminal node

 1) root 2477 562.000 0.34800
 2) Rdedblk1<17.5 501 113.000 0.65670
 4) Ht90<5.5 152 37.050 0.42110
 8) Rdiscon<234.5 24 3.333 0.83330 *
 9) Rdiscon>234.5 128 28.870 0.34380 *
 5) Ht90>5.5 349 63.780 0.75930
 10) Rdislkse<205.5 215 27.930 0.84650 *
 11) Rdislkse>205.5 134 31.590 0.61940
 22) Rdisasbi<289 54 13.200 0.42590 *
 23) Rdisasbi>289 80 15.000 0.75000 *
 3) Rdedblk1>17.5 1976 389.200 0.26970
 6) Abl<924 449 110.600 0.56120
 12) Rdedpriv<31.5 356 81.400 0.64610
 24) Rdedblk1<95.5 318 68.920 0.68240
 48) Rdiscon<236 57 14.140 0.45610
 96) Ht90<12 26 4.038 0.19230 *
 97) Ht90>12 31 6.774 0.67740 *
 49) Rdiscon>236 261 51.230 0.73180
 98) Rdiscon<255.5 132 18.330 0.83330 *
 99) Rdiscon>255.5 129 30.140 0.62790
 198) Rdedblk1<80 63 15.560 0.44440 *
 199) Rdedblk1>80 66 10.440 0.80300 *
 25) Rdedblk1>95.5 38 8.553 0.34210 *
 13) Rdedpriv>31.5 93 16.800 0.23660 *
 7) Abl>924 1527 229.300 0.18400
 14) Ht90<18.5 1283 152.600 0.13800
 28) Rdislkse<98.5 110 26.760 0.41820
 56) Rplk1siz<838.5 76 15.200 0.27630 *
 57) Rplk1siz>838.5 34 6.618 0.73530 *
 29) Rdislkse>98.5 1173 116.400 0.11170
 58) Rdisasbi<329.5 597 85.880 0.17420
 116) Soilcat<3 550 69.070 0.14730
 232) Rwtpinou<206.5 262 46.800 0.23280
 464) Rdispibf<353.5 52 1.923 0.03846 *
 465) Rdispibf>353.5 210 42.420 0.28100
 930) Rdisasbi<276.5 44 10.910 0.54550
 1860) Slp<1.5 20 3.750 0.25000 *
 1861) Slp>1.5 24 3.958 0.79170 *
 931) Rdisasbi>276.5 166 27.620 0.21080 *
 233) Rwtpinou>206.5 288 18.610 0.06944 *

37

 117) Soilcat>3 47 11.740 0.48940 *
 59) Rdisasbi>329.5 576 25.730 0.04687 *
 15) Ht90>18.5 244 59.670 0.42620
 30) Abl<1015.5 155 38.480 0.54190 *
 31) Abl>1015.5 89 15.510 0.22470
 62) Rdedblk1<25.5 20 4.200 0.70000 *
 63) Rdedblk1>25.5 69 5.478 0.08696 *

The “bagging” method works by producing multiple trees (11 by
default in our S-Plus functions) and then averaging the predictions
from these multiple trees. The method-specific output for “bagging”
is simply the descriptions of the multiple trees, in the same format we
just saw for “tree” and “bumping”. The “double” method does
bagging twice, so its output consists of two bagging structures.

The “naive” method works by estimating a completely arbitrary
function of each variable, and then summing the function values seen
at the observed data across all the variables. For any given variable
value x, we are trying to estimate the log likelihood ratio for sites to
non-sites at that x value. Very roughly speaking, the log likelihood
ratio is the (natural) logarithm of the ratio of the probabilities that
sites and non-sites take the value x on the variable of interest. The
output specific to the “naive” method is an attempt to represent this
arbitrary function. For each variable, there is a 50x2 matrix, with the
first column a list of potential x values, and the second column the
estimated values of the log likelihood ratio (labeled the log den
ratio) at those x values. For example,

