So You Want to Build a Cross Section

Concepts, Principles, and Practices

Balancing a Multimodal Design: A new challenge for designers

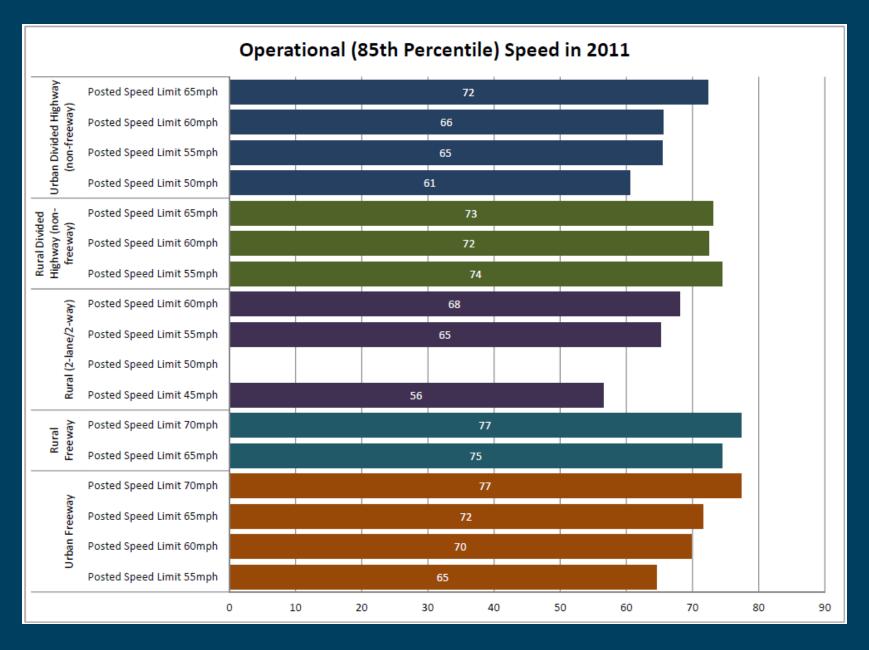
2013-2014 MnDOT Context Sensitive Solutions

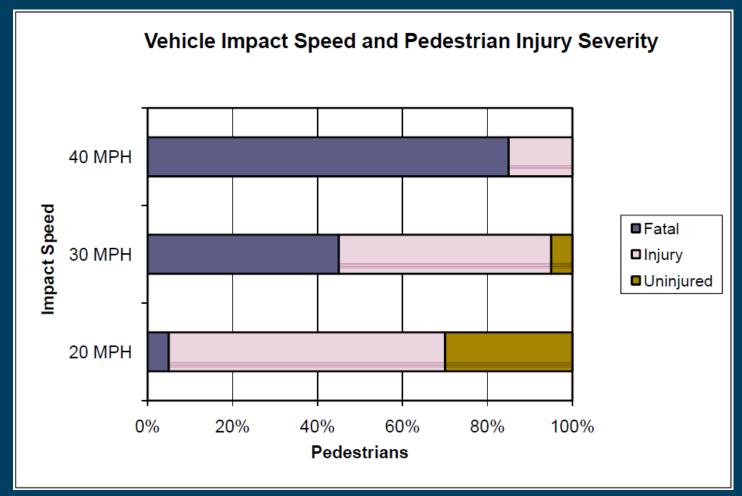
Webinar

February 18, 2014

Chat Page

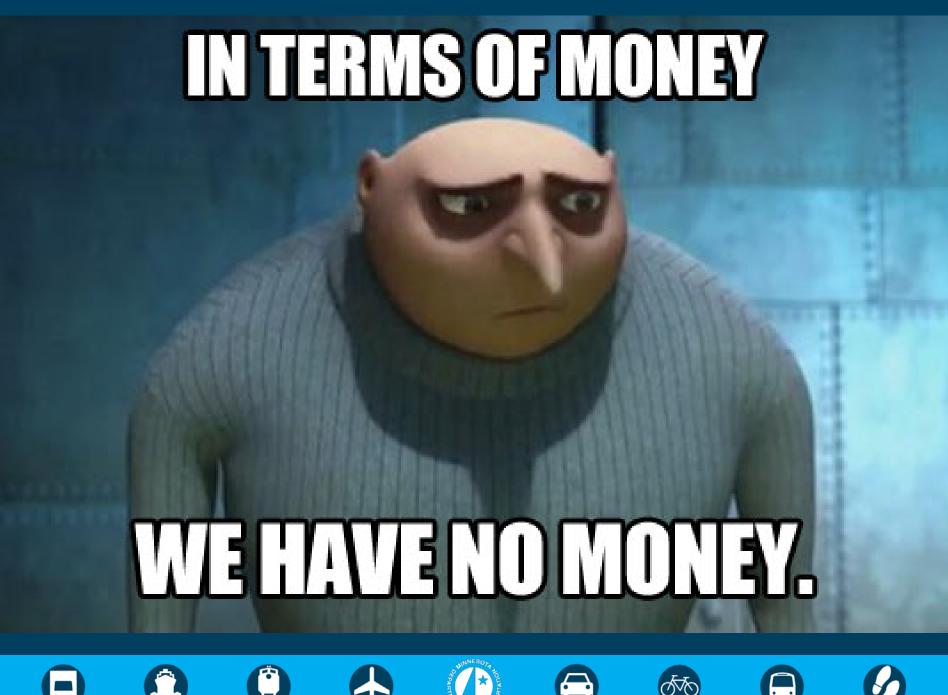
- Online participants are encouraged to engage in and add to the discussion.
- Submit comments and questions any time by clicking the upper left gold box on your screen – this will take you to the chat page: www.cts.umn.edu/contextsensitive/workshops/crosssection/
- Sign in to your Chatroll account, or sign in using your Facebook or Twitter account. We have asked pre-registrants to create a chat log in ahead of time. It simple to create an account.





