# Work Zone Diversion Rate & Capacity Reduction

- Principal Investigator: Professor Eil Kwon, University of Minnesota Duluth
- Task 3: Work Zone Data Collection
  - 12 work zone sites
  - Traffic volumes
  - Travel time
  - Traffic density and speed
- Task 4: Determination of Diversion Rates
- Task 5: Estimation of Work Zone Capacity Reduction

# 12 Work Zone Sites

| wz | Corridor | Lane Closure<br>Configuration | Lane<br>Width<br>(ft) | Median              | Shoulder                 | Speed<br>Limit<br>(mph) | HV<br>(%) | Note          |
|----|----------|-------------------------------|-----------------------|---------------------|--------------------------|-------------------------|-----------|---------------|
| 1  | I-35E    | 2 to 1                        | 12                    | Tube Open           |                          | 55                      | 5.85      | Crossover     |
| 2  | I-35E    | 2 to 1                        | 12                    | Tube Open           |                          | 55                      | 5.02      | Crossover     |
| 3  | I-694    | 2 to 1                        | 11                    | Concrete<br>Barrier | Concrete<br>Barrier Open |                         | 8.4       | Crossover     |
| 4  | US-169   | 2 to 2 (NB)<br>2 to 1 (SB)    | -                     | -                   | -                        | -                       | 7.67      | -             |
| 5  | I-35E    | 3 to 3                        | 11                    | Concrete<br>Barrier | Concrete<br>Barrier Drum |                         | 4.76      | No-lane-close |
| 6  | I-694    | 2 to 2                        | 12                    | -                   | -                        | -                       | 6.86      | No-lane-close |
| 7  | I-494    | 3 to 3                        | 11                    | Open                | Concrete<br>Barrier      | 55                      | 5.28      | No-lane-close |
| 8  | I-694    | 3 to 2                        | -                     | -                   | -                        | -                       | 6.12      | -             |
| 9  | US-169   | 2 to 1                        | 12                    | Drum                | Open                     | 55                      | 5.93      | -             |
| 11 | I-35W    | 2 to 2                        | -                     | -                   | -                        | -                       | 7.71      | No-lane-close |
| 12 | I-694    | 2 to 1                        | 12                    | Concrete<br>Barrier | Open                     | 55                      | 7.64      | Crossover     |
| 13 | I-35     | 2 to 1                        | 12                    | Tube                | Open                     | 55                      | 10.4      | Crossover     |















# **Diversion Rates**

Logit Choice model:

Remaining Traffic Flow Rate =

$$\frac{1}{1 + e^{a * (\frac{Tw - Tb}{Tb}) + b}}$$

1

#### where

- Remaining Traffic Flow (RTF) Rate = ratio of traffic volume during construction to traffic volume before construction at upstream diversion points
- $T_{\rm w}=$  travel time to the last detector station in the lane closure section during construction
- $T_{\rm b}$  = travel time to the last detector station in the lane closure section during the same period in previous no-construction year
- a, b = calibration parameters for each work zone



### I-35E (SP 0282-34) Diversion











#### I-694 (SP 6286-56) Diversion



# **Work Zone Capacities**

- Post-Breakdown Capacity: defined as the 85<sup>th</sup> percentile of queue discharge rate
- Grouping of capacity values depending on lane closure configurations and median types





# Work Zone Capacities

| Lane<br>Config | Lane<br>Width | Median<br>Type                     | Capacity<br>(pc/h) | Capacity<br>(veh/h) | Standard<br>Deviation | Group | Remarks                                                                                 |
|----------------|---------------|------------------------------------|--------------------|---------------------|-----------------------|-------|-----------------------------------------------------------------------------------------|
| 2 to 1         | 12            | Tube Delineator<br>with Crossover  | 1750               | 1669                | 33.7                  | А     | WZ-1,2                                                                                  |
| 2 to 1         | 12            | Concrete Barrier<br>with Crossover | 1685               | 1579                | 37.7                  | F     | WZ-12<br>p value of T-Test with Group<br>A : 0.0024                                     |
| 2 to 1         | 11            | Concrete Barrier<br>with Crossover | 1601               | 1478                | 61.5                  | В     | WZ-3<br>p value of T-Test with Group<br>F : 0.0042                                      |
| 2 to 2         | 12            | -                                  | 2231               | 2158                | 27.5                  | E     | WZ-11, No-lane-close                                                                    |
| 3 to 2         | -             | -                                  | 1819               | 1723                | 48.1                  | D     | WZ-8<br>p value of T-Test with Group<br>E : 1.9E-10                                     |
| 3 to 3         | 11            | Open                               | 2228               | 2136                | 50.7                  | С     | WZ-7, No-lane-close,<br>Concrete Barrier Shoulder<br>p of T-Test with Group E :<br>0.94 |











