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ABSTRACT 
 

As employment of simulation is becoming wide spread in traffic engineering practice, questions 

about the accuracy and reliability of its results need to be addressed convincingly. A major 

criticism related to this is proper calibration of the simulation parameters as well as validation 

which is often not performed, or dealt with in an ad-hoc fashion. This paper presents a complete, 

systematic and general calibration methodology for obtaining accuracy needed in high 

performance situations. A technique for automating a significant part of the calibration process 

through an optimization process is also presented. The methodology is general and is 

implemented on a selected simulator to demonstrate its applicability. The results of the 

implementation in two freeway sections of reasonable size and complexity in which detailed data 

were collected and compared to simulated results, demonstrate the effectiveness of the manual 

calibration methodology. For instance, through calibration the average volume correlation 

coefficient on 21 detecting stations improved from 0.78 to 0.96. Comparable results were 

obtained with the automated calibration procedure with significant time savings and reduced 

effort. 
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INTRODUCTION 
 

 Traffic simulation is increasingly being used in practice as the sophistication and 

requirements prior to deployment of ATMS systems increases along with the complexity of 

problems engineers are faced with in daily practice. The effectiveness of a traffic simulator in 

evaluating traffic management strategies lies in its ability to accurately replicate actual traffic 

conditions; this requires proper calibration of its parameters rather than using default values. 

Calibration is the process in which the model parameters of the simulator are optimized to the 

extent possible for obtaining a close match between the simulated and the actual traffic 

measurements, which primarily include volume, speed and occupancy. Generally, calibration is 

an iterative process in which the engineer adjusts the simulation model parameters until the 

results produced by the simulator match field measurements; the comparison part is often 

referred to as validation. 

               There are two main issues related to calibration. First, a systematic procedure for the 

calibration process is lacking. Typically, a high performance simulator has numerous parameters 

that must be calibrated to obtain accurate results. In the absence of earlier calibrations at a site, 

the best-suited values of the simulator parameters are currently determined iteratively by trial-

and-error and in an ad hoc fashion; this makes calibration a time-consuming and inefficient 

process, and as a result it is usually not performed or treated only superficially in most practical 

applications. The second issue related to calibration is that the goodness-of-fit tests usually 

employed to assess the effectiveness of calibration do not provide sufficient information for 

assisting the user to identify weaknesses during the course of the calibration. Existing tests 

measure only the magnitude of the percentage error and assess trends i.e. mean square error or 

regression coefficient. For a more rigorous accuracy assessment of the simulator there is a need 
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to use appropriate test statistics that can measure linear bias, as well as systematic and 

unsystematic error therefore providing the user with more information about the nature of the 

error.                

                This paper presents a complete and systematic general calibration methodology that 

addresses these issues and was implemented and tested at several sites for assessing freeway 

ramp metering performance. Its implementation was greatly simplified by an optimization 

technique also presented here along with results from a 20-Km freeway section in Minneapolis, 

Minnesota. The latter is related to a recently completed ramp metering evaluation study [1] in 

which very accurate results were obtained following the calibration methodology presented. The 

optimization technique produced comparable results faster, i.e. while the manual calibration 

required about 2 months for implementation of the first stage, the similar stage through 

automated calibration required only 6 hours.  

 

BACKGROUND    
 

The general requirements of a simulation calibration procedure have been discussed in 

only a few publications [2,3,4,5,6] along with Goodness-of-fit tests for validating traffic 

simulators. However, rigorous traffic simulator calibration methodologies are still lacking. Most 

of the published methodologies are not general but rather applicable only to a particular 

simulator; in addition their statistical analysis and verification of goodness-of-fit is not 

sufficiently detailed as mentioned earlier. This section provides a review of the most widely 

known calibration procedures. 