The cost of speed in towns and cities

Source: UK Department of Transport



Flexible Design Engineer

Derek Leuer

Traffic Safety Engineer

David Larson

Principal Landscape Architect

Charleen Zimmer

Transportation Planner

Jack Broz

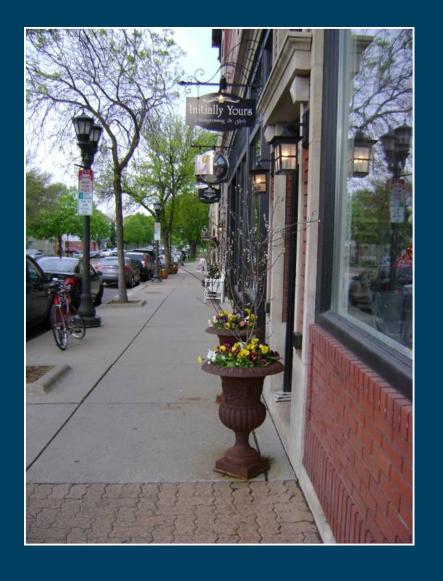
Transportation Engineer

Agenda

- Overview Complete Street Design Process
- Rural Main Streets
- Constrained Urban Streets

Complete Street Design Process

- Iterative Process
- Major Challenges
 - Community
 - Traffic Analysis
 - Target Operating Speed
 - Allocation of Space
 - Intersections

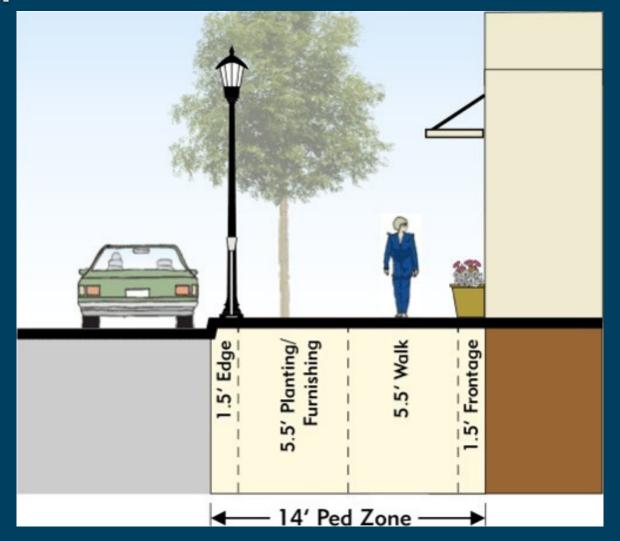


Key Principles

Think "type of community" - not "type of roadway" - give community values and needs a high priority

Key Principles

- ▶ Think "outside in" rather than "inside out"
- Allocate space first to most vulnerable users



Components of Pedestrian Realm

Design Element Spotlight

Bicycle Lanes

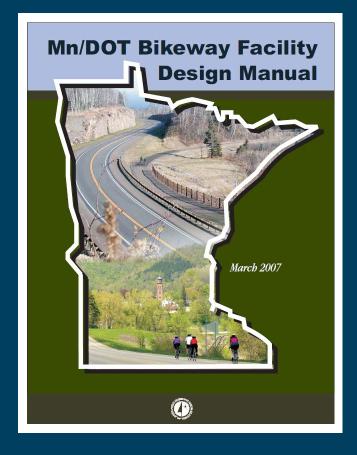


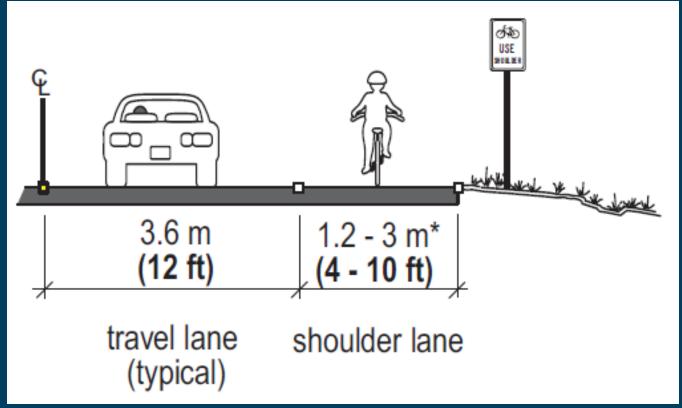
Table 4-1:	Bikeway	Design S			•	d Gutter)	Cross
Section – English Units							
Motor Vehicle ADT (2 Lane)		<500	500-1,000	1,000-2,000	2,000-5,000	5,000- 10,000	>10,000
Motor Vehicle ADT (4 Lane)		N/A	N/A	2,000-4,000	4,000- 10,000	10,000- 20,000	>20,000
Motor Vehicle Speed	25 mph	SL	WOL	WOL	WOL	BL = 5 ft	Not Applicable
	30 mph	SL with sign	WOL	BL = 5 ft	BL = 5 ft	BL = 6 ft	BL = 6 ft
	35 - 40 mph	WOL	BL = 5 ft	BL = 5 ft	BL = 6 ft	BL = 6 ft	BL = 6 ft or PS = 8 ft
	45 mph and greater	BL = 5 ft	BL = 5 ft	BL = 6 ft	BL = 6 ft	BL = 6 ft or PS = 8 ft	SUP or PS= 10 ft

BL = Bicycle Lane, SL = Shared Lane, WOL = Wide Outside Lane, SUP = Shared-Use Path, PS = Paved Shoulder