, , abl
 x log den ratio
 1 695.0000 -0.653172475
 2 704.7959 -0.803247266
 3 714.5918 -0.853943074
 4 724.3878 -0.792476422
 5 734.1837 -0.617606304
 6 743.9796 -0.352090085
 7 753.7755 -0.050855577
 8 763.5714 0.214850070
 9 773.3673 0.409039253
10 783.1633 0.536368787
11 792.9592 0.569937575
12 802.7551 0.475112115
13 812.5510 0.294739469
14 822.3469 0.120170351
15 832.1429 0.026262449
16 841.9388 0.061139381
17 851.7347 0.241157875
18 861.5306 0.510851606
19 871.3265 0.733966386
20 881.1224 0.792048500
21 890.9184 0.674939495

38

22 900.7143 0.451860794
23 910.5102 0.211938867
24 920.3061 0.028683358
25 930.1020 -0.062972114
26 939.8980 -0.070104545
27 949.6939 -0.029318601
28 959.4898 0.009082630
29 969.2857 0.003393434
30 979.0816 -0.050176201
31 988.8776 -0.114837043
32 998.6735 -0.151914837
33 1008.4694 -0.149773450
34 1018.2653 -0.119922528
35 1028.0612 -0.082204208
36 1037.8571 -0.050041824
37 1047.6531 -0.018681516
38 1057.4490 0.032289248
39 1067.2449 0.118647107
40 1077.0408 0.228888720
41 1086.8367 0.319928695
42 1096.6327 0.350747887
43 1106.4286 0.321169952
44 1116.2245 0.253784266
45 1126.0204 0.153283364
46 1135.8163 0.012746823
47 1145.6122 -0.162386400
 x log den ratio
48 1155.408 -0.3627156
49 1165.204 -0.5940992
50 1175.000 -0.8785598

In these data, the log likelihood ratio is negative for an abl value of
695, indicating that 695 is more likely to arise from a non-site. On the
other hand, the log likelihood ratio is positive when abl is 871,
indicating that 871 is more likely to arise from a site.

5.7 Export to GIS

Mn/Model predictions are done on a production scale through GIS.
ArcGIS can now do scripting through Python, and the S-Plus functions
have a limited ability to prepare Python scripts that may be of use. The
S-Plus function is mnmodel.make.python(). This function can produce
Python implementations for the “tree” and “bagging” methods. The
required arguments to mnmodel.make.python() are a region
abbreviation, a label, and a method. So, for example,

mnmodel.make.python(“BGWD”,”mod4.site”,”bagging”)

This will create a file method.py (here, bagging.py) in the directory
region.label.summaries (here BGWD.mod4.site.summaries). In this

39

file are a sequence of Python commands that should implement the
prediction method.

By default, mnmodel.make.python() will make predictions with cross-
validated true positive rate .85. You may select another cross-
validated true positive rate with the tpr argument by adding, for
example, tpr=.70 to the arguments of the function, as in

mnmodel.make.python(“BGWD”,”mod4.site”,”bagging”,tpr=.70)

Alternatively, you may directly set the threshold for declaring a
location to be a site by using the threshold argument, as in

mnmodel.make.python(“BGWD4NEW”,”mod4.site”,”tree”,
threshold=.21)

The python produced by this command would be in the file tree.py in
the directory BGWD4NEW.mod4.site.summaries. One possible python
script is shown here:
if Rdedblk1<17.5:
 if Ht90<5.5:
 if Rdiscon<234.5:
 thisout = 0.833333333333333
 else:
 thisout = 0.34375
 else:
 if Rdislkse<205.5:
 thisout = 0.846511627906977
 else:
 if Rdisasbi<289:
 thisout = 0.425925925925926
 else:
 thisout = 0.75
 else:
 if Abl<924:
 if Rdedpriv<31.5:
 if Rdedblk1<95.5:
 if Rdiscon<236:
 if Ht90<12:
 thisout = 0.192307692307692
 else:
 thisout = 0.67741935483871
 else:
 if Rdiscon<255.5:
 thisout = 0.833333333333333
 else:
 if Rdedblk1<80:
 thisout = 0.444444444444444
 else:
 thisout = 0.803030303030303
 else:
 thisout = 0.342105263157895

