Chapter 5

Data Requirements for Microscopic Simulation

John Hourdakis
Center for Transportation Studies, U of MN
Hourd001@tc.umn.edu
Data Requirements

- In This Section We Will Cover:
 - Geometry Information
 - Demand Information
 - Control Information
 - Field Observations
 - Modeling Information
Geometry Information

- Roadway Layout
- Lane Marking Layout
- Detector and Control Device Locations
- Road Signs (Speed Limits, Exit Distances, etc.)
- Grades
- Other Roadway Features
 - Visual Impact Human Factors/Site Distance
 - Substandard or Lack of Shoulders
 - Overpasses/Underpasses
 - Bridges
Geometry Format

• Available
 • CAD Files and Paper Plans
 • Base Mapping
 • Vertical and Horizontal Alignments
 • Lane Markings
 • Road Signs
 • Source: District or Metro Office
 • Microstation Format
 • Topographical Files
 • Aerial Photos
Geometry Format Pitfalls

• CAD Files
 • Very Accurate (Usually!)
 • Identify Type First: Design, Construction, or Lane Marking Plans
 • Scale Translation, if Used as a Background

• Air Photos
 • Represent Reality if Recently Updated
 • Shows Where People Drive and Actual Sizes of Accel/Decel Lanes
 • Although Ortho-corrected, Short Distances Might be Incorrect
 • Resolution May Not be Sufficient to Distinguish All Details

• A Helicopter Fly-by Video is Possible
Geometry Issues

Why Do You Need:

• Lane Markings
• Lane Selection/Changing Behavior
 • Signs, Acceleration /Deceleration Lanes
• Locations of Substandard Shoulders
• Driver Paths
• Distractions Outside the Roadway
• Distance to Surrounding Intersections
 Important in Calculating “Control Delay”
Demand Information

• Traffic Volumes
 • Instrumented System
 • Un-instrumented System
 • Arterial Turning Movements
Demand Information

• Volumes
 • Boundary Conditions (Entrances and Exits)
 • 15 Minute Counts
 • Simultaneous Counts
 • Un-congested Upstream and Downstream Conditions
 • Turning Movements

• Traffic Demand Scenarios
 • Current Time (Also For Calibration)
 • Build Year Projections
 • 20 Year Build Projections
Instrumented System Demands

• Freeway Mainline, Exit/Entrance Loop Detectors
 • Check For Accuracy
 • Over-counting or Undercounting, Outliers
 • Verify Detector Location
 • Not Always Where the Plans Assume They Are
• Estimate Missing Detectors
 • Conservation Equation Has Limitations
 • Distance Between Good and Bad Detectors (Rare Case)
 • Congestion Between Good and Bad Detectors
 • Historical Data Need Adjustments
Demand Information

• Intersection Demands
 • Available From:
 • City/County
 • Mn/DOT Web Site
 • Schedule Manual Counts
 • No More Than 2 Years Old

• Data Used to Prepare Future Projections
 • Do Reality Check of Future Projections
Demand Information

• Balance Mainline and Exit/Entrance Volumes
 • Minimize Errors From Bad Detection
 • Provide Good Base For Checks and Balances
 • Adjust Based on Entrance Ramp Volume
 • Aim to Guarantee Desired Entrance Ramp Volume While Keeping a Realistic Picture of the Intersection
Demand Information

- Un-instrumented System
 - Need to Collect For Peak Period on 15 Min Intervals:
 - Travel Times
 - Mainline & Ramp Volumes
 - Intersection Turning Movements
 - Scope Project Taking Into Account Manual Data Collection
 - O/D Tables From Planning Models Might be Adequate
 - Balance/Adjust Based on Real Counts
Fleet Composition

- Cars
- Single Body Trucks
- Semi-trailers

- Semi-trailers Important When Roadway Grades are Significant and/or Stop-and-Go Congestion Present
 - Heavy Truck % in CORSIM
 - Individual Volumes and Turning Counts in AIMSUN and VISSIM
Fleet Information
Contact: Mark Levenson (651) 296-8535

• Application: Operational Modeling
• Project Purpose: New Interchange
• Modeling Limits: Provide Both Freeway and Arterial Limits
• Count Stations: Request Electronic File of Fleet Composition by Time of Day & Listing of Stations
• Special Data Requests:
 • Metro Area Managers
 • Rural District Project Manager
Control Information

• Ramp Metering
 • If the Actual Algorithm Cannot be Simulated
 Use Pre-Timed Control
 • Ramp Rates Available in IRIS
 • Historical Ramp Metering Data Available
 • Generate 15 Minute Pre-Timed Equivalents

• Intersection Control
 • Current Signal Design & Timing Plans
 • Future Scenarios Find New Optimized Timing Plans
Field Observations

• Mainline & Ramp Speeds
 • On Detector Station Locations AND Manually on Selected Locations

• Ramp Queues

• Backup Queuing

• Lane Changing Characteristics

• Weave, Merging Behavior

• Lane Drop Behavior
Field Observation Requirement

• Peak Period Observation
• Driving the Freeway
• Monitoring Arterial Operation
• Observe From RTMC Vantage Point
Conclusions

• The More Information About the Site You Have the Better
• Apart From the Necessary, You Need Information That Will Assist on Calibration and Information That Increases the Quality of the Information You Need
• Know Geometry
• Check Quality of Data
• Replicate Control Effects
 • Pre-timed Control Should Not Affect Mainline Volumes