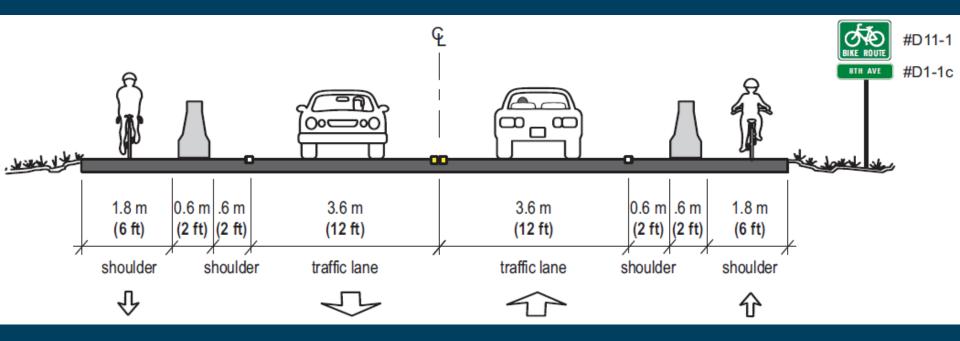
Table 4-2:	Bikeway Design Selection for Rural (Shoulder and Ditch) Cross					
Section - English Units						

Motor Vehicle ADT (2 Lane)		<500	500-1,000	1,000- 2,000	2,000- 5,000	5,000- 10,000	>10,000
Motor Vehicle ADT (4 Lane)		N/A	N/A	2,000- 4,000	4,000- 10,000	10,000- 20,000	>20,000
Motor Vehicle Speed	25 mph	PS = 4 ft* or SL	PS = 4 ft* or SL	PS = 4 ft* or WOL	PS = 4 ft*	PS = 4 ft*	Not Applicable
	30 mph	PS = 4 ft* or SL	PS = 4 ft* or WOL	PS = 4 ft*	PS = 4 ft*	PS = 6 ft	PS = 6 ft
	35 - 40 mph	PS = 4 ft* or SL	PS = 4 ft* or WOL	PS = 6 ft	PS = 6 ft	PS = 6 ft	PS = 8 ft
	45 mph and greater	PS = 4 ft*	PS = 4 ft*	PS = 6 ft	PS = 8 ft	PS = 8 ft	SUP or PS= 10 ft

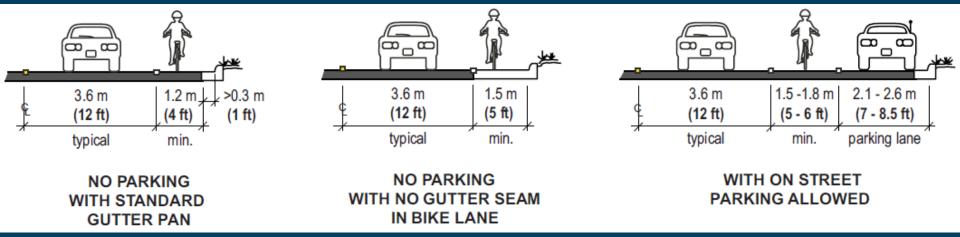
^{*} See discussion in Section 4-3.1 regarding rumble strips on 4-foot shoulders. PS = Paved Shoulder, SL = Shared Lane, SUP = Shared-Use Path, WOL = Wide Outside Lane



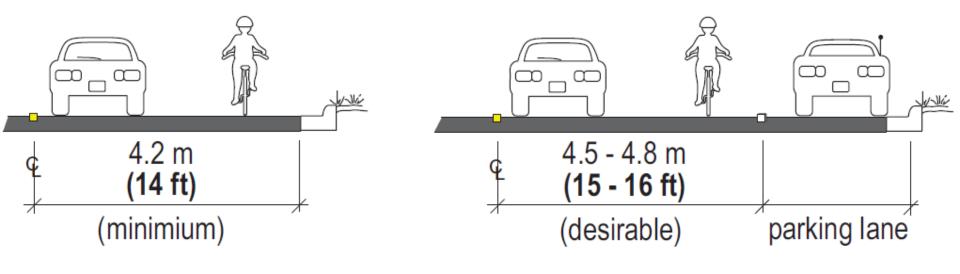
Rural highway shoulder



Rural highway shoulder



Classical bicycle lanes



Wide outside lane treatment

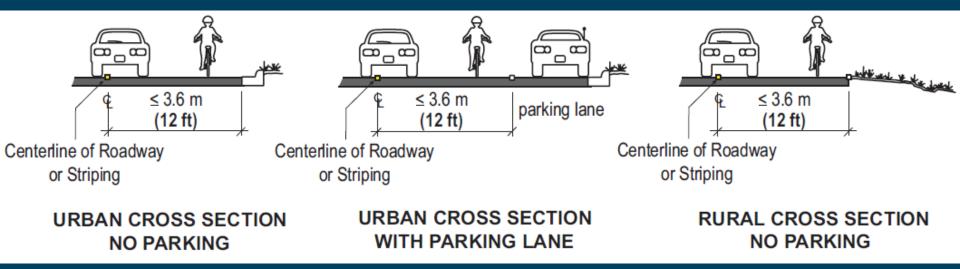
MnDOT Bikeway Facility Design Manual

WIDE OUTSIDE LANE

WITH PARKING LANE

WIDE OUTSIDE LANE

NO PARKING



Shared lane

Shared lane marking (aka sharrow)

Key Principles

 Think "slow" - not "fast" - select the lowest reasonable targeted operating speed

Key Principles

- Think differently about traffic impacts
 - Corridor travel time/delay not time/delay at individual intersection
 - Number of hours of congestion not minutes during the peak hour
 - Mid-day not peak hour

Design Element Spotlight

Traffic

2 miles of Urban Arterial ADT = 10,000 36 Access Points

	Crashes	Upper Boundary
2 Lane Undivided	5.7	32,600
3 Lane, Two Way Turn Lane	5.5	32,900
4 Lane, Undivided	6.5	40,100
4 Lane Divided	3.5	66,000
5 Lane, Two Way Turn Lane	9.9	53,800