40

 else:
 thisout = 0.236559139784946
 else:
 if Ht90<18.5:
 if Rdislkse<98.5:
 if Rplk1siz<838.5:
 thisout = 0.276315789473684
 else:
 thisout = 0.735294117647059
 else:
 if Rdisasbi<329.5:
 if Soilcat<3:
 if Rwtpinou<206.5:
 if Rdispibf<353.5:
 thisout = 0.0384615384615385
 else:
 if Rdisasbi<276.5:
 if Slp<1.5:
 thisout = 0.25
 else:
 thisout = 0.791666666666667
 else:
 thisout = 0.210843373493976
 else:
 thisout = 0.0694444444444445
 else:
 thisout = 0.48936170212766
 else:
 thisout = 0.046875
 else:
 if Abl<1015.5:
 thisout = 0.541935483870968
 else:
 if Rdedblk1<25.5:
 thisout = 0.7
 else:
 thisout = 0.0869565217391305
prediction = 0
if thisout >= 0.21:
 prediction = 1

The structure of this output is a set of nested if, then, else constructs
representing the tree, which results in setting the variable thisout.
After thisout is set, it is compared with the threshold (here .21).
Locations above the threshold are set to 1 (a site), while other
locations are set to 0 (a non-site).

If you specify both a threshold and a tpr, the threshold will overrule
the tpr.

41

5.8 Making Predictions

Once you have fit a model, you can make predictions using the fitted
model via the mnmodel.predict() function. This function has four
required arguments: a region, a label, a method, and new data in an
S-Plus data frame.

mnmodel.predict(“BGWD”,”mod4.site”,”bagging”,new.data)

The variables in the new data frame must include all of the variables
originally used to fit the model. The output is a data frame with two
variables: score, which is the numerical prediction, and prediction,
which is either “Site” or “Non-site”. By default, a threshold is
chosen to provide a true positive rate of .85. You may select your own
threshold or your own true positive rate by adding, for example,
tpr=.70 or threshold=.21 to the argument list. Again, if you specify
both, the threshold will overrule the tpr.

Just for amusement, let's apply the Anoka site model to the Mille Lacs
data. Then we'll look at a few of the results.

> tmp <- mnmodel.predict("anok4ex","mod4.site","bagging",mlac4ex.data.all)
> tmp[11:20,]
 score prediction
11 0.01837041 Non-site
12 0.41278223 Site
13 0.35958376 Non-site
14 0.22432380 Non-site
15 0.04041375 Non-site
16 0.35825936 Non-site
17 0.10856103 Non-site
18 0.57498622 Site
19 0.05165805 Non-site
20 0.46228055 Site

For these ten locations (all random locations), two were predicted to
be sites and the other eight were predicted to be non-sites.

6. Appendix

In this appendix, we describe again in more compact form the
standard functions that users call. We also describe some of the
internal structure of those functions and some additional functions that
they call internally. In the discussion below, we will see lines of the
form

42

function.name <- function(arg1, arg2=defval, ...)

This is the the first line of the formal S-Plus definition of a function.
We have the function function.name(). It has a first argument arg1,
and a second argument arg2 with the default value of defval. That
is, if arg2 is not specified when the function is called, defval will be
used. Default values are specified via the arg=value construction. The
"..." allows additional arguments. These arguments are not used
explicitly in this function, but they can be passed on to other functions
that are called internally.

6.1 Reading Data

The mnmodel.readdata() function reads data from an external file into
S-Plus and constructs several S-Plus data objects.

mnmodel.readdata <- function(region,rootvars=NULL,cmult=40)

region is a character scalar giving a region name.

rootvars determines which variables are transformed to square roots.
If it is NULL, then a default list of variables is transformed; otherwise,
the variables given in rootvars will be transformed. (Order of
variable names in rootvars does not matter.) To transform no
variables, use something like rootvars="no.such.variable".

cmult may determine the number of spatial clusters. If the data set
contains a variable named Clusters, then that variable will determine
the spatial clusters. If Clusters is not present in the data (but X and
Y are), the function will generate 10*cmult spatial clusters and
randomly group them into 10 groups for spatial cross-validation.

mnmodel.readdata() and several other functions internally call
the function mnmodel.find.var(), which is used for extracting a
named variable from an S-Plus data frame.

mnmodel.find.var <- function(varname,thisframe)

varname is a character string giving the variable name, and thisframe
is an S-Plus data frame.