INTRAS [7], the microscopic traffic simulator developed by FHWA, was employed to 

simulate traffic operation on Southern California freeways for evaluating incident detection 
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algorithms and for training artificial neural network models to detect freeway incidents [8]. The 

calibration procedure adopted in that study was performed in two stages. First, through trial-and-

error, the parameters that influence vehicle movement during incident-free conditions were 

calibrated with incident-free data. The parameters were calibrated sequentially, i.e. while the best 

value of any particular parameter was being calibrated, the remaining parameters were treated as 

constants. When a parameter was being calibrated, the objective was to increase the slope and r2 

(regression coefficient) of the simulated vs. actual station volume and occupancy plots with 

greater emphasis on volume. After a suitable combination of the non-incident parameters was 

found, through trial-and-error, parameters related to incidents were calibrated against incident 

data sets. The RMS percent error between the simulated and actual occupancy during and after 

the incident was used as a performance measure during this stage. Even though, according to the 

authors, this calibration methodology produced satisfactory results, its shortcoming is that it 

failed to seek the optimum combination of parameters in a systematic way. 

MITSIM [9], the microscopic simulator developed by the Massachusetts Institute of 

Technology, was recently employed to evaluate traffic management schemes involving 

coordinated traffic control systems, bus priority at signals and bus-lane operations in Sweden 

[10]. The calibration process was performed in 2 stages; in the first stage the driver behavior 

parameters were calibrated while in the second the travel behavior parameters were calibrated. 

The objective during driving behavior parameter calibration was to minimize the sum of squares 

of errors between the simulated and actual sensor speeds. Calibration of the travel behavior 

parameters involved the calibration of the route choice model parameters followed by OD 

estimation. The objective during route choice model calibration was to match the split of trips 

between two sensors through either one of which all trips pass. The objective during OD 
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estimation was to minimize the deviation between the estimated and the observed sensor counts 

and also minimize the deviation between the estimated OD and the seed matrix. The 

effectiveness of the calibration was evaluated by comparing 3 types of observed and simulated 

measurements: traffic flows, travel times and queue lengths. The two goodness-of-fit measures 

used for this purpose were the root mean square percent error and the mean percent error. The 

calibration methodology adopted in this study is quite complicated and laborious. In addition, all 

three measurements used are general and do not assist in calibrating local model parameters. 

Calibration of the driving behavior parameters and the OD estimation process can be automated 

by the incorporation of appropriate optimization techniques. 

PARAMICS [11], is a microscopic simulator developed by Quadstone Limited in 

Edinburgh and was recently employed to evaluate freeway improvement strategies (ramp 

metering strategy, auxiliary lane addition, HOV lane addition) in the San Francisco Bay Area 

[12]. According to the calibration methodology followed in this study, several parameters such 

as link speed, vehicle top speed, simulation time step and signposting distances were calibrated 

based on engineering judgment or experience. In order to calibrate the mean headway and mean 

reaction time, simulations were performed with multiple combinations of these parameters using 

the average network speed and maximum vehicle throughput as performance indicators. 

Appropriate target values of these performance measures were determined for the particular test 

site selected. As a final measure of the effectiveness of calibration, a chi-square test was 

performed to compare the simulated vs. actual speed contour graphs. Similarly to the previous 

study, the measurements used are too general to allow detailed calibration of local parameters. 

As discussed later such a high level calibration might prove misleading.                             
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FRESIM [13], another simulator developed by the FHWA, was employed to simulate 

expressway traffic operation in Singapore [14]. An automated calibration procedure was 

followed in this case. A Genetic Algorithm [15] optimization technique was used to search for 

the best combination of 12 simulator parameters. The objective function used in the optimization 

algorithm was a combination of the average absolute error (AAE) between the simulated and the 

actual 30 sec volume and speed averaged across all lanes. The AAE between the simulated and 

actual mainline average volume and speeds were used to measure the effectiveness of 

calibration. The calibration methodology adopted in this study, involving an optimization 

technique, is efficient as it is searching systematically for the best combination of simulator 

parameter values and as such it represents a significant improvement over conventional 

calibration methodologies. However, the calibration process involved only global parameter 

optimization i.e. no attempt was made to calibrate local parameters. 