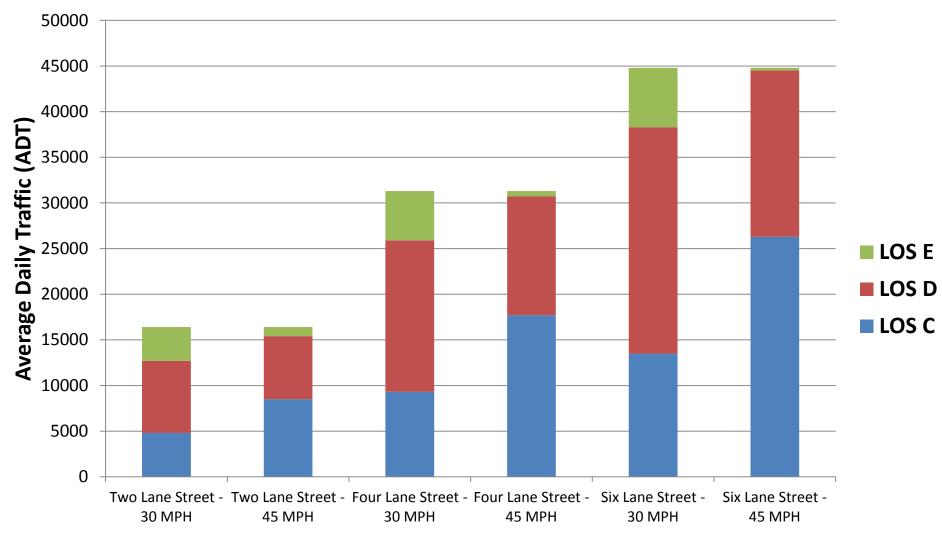
2 miles of Urban Arterial ADT = 32,600 36 Access Points

	Crashes	Upper Boundary
2 Lane Undivided	26.5	32,600
3 Lane, Two Way Turn Lane	23.8	32,900
4 Lane, Undivided	27.4	40,100
4 Lane Divided	14.2	66,000
5 Lane, Two Way Turn Lane	34.7	53,800

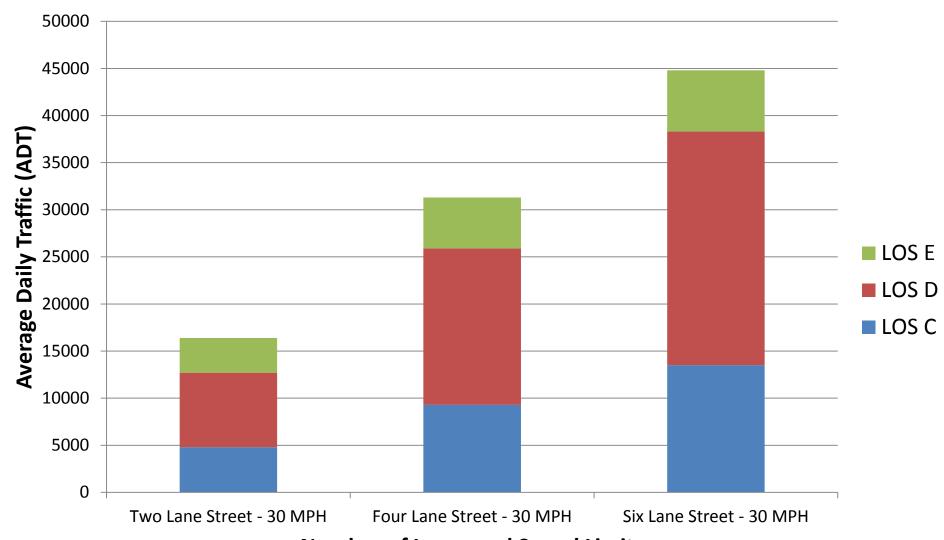
Minnesota Crash Rates

Minnesota Crash Rates

Five Vegra of Creek Date (2007, 2011)	All Crashes					
Five Years of Crash Data (2007–2011)	Crash Rate	Sever. Rate	Fatal Rate	F+A Rate		
Urban 2-lane : ADT∈[0,1500)	1.71	2.86	3.08	9.23		
Urban 2-lane : ADT∈[1500,5000)	1.43	2.03	0.76	2.57		
Urban 2-lane : ADT∈[5000,8000)	2.00	2.82	0.47	3.36		
Urban 2–lane : ADT∈[8000,∞)	2.05	2.92	0.65	2.64		
Urban 4-lane Undivided	3.86	5.23	0.59	4.75		
Urban 4-lane Divided	2.81	3.83	0.57	2.70		
3-lane Undivided	2.10	2.95	0.63	2.38		
5-lane Undivided	3.06	4.24	0.57	2.65		



Level of Service vs. Traffic Volume (From HCM ex. 16-14)

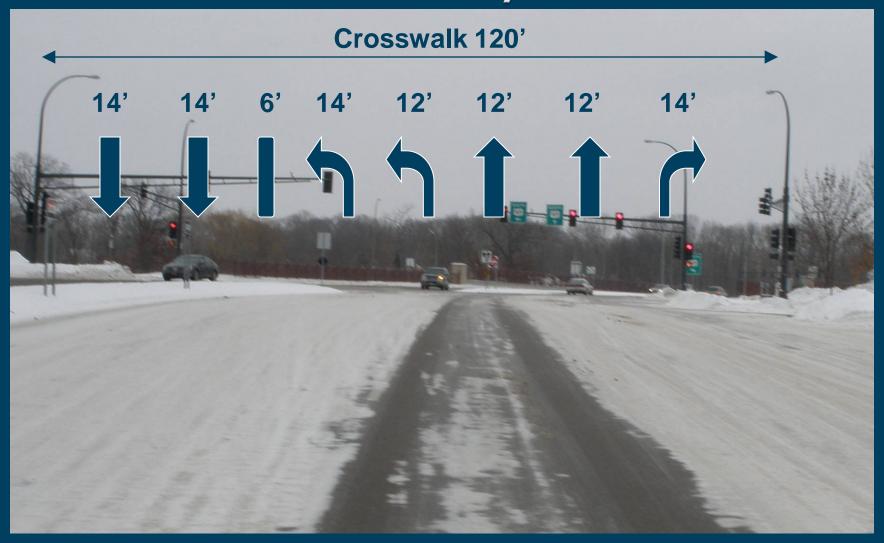


Level of Service vs. Traffic Volume (From HCM ex. 16-14)