43

mnmodel.find.var() first tries the variable name given in varname. If
that is not found, it then tries tries varname converted to all lower
case. If that is not found, it tries removing periods '.', underscores
'_', and spaces ' ' from varname.

If at any stage it gets a match, it returns that variable from the
data frame. If there is no match, it returns a NULL.

6.2 Summarizing Variables

After reading in data you can summarize the variables in a data set
using the mnmodel.var.summaries() function. This function computes
several numerical summaries (means and standard deviations, rank
correlations, Wilcoxon rank sum tests between random locations and
sites or negative surveys) for each variable. It also plots histograms
comparing the sites, negative survey, and random points.

mnmodel.var.summaries <- function(region,subset=mod4.surv,label="mod4.surv")

region is a character scalar giving the name of a region.

subset is an expression using variables in the subsetting frame that
selects the data to be used. Note, subset should normally be a survey
subset, so that there are data included from sites, negative surveys,
and random locations.

label is a character scalar used to label the output directory and
name the analysis.

When plotting, histograms are labeled with "long labels" based on the
short variable names in the data set. The function
mnmodel.get.var.label() attempts to find a long label for each
variable name. The variable name and long label pairs are stored in
the matrix mnmodel.var.names.and.labels, which you may need to
update with new names and labels.

mnmodel.get.var.label <- function(shortlab,underscore=FALSE,exact=FALSE)

shortlab is a short label variable name, for example, "Blg". The
function tries to find its long name: "Prevailing orientation".

44

underscore is a logical flag. If TRUE, spaces in the long name are
replaced by underscores (for example, "Prevailing_orientation")

exact is a logical flag. If exact is TRUE, we try to match the short label
exactly. Otherwise, we also try the short label converted to all lower
case, then the lower case short label with spaces, periods, and
underscores removed.

If the function cannot match shortlab, then shortlab will be
returned as the value.

6.3 Fitting Models

The meat of the exercise is fitting a prediction model. This is done in
mnmodel.fit(). The basic structure of this function is that it uses the
method argument to determine a method-specific fitting function,
which it then calls, passing all of its arguments to the method-specific
function.

mnmodel.fit <- function(region,subset,label,method="bagging",
 site.prob=NULL, sampling.wts=NULL,verbose=TRUE,response=no.rand,...)

region is a character scalar giving the name of a region.

subset is an expression using variables in the subsetting frame to
select the subset of data for analysis.

label is a character string giving a descriptive label for the results of
this analysis.

method is a character string giving the method to be used. Current
choices include 'bmalogit', 'biclogit', 'tree', 'naive',
'bagging', 'double', and 'bumping'. We recommend 'bagging'.

site.prob is NULL, or a numeric value strictly between 0 and 1 that
represents the a priori probability of a site. If numeric, weights for
non-site locations are rescaled so that the total weight for sites is
site.prob fraction of total weight for all locations.

45

sampling.wts is NULL or a numeric vector of positive numbers (with
length equal to the number of non-random locations in the analysis).
If NULL, equal sampling weights are used. If non-NULL, sampling.wts
should contain sampling weights for the non-random locations in the
selected subset. These should be reciprocals of the sampling
probability for non-random locations. This only makes sense for site
models.

verbose is a logical flag. If TRUE, informative output is printed.

response is an expression using variables in the subsetting frame for
selecting the non-zero (target or site) responses. All variables in the
subsetting frame can be used. The default is no.rand, so anything
non-random is a 1 (a site) and anything random is a 0 (a non-site).

The method-specific functions take the same arguments (except for
method). The functions for bagging, double, and bumping take
additional arguments bagK or bumpK. When bagging or bumping, we
fit with the original data and with several additional bootstrap samples.
bagK and bumpK determine the number of additional bootstrap
samples.

mnmodel.bagging.fit <- function(region,subset,label,site.prob=NULL,
 sampling.wts=NULL,verbose=TRUE,response=no.rand,bagK=10,...)

mnmodel.double.fit <- function(region,subset,label,site.prob=NULL,
 sampling.wts=NULL,verbose=TRUE,response=no.rand,bagK=10,...)