 

METHODOLOGY FOR PRACTICAL CALIBRATION AND VALIDATION 
 

As mentioned earlier, the reliability of any simulator depends on its ability to produce 

results close to reality. The process of determining whether the simulation model is close enough 

to the situation being simulated is generally achieved through an iterative trial-and-error process 

involving calibration of the model parameters, comparing the model to the actual system 

behavior and using the discrepancies between the two to improve the results until the accuracy is 

judged to be acceptable. The behavior of the actual system is usually defined in terms of 

measurable traffic variables such as volumes, speeds, occupancies, queue lengths, etc., which for 

practical purposes are measured by detectors or observed manually. To validate the simulation 
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model, the simulator should be able to emulate actual measurements and produce a series of 

matching simulated values.  

 

Goodness-of-fit measures used for validation 

Regardless of the exact calibration procedure employed its success and efficiency 

depends on the measurements used during the validation as well as the goodness-of-fit measures 

employed. The measurements used to compare reality with simulation can not be easily defined 

because they depend on the given site to be modeled and the available instrumentation. In 

freeways the most common measurements are volume, speed or occupancy, and rather 

infrequently density which can be derived from occupancy. In some cases where entrance ramps 

are metered, an important validation measure is the queue size. The methodology described in 

this paper deals primarily with freeway sections where volume and speed are the primary 

validation parameters as in most cases in practice. However, further refinements are also 

presented for cases where demanding objectives, such as ramp metering, need to be evaluated. 

In order for the calibration methodology to be efficient and robust the goodness-of-fit tests used 

should not just provide a metric describing the fit but they should include information as to what 

is the nature of the discrepancy between reality and simulation so the user can target specific 

model parameters for calibration. A typical statistical procedure for comparing two sets of data 

for a close match is through a hypothesis test such as the t-test. The null hypothesis in this 

context could be that the mean of the simulated traffic measurements is equal to that of the actual 

traffic measurements. However, there is a limitation of applying the t-test to traffic 

measurements. To apply this test, the observations should be identically and independently 

distributed (i.i.d.) but simulated and actual traffic measurements are time series that are not 
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necessarily i.i.d. Therefore the validation of a simulator cannot be based on such a hypothesis 

test.  

            A widely used error measure that can provide a fairly good initial estimate of the degree 

of fit between the simulated and the actual traffic measurements is the Root Mean Squared 

Percent Error (RMSP), defined in Eq. 1. This error measure gives an estimate of the total 

percentage error and is defined as: 

RMSP =   ∑
=
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where RMSP is the root mean squared percentage error 

           xi is the simulated traffic measurement value at time i 

           yi is the actual traffic measurement value at time i 

 

The correlation coefficient (r) is another popular goodness-of-fit measure used to measure the 

strength of the linear association between the simulated and the actual traffic measurements and 

is defined as: 
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where r is the correlation coefficient 

           x  is the mean of the simulated traffic measurement values 

           y  is the mean of the actual traffic measurement values 

           σx is the standard deviation of the simulated traffic measurement values 

           σy is the standard deviation of the actual traffic measurement values 
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           n is the number of traffic measurement observations 

 

The RMSP has an inherent deficiency in considering the disproportional weight of large errors 

while r although being a good measure does not provide any additional information to the 

modeler as to the nature of the error (difference) between real measurements and simulation. 

Theil, in his work on economic forecasting [16] developed a goodness-of-fit measure called 

“Theil’s Inequality Coefficient”, this is more sensitive and accurate than the RMSP or r and it 

can also be decomposed into three other metrics that provide specific information about the 

nature of the error. Theil’s Inequality Coefficient [16] is defined as: 
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The square of the numerator in Eq. 3 can be decomposed into the three components of the 

equation: 
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Based on this and Eq. 3, three components of U can be derived, namely Um, Us and Uc, which 

can be used to measure different aspects of the error between the simulated and the actual traffic 

measurements. These components are defined as: 
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where 

 Um is the bias proportion, which is a measure of systematic error that can be used                 

to determine consistent over-counting or undercounting caused by an excess/loss of 

vehicles. 

Us is the variance proportion, which can be used to measure the simulated                

measurements’ ability to replicate the degree of variability (fluctuations) in the actual 

measurements. 

Uc is the covariance proportion, which is a measure of unsystematic error. 

r is the correlation coefficient of the simulated and actual data 

  The other variables are as defined earlier. 