Key Principles

 Start with smallest number of lanes – reducing width by a single lane can free up space for other modes

Think "minimums"
 not "desirables" start with the
 smallest
 dimensions



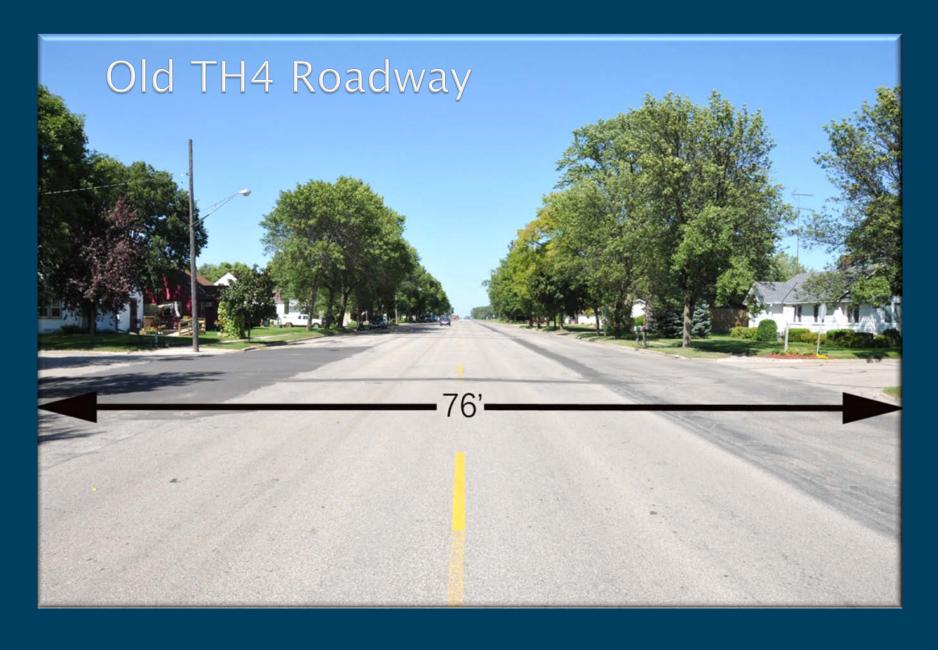
We Over-Build Way Too Often

Designing a "main street"

- ▶ Low Speed (45 mph or less) vs. High Speed
- Major Challenges
 - Community
 - Traffic Analysis
 - Target Operating Speed
 - Allocation of Space
 - Intersections

Where is the Most Design Flexibility?

- Vehicle Design Considerations
 - Lower Speeds are appropriate
 - Number of Lanes
 - Lane width
 - Change in cross section elements along corridor
- Allocation of space
 - Sidewalks
 - Parking
 - Bicycles

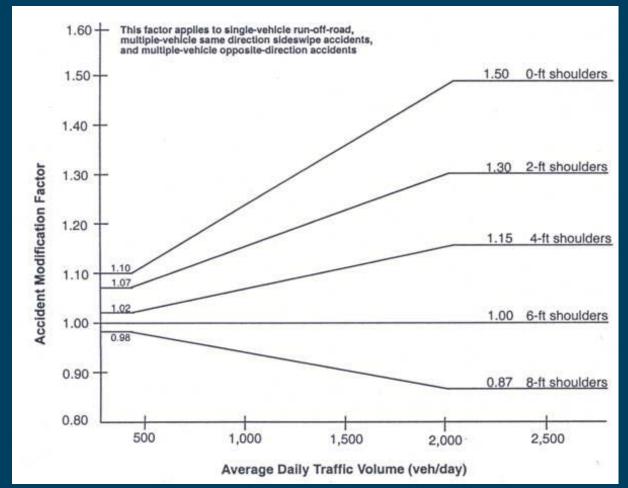


Design Element Spotlight

Shoulder / Parking Lane Width

HIGHWAY TYPE			MINIMUM WIDTH (FEET) (1)			
			Median (or Left)		Outside (or Right) (10)	
			Usable	Paved	Usable	Paved ⁽²⁾⁽³⁾
	2 Lanes	ADT < 400			4	2
		ADT 400 - 1500			6	2 - 6
Arterials (Rural)		ADT 1500 - 2000			6	4 - 6
(4)		ADT > 2000			8	8 ⁽⁵⁾
	Divided 4-lanes		4	4	8	8 ⁽⁵⁾
	Divided 6-lanes		8	8 ⁽⁵⁾	8	8 ⁽⁵⁾

MnDOT rural arterial shoulder widths



Rural two-lane: shoulder width safety effects

From AASHTO Highway Safety Manual

Highway Safety Manual

2-Lane Rural Highway - Crashes/Year

	Shoulder Width						
Lane Width	0' 1' 2' 4' 6' 8						
9'	5.3	5.1	4.8	4.5	4.1	3.8	
10'	4.8	4.6	4.4	4.1	3.8	3.5	
11'	4.2	4.1	3.9	3.6	3.3	3.1	
12'	4.1	3.9	3.8	3.5	3.2	3.0	

*2 mile segment, ADT = 6,000 veh/day, paved shoulders, RHR = 3, 5 access points/mile