mnmodel.bumping.fit <- function(region,subset,label,site.prob=NULL,
 sampling.wts=NULL,verbose=TRUE,response=no.rand,bumpK=10,...)

mnmodel.tree.fit <- function(region,subset,label,site.prob=NULL,
 sampling.wts=NULL,verbose=TRUE,response=no.rand,...)

mnmodel.biclogit.fit <- function(region,subset,label,site.prob=NULL,
 sampling.wts=NULL,verbose=TRUE,response=no.rand,...)

mnmodel.bmalogit.fit <- function(region,subset,label,site.prob=NULL,
 sampling.wts=NULL,verbose=TRUE,response=no.rand,...)

mnmodel.naive.fit <- function(region,subset,label,site.prob=NULL,
 sampling.wts=NULL,verbose=TRUE,response=no.rand,...)

The method-specific fitting functions all do the same basic thing. Each
of them calls mnmodel.prepare.for.fit() first. This checks
arguments, prints some information, and selects the appropriate
subset of data. After selecting the data, the method-specific functions

46

call the actual fitting functions to do model fitting and prediction
(including cross-validation).

mnmodel.prepare.for.fit <- function(region,subset,label,site.prob,
 sampling.wts=NULL,verbose=TRUE, eliminate.linear=TRUE,response=no.rand)

The arguments to mnmodel.prepare.for.fit() are mostly the same
as those of the method-specific functions. The only new one is
eliminate.linear, which is a logical flag saying whether variables
that are linearly dependent or nearly constant should be removed prior
to fitting. This is done by default.

The functions that actually do the fitting (mostly) have a simple
interface. In these functions, x is a matrix of predictors for the subset
of interest, y is a 0/1 vector of responses for the subset, and wts is a
vector of case weights for fitting. Some functions have an additional
argument to declare the number of bootstrap samples to use.

mnmodel.bagging <- function(x,y,wts,bagK)
mnmodel.double <- function(x,y,wts,bagK)
mnmodel.bumping <- function(x,y,wts,bumpK)
mnmodel.tree <- function(x,y,wts)
mnmodel.naive <- function(x,y,wts)

The one exception is that bic.glm() is used for biclogit and bmalogit.

bic.glm <- function (x, y, glm.family, wt=rep(1,nrow(x)),strict=F,
 prior.param=c(rep(0.5,ncol(x))),OR=20, OR.fix=2, nbest=150,
 dispersion=NULL, factor.type=T, factor.prior.adjust=F)

This function was written by Chris Volinsky at the University of
Washington and is licensed for free distribution and use for non-
commercial purposes. Copyright 1996, 1997 by Chris T. Volinsky.

6.4 Summarizing Model Fits

After making a fit, we summarize the fit with the
mnmodel.fit.summaries() function. This function prints details of
the fitting method (coefficients, and so on), prints thresholds and false
positive rates at 70% and 85% true positive rates for the complete
data set, prints thresholds and attained true and false positive rates
for nominal 70% and 85% true positive rates for all cross-validation
subsets as well as cross-validated thresholds for 70% and 85% true
positive rates. After the numerical summaries, it generates a number

47

of diagnostic plots, including cumulative prediction, ROC curves, and
gain curves.

mnmodel.fit.summaries<-function(region,label,method="bagging",site.prob=.01)

region, label, and method have their usual meanings.

site.prob is the a priori probability of a location being a site, used in
computing gain curves.

mnmodel.fit.summaries() calls method-specific functions to print the
method-specific prediction information. For each of these functions,
results is an internal S-Plus variable with an arcane format. These
functions print that information out in a somewhat readable form. For
bumping and tree, the functions also make a plot of the tree which is
put in a file tree.pdf in the directory named dirname. dirname is
otherwise ignored.

mnmodel.bagging.summaries <- function(results,dirname)
mnmodel.double.summaries <- function(results,dirname)
mnmodel.bumping.summaries <- function(results,dirname)
mnmodel.tree.summaries <- function(results,dirname)
mnmodel.bmalogit.summaries <- function(results,dirname)
mnmodel.biclogit.summaries <- function(results,dirname)
mnmodel.naive.summaries <- function(results,dirname)

mnmodel.fit.summaries() uses the function mnmodel.getrates()to
compute apparent, cross-validated, and spatially cross-validated false
positive rates.

mnmodel.getrates <- function(preds,groups,subsets=NULL,nonrandzero)

preds contains the predictions. For apparent rates, preds is a vector
of predictions. For cross-validated data, preds is a matrix with 11
columns. The first 10 columns are complete-sample predictions based
on the 10 cross-validation models; the last column collects the out-of-
sample predictions.

groups is the 0/1 vector of responses (1 is a site).