 

Methodology for Practical Calibration and Validation 

The calibration methodology presented in this paper was primarily developed for freeway 

simulation. Since the most common freeway measurements are volumes, occupancies and 

speeds, the methodology is illustrated by using 5-minute measurements collected from detector 

stations1 but can be easily applied to any set of measurements or time slices. Calibration is 

enabled by using mainline station simulated and actual measurements and attempting to obtain 

the best match between the two by adjusting the simulator parameters through trial-and-error in 

                                                 

1 Each detector station agregates counts from all its lane detectors and reports the total volume 

and average occupancy. 
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the manual process or through optimization. The simulator parameters to be calibrated for this 

objective fall into two main categories: global (those that affect the performance of the entire 

model) and local (those that affect only specific sections of the roadway). Examples of global 

parameters are the vehicle characteristics (Length, Width, Desired speed, Max 

Acceleration/Deceleration, and minimum headway). Speed limits of sections of the freeway 

model are local parameters. During the calibration process, the global parameters are calibrated 

first followed by local parameter calibration.  

The calibration process is performed in two main stages based on volume and speed, 

followed by an optional stage in which the control variable depends on the specific purpose for 

which the simulation is performed. For example, if the objective of the simulation is to test the 

effectiveness of an adaptive ramp-metering algorithm, ramp queues could be used as the 

appropriate validation variable in the third stage. Similarly, if the objective is to simulate 

accidents, the congestion backup can be used as an appropriate variable in a similar way as 

presented here. Volume-based calibration is performed first as it is less complicated. Speed is a 

more sensitive measure to the fluctuations of traffic and progresses the calibration further. The 

optional 3rd stage is used to fine-tune the simulation model for the specific purpose of the 

simulation. The step-by-step procedure to be followed in each of the 3 stages of the calibration 

process is described below. 

 

Stage 1: Volume-based Calibration. 

The objective during this stage is to obtain simulated mainline station volumes as close as 

possible to the actual mainline station volumes which are used for ground truth as they are not 

input to the simulator and are routinely measured in freeway surveillance systems. The global 

simulator parameters to be modified in this stage are those related to vehicle characteristics like 
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speed, acceleration, deceleration rates and other parameters related to interaction between 

vehicles. Prior to beginning the calibration an initial run should be performed using default or 

best estimates of the simulator parameters and the results checked for general reasonableness and 

resemblance to mainline detector station data. In some instances [1] discrepancies are not caused 

by the model parameters but rather erroneous demand patterns either in the data collection stage 

or in the data entry. Once this possibility is ruled out, the user should check if the demand 

patterns randomly generated by the simulator are close to the specified ones. In the case of 

freeways, demand patterns include entrance and exit volumes or percentage of mainline volumes 

exiting. Small deviations from their specified values can easily be accounted for by replicating 

the simulation runs a number of times; usually 10 replications were found to be sufficient by the 

authors. Following this preliminary checking, the aforementioned model parameters are adjusted 

through trial-and-error over several iterations. For manual calibration the systematic procedure 

presented next is suggested as a guideline. 

Starting from the first upstream station the goodness-of-fit statistics for that station are 

calculated and the vehicle model parameters starting with the desired speed are sequentially 

adjusted. It is recommended not to proceed with subsequent stations unless good fit is reached 

with the one in hand. The first couple of upstream stations in a freeway section usually have little 

interference from input traffic patterns (just one or two exit/entrances) therefore the response to 

changes in the model variables should be strong. The calibration exercise proceeds from 

upstream to downstream until the end of the freeway section is reached. If acceptable accuracy 

has not been reached in all the stations the cycle starts again from upstream. The goal is to 

gradually change and fine-tune the simulation parameters until all stations have acceptable fit. It 

has been observed that the change in the global parameters diminishes as the process moves 
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downstream. For example, for a 10-mile section with about 15 detector stations, the global 

parameters change in magnitude reduces beyond the first 4 stations. Therefore, after the 

simulated volumes of the first few stations attain a close match with the actual ones, the global 

parameters may have little effect and the engineer should focus on local parameters like speed 

limits and lane changing parameters. In the rest of this section, guidelines on how to interpret and 

use the information given by the statistics are presented. 