Gravel shoulders will add 0% to 2% increase in crashes

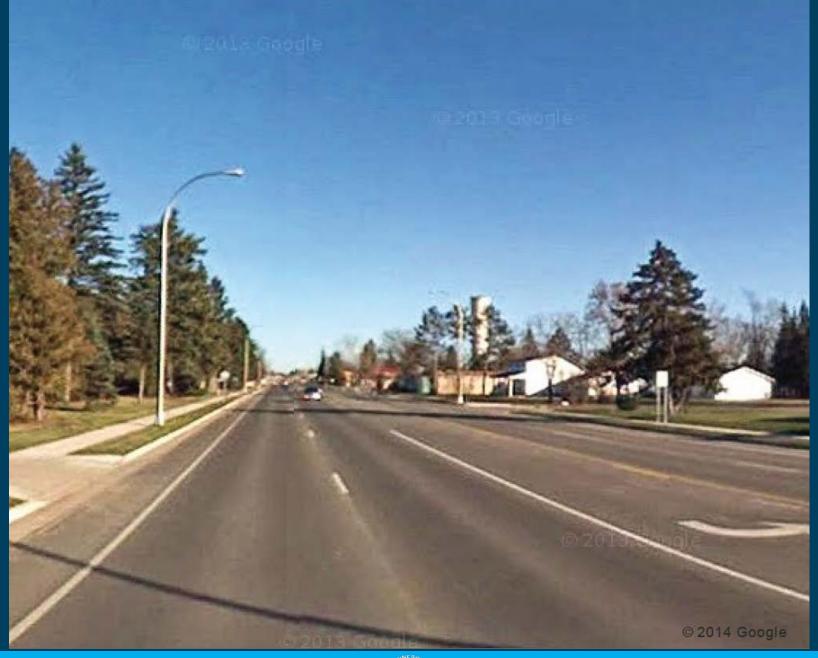
			With Parking ⁽⁹⁾		7 - 10 ⁽⁶⁾
	2 Lanes	≤ 45 mph	Without		Curb Reaction ⁽⁷⁾
			Parking		Curb Reaction
			Without		8 ⁽⁵⁾
Arterials (Urban / Suburban) ⁽⁸⁾			Parking		0
	4+ Lanes	≤ 45 mph	With		7 - 10 ⁽⁶⁾
			Parking ⁽⁹⁾		7 - 10
			Without		Curb Reaction (7)
		> 45 mph	Parking		Curb Reaction
			Without		8 ⁽⁵⁾
			Parking		O
	Divided (4 or more lanes)			Curb Reaction (7)	(See Above)

MnDOT urban arterial shoulder widths

TABLE 4 Standard Curb Reaction Dimensions

	Curb Reaction Width for Indicated Curb Types (feet)				
Design Speed	B, V or vertical monolithic	D, S or sloped monolithic			
≤ 45 mph	1-2	0-2			
> 45 mph	2-3	1-3			

Variable curb reaction widths



	2 Lanes	≤ 45 mph	With Parking ⁽⁹⁾		7 - 10 ⁽⁶⁾
			Without Parking		Curb Reaction ⁽⁷⁾
		> 45 mph	Without		8 ⁽⁵⁾
Arterials (Urban / Suburban) ⁽⁸⁾			Parking		8 ` ′
	4+ Lanes	≤ 45 mph	With Parking ⁽⁹⁾		7 - 10 ⁽⁶⁾
			Without Parking		Curb Reaction ⁽⁷⁾
		> 45 mph	Without Parking		8 ⁽⁵⁾
	Divided (4 or more lanes)			Curb Reaction ⁽⁷⁾	(See Above)

MnDOT urban arterial shoulder widths

12-foot parking lane

T.H. 60 (ADT 5,200)

10-foot parking lane

Residential collector

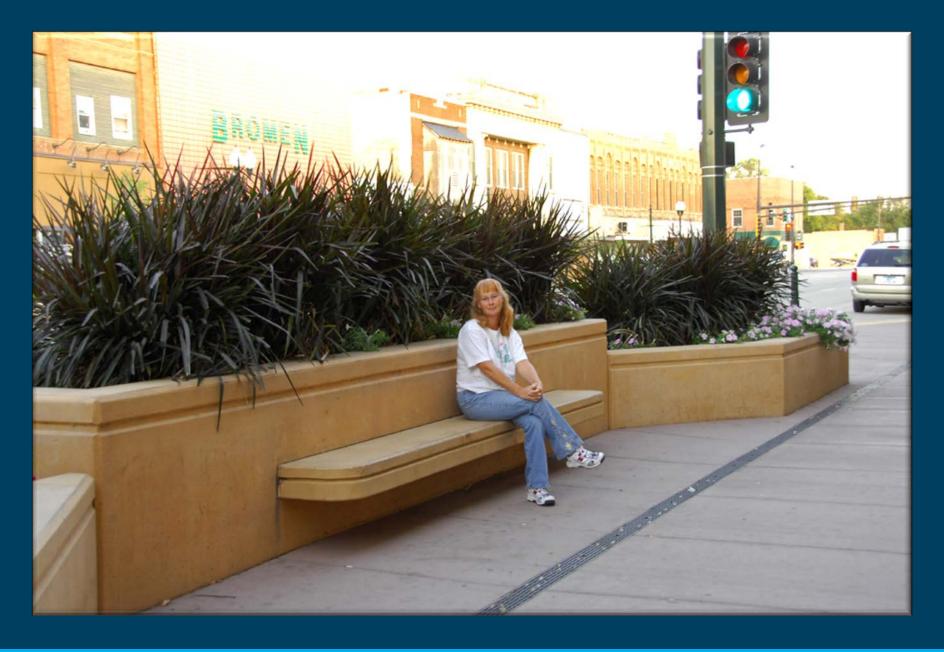
10-foot parking lane

Residential collector

Let's Design a Cross Section!