If subsets is non-NULL, it is a vector containing elements 1 through 10
indicating the cross-validation subsets.

48

nonrandomzero is a vector of logical values. A TRUE represents a non-
random location that has a 0 response (zeros are usually random
locations). If there are any non-random zeros, the false positive rates
are also computed separately for the random and non-random zeros.

After computing numerical summaries, mnmodel.fit.summaries()
calls two functions repeatedly to generate cumulative predicted, ROC,
and gain plots for apparent, cross-validated, and spatially cross-
validated data.

mnmodel.eval.plots <- function(predicted,groups,cumfilename,cumtitle,
 rocfilename,roctitle,gainfilename,gaintitle,site.prob=.01)

predicted is the vector of "predicted" values from some method (this
could actually be cross validated). Larger values should go with sites.

groups is the 0/1 response variable with 1 for sites and 0 for non-
sites.

cumfilename, rocfilename, and gainfilename are names of files to
contain the pdf output.

cumtitle, roctitle, and gaintitle are character strings for labeling
the plots.

site.prob is the a priori probability of a site. This is used to compute
the gain plots.

There is also a "multi" form of this function that plots curves for each
cross-validation subset. The arguments are analogous, with the
additional argument subsets, which is a vector containing 1 through
10 indicating the cross-validation subsets.

mnmodel.eval.plots.multi <- function(predicted,groups,subsets,
 cumfilename,cumtitle,rocfilename,roctitle)

6.5 Making Predictions

While our goal is to do prediction from within GIS, we can also do
prediction from within S-Plus. Indeed, we must be able to do this to
do cross-validation. The function mnmodel.predict() applies a fitted

49

model to new data to do prediction. It has the now familiar form of a
function that calls method-specific functions internally.

mnmodel.predict <- function(region,label,method="bagging",
 newdata,threshold=NULL,tpr=.85)

region, label, and method have their usual meanings.

newdata is an S-Plus data frame containing the data values for which
we wish to make predictions. newdata should contain all of the
variables that were used to fit the original model (including any
transformed variables), although order of the variables does not
matter.

tpr is a desired true positive rate.

threshold is NULL or a cutoff used for splitting predictions into sites
(above the cutoff) and non-sites (others).

If a threshold is given, it will override any tpr value. If threshold is
NULL, then a threshold will be computed to obtain the desired true
positive rate based on cross-validated data.

The method-specific functions called internally are:

mnmodel.bagging.predict <- function(baggingresults,newx)
mnmodel.double.predict <- function(doubleresults,newx)
mnmodel.bmalogit.predict <- function(bmaresults,thisdata)
mnmodel.biclogit.predict <- function(bicresults,thisdata)
mnmodel.naive.predict <- function(naiveresults,newx)
predict.tree(tree,newx)

predict.tree() is a built-in S-Plus function.

The output of mnmodel.predict() is a data frame with two variables:
score, which is the numerical prediction, and prediction, which is
either “Site” or “Non-site” based on the selected threshold or tpr.
For example,
 score prediction
 1 0.01837041 Non-site
 2 0.41278223 Site
 3 0.35958376 Non-site
 4 0.22432380 Non-site
 5 0.04041375 Non-site
 6 0.35825936 Non-site
 7 0.10856103 Non-site

50

 8 0.57498622 Site
 9 0.05165805 Non-site
10 0.46228055 Site

shows three locations predicted as sites (scores above .4) and seven
predicted as non-sites (scores below .4).

	2. Organization of files
	3. Software Architecture
	4. Work flow
	5. Modeling Steps
	5.2 Read Data into S-Plus
	5.4 Variable Summaries
	5.6 Fit Summaries
	5.7 Export to GIS
	5.8 Making Predictions