While calibrating the global parameters, the focus should be to attain satisfactory values 

for the three statistics, namely RMSP, r and U. At the first stage generally the possibility of a 

high accuracy score is small but one can aim for numbers like RMSP below 15%, r above 0.8, 

and U lower than 0.3. An unsatisfactory value of RMSP or r can be attributed to inappropriate 

values of global simulator parameters like vehicle speeds, acceleration and deceleration rate, 

which require calibration.  

The more sensitive statistics namely Us, Uc, and Um provide hints as to the nature of the 

discrepancy between the simulated and actual station volumes. An unsatisfactory value of Um 

along with satisfactory values of Uc and Um (Fig.1a) indicates a consistent loss/excess of 

vehicles that could be a result of erroneous demand data at the previous entrance or due to an 

error in the number of vehicles exiting before that station. The latter can be caused by improper 

weaving that might prevent vehicles from reaching the proper lane on time for the exit or due to 

wrong turning percentages. A valuable observation in a number of simulations, where the 

demand is entered as input and exit flows updated over short periods (5 to 15 minutes) is that the 

exit volumes might not be the ones expected simply because the correct amount of vehicles does 

not reach the exit at the proper time during the simulation. In such a case, although the correct 

percentage of vehicles exits the actual resulting volume is wrong. This problem is not observed 
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in simulations where the demand is described through time dependent origin-destination 

information. 

An unsatisfactory value of Uc (less than 0.9) (which is often accompanied by an 

unsatisfactory value of Um (more than 0.1)) at a particular station (Fig.1b) with the value of Uc 

at the station downstream being satisfactory indicates the existence of a bottleneck between the 

two stations either in reality or generated by the model.  Through calibration of the local 

parameters, this bottleneck should be either generated or suppressed accordingly. If 

unsatisfactory values of Uc and Um are observed (Fig.1c), it is indicative either of an error in the 

vehicle behavior, which can be attributed to the acceleration / deceleration rates or due to 

incorrect exiting volumes at the previous exit, for the reasons mentioned earlier. An 

unsatisfactory value of Us (more than 0.1), often accompanied by unsatisfactory values of Um 

and Uc, (Fig.1d) reflects large variability in either the simulated or the actual volumes which 

may be caused by vehicles driving close to each other; in such instances the 

acceleration/deceleration rates need to be appropriately adjusted.  

 

Stage 2: Speed-based calibration 

The objective during this stage is to obtain simulated mainline speeds as close as possible 

to the actual mainline speeds, and to match the actual breakdown conditions of known bottleneck 

locations. The simulator parameters to be calibrated during this stage comprise mostly of local 

speed limits though global parameters related to vehicle characteristics such as desired speed, 

acceleration and deceleration rates, might need some further fine tuning. 

To compare the simulated and the actual mainline speeds, contour/3-D graphs can be 

used wherein bottleneck locations can be visualized easily. If paired loop detectors are not 
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available to measure actual mainline speeds, the speeds can be derived from the volume and 

occupancy measurements from single loop detectors using the following equation: 

               S =    (0.11*Vol*(Lv+Ld)) /(Occ)   

where   S is the actual speed in kmph 

            Vol is the volume over the detector in 5 minutes 

            Lv is the average vehicle length in m 

            Ld is the detector effective length in m 

            Occ is the detector occupancy in %. 

                The process of adjusting the speed limits, as with the volume, should be performed 

starting upstream and proceeding downstream. In order to suppress a false bottleneck, often 

generated in an uncalibrated simulation, the speed limits should be increased in the region after 

the bottleneck location so that vehicles leave the location faster. Conversely, in order to generate 

a missed bottleneck, the speed limits before the region should be lowered; an increase in the 

grades will also produce a reduction in available gaps therefore vehicles will have to create gaps 

and subsequently cause congestion. Modification of the acceleration and deceleration rates also 

tends to affect the speed of vehicles to a certain extent. Calibration of the appropriate vehicle 

speed (global parameter) along with the local speed limits produce variability in speeds that are 

closer to those observed in reality. 

