Chapter 3

Modeling Guidelines and Schedule

Kevin Sommers
Minnesota Dept. of Transportation
kevin.sommers@DOT.state.mn.us
651-634-2413
Overview

• General Modeling Guidelines
• Modeling Schedule
• Modeling Process Flow Chart
General Modeling Guidelines

• Developed By Mn/DOT & FHWA to:
 • Clarify Modeling Process
 • Produce Reusable and Verifiable Products
 • Meet Federal Operational Analysis Requirements for the Interstate Access Request

• Constantly Updated : See Website for Latest Version
General Modeling Guidelines

Modeling Expectations

- Lists 21 Items to be Followed on all Modeling Projects
- Categories:
 - Model Requirements
 - Data Requirements
 - Calibration Requirements
 - Quality Control Requirements
General Modeling Guidelines
Deliverables

- Lists 11 Required Deliverables
- The Most Critical Are:
 - Link-Node Diagrams
 - Lane Schematics
 - QA/QC Sheets
 - O-D Matrixes
 - Balanced Traffic Demand Dataset
 - MOE Tables
General Modeling Guidelines
Available Resources

• Resources Available Include:
 • Data Extraction Workstation Information
 • Mn/DOT Contact Personnel Phone Numbers and e-mail Addresses
 • Useful Websites
Modeling Schedule

CORSIM Modeling Schedule

Tasks
- Kick Off Meeting
 - Determine Modeling Limits
 - Discuss Time Periods
 - Identify Scenarios
 - Discuss Schedule
- Data Collection
 - Field Review
 - Assemble Base Mapping
 - Traffic Volumes
 - Speed Runs
 - Queue Observations
- Base Model Development
 - Develop Link-Node Diagram
 - Develop Lane Schematic
 - Balance Traffic Data Sets
 - Create Model
 - Develop O-D Matrix
 - QA/QC Form
- Calibration
- Alternative Analysis
 - Measures of Effectiveness Tables and Graphics
 - Write up of problem areas and proposal options
 - Sensitivity Testing
- Final Report
 - Review Milestone/Documentation

Intermediate review of link-node and lane schematic diagrams required if model is over 4 miles long.
(link-node in CADD using real coordinates, Lane Schematic in CADD)
Modeling Schedule
Project Scoping

• Determine Model Limits
• Discuss Time Periods
• Identify Scenarios
• Develop Schedule
• Determine Data Collection Requirements
Modeling Schedule
Data Collection & Assembly

• Assemble Base Mapping
• Collect and Assess Traffic Volumes and Speeds
• Collect and Assess Traffic Control Information
• Perform Field Review of the Study Area
Modeling Schedule
Base Model Development

• Develop Link-Node Diagram
• Develop Lane Schematic
• Balance Traffic Data Sets
• Develop O-D Matrix
• Create Base Model
• Perform QA/QC and Provide Documentation
Modeling Schedule
Calibration

• Verify Model Results Against Field Observations and Traffic Data
• Develop Calibration Result Tables and Graphics

• This is the **Most Important Step** in the Modeling Process
• It is an Iterative Process
• Parameters **Will** Be Transferred to Future Models
Modeling Schedule
Alternative Analysis

- Develop Proposed Alternatives
- Prepare MOE Tables and Graphics
- Evaluate Alternatives
- Propose Additional Improvements
- Perform Sensitivity Testing
Modeling Schedule
Final Report

• Prepare Final Report
 • Study Objectives and Scope
 • Data Collection
 • Forecasting Assumptions
 • Description of Alternatives
 • Results
Modeling Schedule
Final Report

• Prepare Technical Appendix
 • Technical Memos
 • Calibration Results
• Tabular Summaries
• Graphical Summaries