▶ Using the "STREETMIX" software!





Back In Angled Parking

Other Tools: Bump-Outs



Other Tools: Streetscaping

Constrained Urban Streets

Major Challenges

- Community Desires
- Traffic Analysis often high traffic volumes but high use by all modes
- Target Operating Speed needs to be slow
- Allocation of Space who gets the limited space available
- Intersections pedestrian crossing distances and times

Where is the Most Design Flexibility?

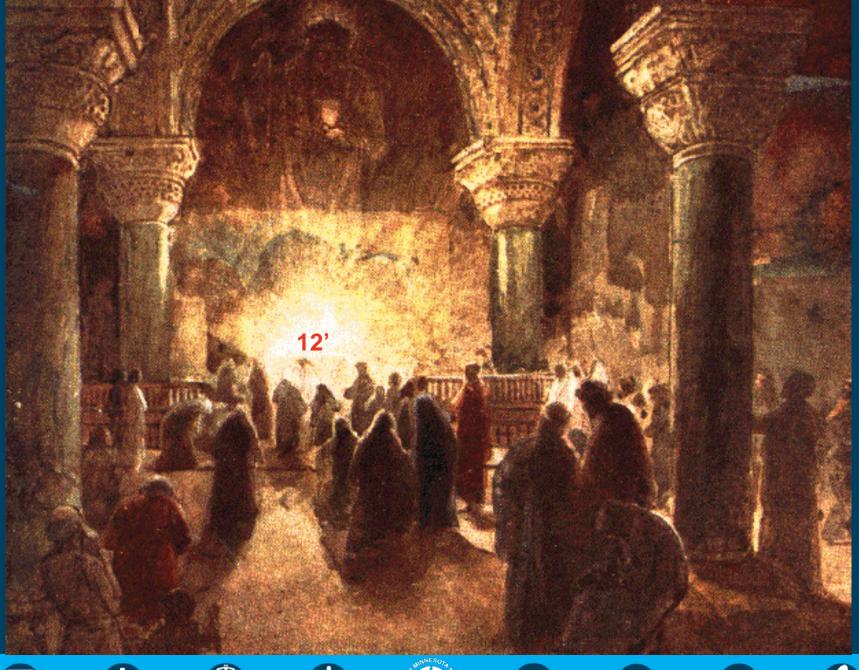
- Vehicle Design Considerations
 - Lower Speeds are appropriate
 - Smaller Design Vehicle is appropriate
- Allocation of space
 - Number of Lanes
 - Lane width
 - Parking (depends on adjacent land use)
 - Pedestrian and bicycle demand
 - No two blocks are the same

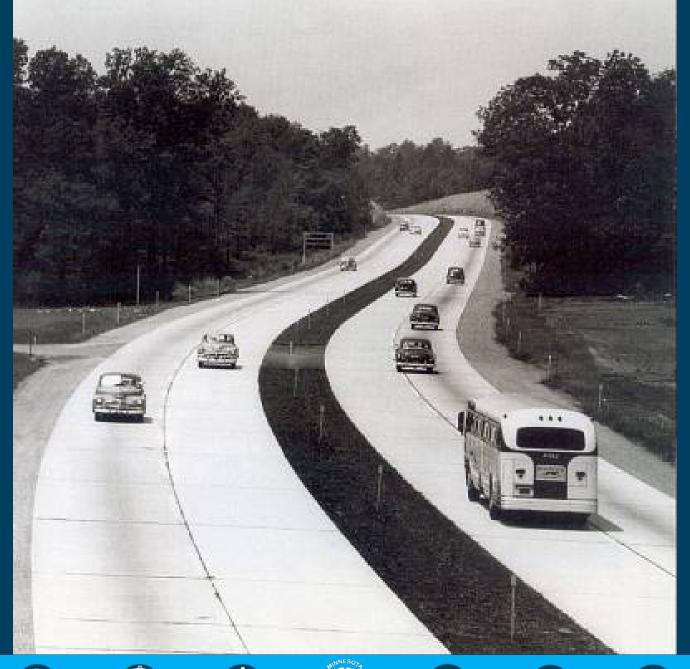
80' Building Front to Building Front

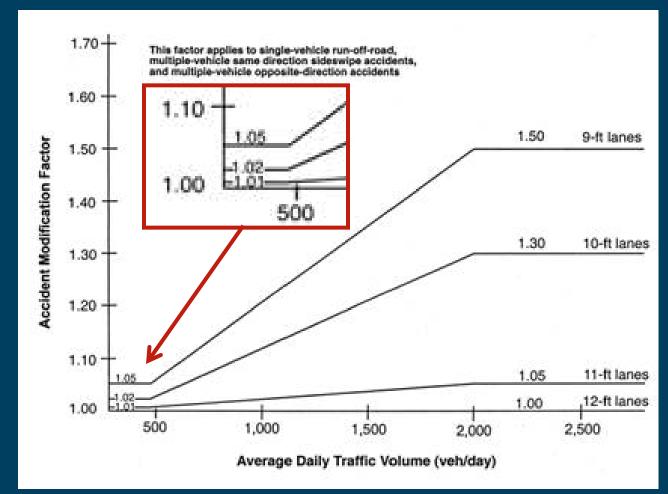
- Transit Route
- Retail Stores
- Sidewalk Cafes
- Many Walkers
- Many Bicyclists
- On-Street Parking
- Near School for Seeing/Hearing Impaired

Design Element Spotlight

Lane Width







Rural two-lane: lane width effects on safety

From AASHTO Highway Safety Manual

Table 4-3.XX TRAVEL LANE WIDTHS – RURAL HIGHWAY SETTINGS

FUNCTIONAL	DESIGN	LANE WIDTHS FOR SPECIFIED DESIGN ADT, feet					
FUNCTIONAL CLASSIFICATION	SPEEDS (mph)	under 400	400 to 1500	1500 to 2000	over 2000		
	20-30	10 - 12 ⁽¹⁾		11 - 12	12 ⁽²⁾		
COLLECTOR	35-50	10 - 12 ⁽¹⁾	11 - 12		12 ⁽²⁾		
	55+	11 - 12		12 ⁽²⁾			
	40-45	11 - 12			12 ⁽²⁾		
ARTERIAL	50-55	11 - 12		12 ⁽²⁾			
	60+	12 ⁽²⁾					
FREEWAY	50+	12					

- (1) 9 feet minimum for roads with a design speed of 40 mph or lower and with a design ADT less than 250
- On reconstruction projects, existing 11-foot lanes may be retained where the horizontal alignment is satisfactory and there is no crash pattern suggesting the need for widening

MnDOT standard lane widths - rural highways

1973 AASHTO "Red Book"

"Traffic lanes on all freeways should be 12 feet wide. This is considered to be the ideal width for capacity and proper operations."

"Desirably the through lanes on arterial streets should also be 12 feet wide. However, the stringent controls of right-of-way and existing development may make use of 11-foot lanes necessary."

1973 AASHTO "Red Book"

"Any width less than 11 feet is considered unsatisfactory for arterial highways."

1984 AASHTO "Green Book"

"[Urban arterial] Lane widths may vary from 10 ft to 12 ft. The 10-ft widths are used in highly restricted areas having little or no truck traffic. The 11-ft lanes are used quite extensively for urban arterial street designs. The 12-ft lane widths are most desirable and are generally used on all higher speed, free-flowing, principal arterials."

1984 AASHTO "Green Book"

"Under interrupted-flow operating conditions at low speeds up through 40 mph narrower lane widths are normally adequate and have some advantages."

"Reduced lane widths allow greater numbers of lanes in restricted right-of-way and allow better pedestrian cross movements because of reduced distance."

Relationship of Lane Width to Safety for Urban and Suburban Arterials

Ingrid B. Potts

Principal Traffic Engineer Midwest Research Institute 425 Volker Boulevard Kansas City, MO 64110-2299 Tel: (816) 360-5284 Fax: (816) 360-6557 ipotts@mriresearch.org

Douglas W. Harwood

Transportation Research Center Manager Midwest Research Institute 425 Volker Boulevard Kansas City, MO 64110-2299 Tel: (816) 360-5336 Fax: (816) 561-6557 dharwood@mriresearch.org

Karen R. Richard

Staff Analyst
Midwest Research Institute
425 Volker Boulevard
Kansas City, MO 64110-2299
Tel: (816) 360-5286
Fax: (816) 561-6557
krichard@mriresearch.org

Word Count: 5,894 + 9 tables = 8,144

TRB 2007 Annual Meeting CD-ROM

Paper revised from original submittal.

Potts, Harwood & Richard - 2007

"...no general indication that the use of lanes narrower than 12 ft on urban and suburban arterials increases crash frequencies."

"The lane width effects in the analysis conducted were generally either not statistically significant or indicated that narrow lanes were associated with lower rather than higher crash frequencies."

2011 AASHTO "Green Book"

"Lane widths may vary from 10 to 12 ft. Lane widths of 10 ft may be used in more constrained areas where truck and bus volumes are relatively low and speeds are less than 35 mph. Lane widths of 11 ft are used quite extensively for urban arterial street designs. The 12-ft lane widths are desirable, where practical, on high speed, free-flowing, principal arterials."

Table 4-3.YY
TRAVEL LANE WIDTHS – URBAN AND SUBURBAN HIGHWAY AND STREET SETTINGS

FUNCTIONAL CLASSIFICATION	LANE WIDTHS FOR SPECIFIED DESIGN SPEED RANGES, feet	
	LOW SPEED (< 50 mph)	HIGH SPEED (≥ 50 mph)
COLLECTOR	10 - 11 ^{(1) (2)}	11 - 12
MINOR ARTERIAL	10 - 12 ⁽²⁾	11 - 12
PRINCIPAL ARTERIAL	11 - 12	12
FREEWAY	N/A	12

- (1) 12 feet may be considered in industrial areas
- (2) 11 feet minimum on four-lane undivided facilities

MnDOT standard lane widths - urban streets

Technical Memo No. 12-07-TS-02

MnDOT / LRRB - 2013

"...changes including lane width reduction...did not have any adverse safety impacts."

"No adverse safety impacts were observed in the use of 11 foot lane widths. No operational impacts were reported."

MnDOT / LRRB - 2013

"Literature suggests that 10-foot lanes provide no significant operational or safety impacts in suburban or urban arterials. No findings or observations in this research dispute these claims."



U.S. 10 - Staples

Let's Design a Cross Section!

▶ Using the "STREETMIX" software!

Other Tools: Medians

- Planted median
- Right-in/ right-outs
- Parking lanes
- Pedestrian crossings

Other Tools:

- Bump-outs
- Bicycle parking
- Pedestrian lighting
- Landscaping
- Streetscaping

Other Tools:

Parallel Bike Boulevards

Pedestrian Crossings

Re-Cap of Key Principles

- Design for Type of Community
- Design Outside-In
- Address Vulnerable Users First
 - Pedestrians, Transit Users, Bicyclists, Disabled
 - Pedestrian Crossing Times
 - Conflict Points
- Consider All Day/Corridor Traffic (not just peak period, single intersection LOS)
- Use Slower Speeds
- Use Fewer/Narrower Lanes

Final chat page check-in

Thank you

Upcoming Training Opportunities:

Advanced Flexibility in Design Workshop April 22 – April 24, 2014

Complete Streets Workshop May 14 - May 15, 2014

For more information visit: www.cts.umn.edu/contextsensitive/workshops/