Through extended observations of freeway traffic, we found two major categories of 

bottlenecks. The first category describes the bottlenecks generated through weaving, be that from 

a nearby entrance/exit or simply due to a lane drop. The second category describes bottlenecks 

attributed to driver behavior at complex geometries. For example, a well known bottleneck 

location in Minneapolis, MN is on freeway I-94 eastbound before the exit to I-35W north. This 
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four lane location has substantial distance between successive entrances/exits to allow for 

weaving to be completed well before the observed bottleneck location. Regardless of this, a 

sharp speed drop is observed on all lanes. When this location was visually observed we noticed 

that it contains two turns in close proximity, the second of which is located under an overpass 

and all of this during a considerable downhill grade. The lack of good visibility in conjunction 

with the constrictive environment of the underpass prompts the drivers to sharply reduce their 

speed hence creating the ground for the generation of a bottleneck. 

Although bottlenecks due to weaving are relatively straight forward to model since most 

simulators have enough parameters available to control the lane changing, gap generation and 

acceptance behavior, the second category of bottlenecks, attributed solely to driver behavior, 

needs a lot of observations and familiarity with the site, in order to be modeled accurately. 

 

Stage 3 (Optional): Objective-based calibration 

While the first two stages are well defined, this third stage depends on the objective of 

the simulation. The need for this stage was revealed during a real project. Specifically, in this 

project the objective was to evaluate an adaptive ramp metering algorithm. Although the 

calibration results from the first two stages resulted in high accuracy without control, when ramp 

control was implemented the accuracy dropped to unacceptable levels on the mainline and 

especially in reproducing the ramp queue sizes. The reason was that small initial discrepancies in 

the model gradually amplified due to the adaptive nature of the control algorithm. The algorithm 

gradually forced ramp rates a lot different than the ones observed in reality. Therefore, a third 

calibration stage was devised and implemented. In this stage the Queue sizes were the validation 

variable and very specific local variables like speed limits and mainline section grades where 

further adjusted. 

 



Hourdakis, Michalopoulos, and Kottommannil 18

Even though the details of the third stage calibration may vary based on the objective of 

simulation, similar procedures can be followed as pointed out at the beginning of this section. 

One should be careful not to be misled by the good results of the first two stages but validate the 

simulation with at least one additional measurement.  

 

IMPLEMENTATION 
 

          The calibration methodology presented was used in a real life project for a number of 

freeway sections in Minneapolis, Minnesota. The objective of the simulations was to test the 

effectiveness of adaptive ramp metering [1, 17] following a period of public controversy. This 

section describes one of the test sites followed by results of the implementation; the simulator 

employed in this case was a well respected microscopic one called AIMSUN [18] 

 

Test site and data 

             The test site is a 20 km (12 miles) long section of TH 169 northbound starting from the 

interchange with I-494 and ending at I-94. The site is a circumferential freeway of average 

geometric complexity and carries moderate traffic volumes i.e. approximately 50,000 vehicles 

daily. The site consists of mainly two lanes with 10 weaving sections, 24 entrance ramps and 25 

exit ramps. 

             The detector data used for calibration comprised of 5-minute volumes and occupancies 

for March 23rd from 14:00 hrs to 20:00 hrs. 5-minute volume and occupancy from 14:00 hrs to 

20:00 hrs for March 21st, 2000 and March 22nd, 2000 was used for validating the calibrated 

simulation model. It is important to note that in order to replicate real-time ramp control all 
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demand patterns and boundary conditions had to be collected simultaneously for each day of 

simulation i.e. average values would not realistically emulate the ramp metering strategy 

employed.  

            

Results  

Stage 1:  

          The volume-based calibration process required about 300 simulation iterations in which 

the parameters were successively changed as described earlier. The calibration process proved to 

be very effective as indicated by the test statistics shown in Table 1. As can be observed from the 

table, there is significant improvement in the values of the test statistics compared to those 

obtained using the best initial estimates of the simulation parameter values. The simulator 

parameter values prior to and after each stage are shown in Table 2. As can be observed from the 

table, the simulator parameters that had to be modified during the first stage were the parameters 

related to vehicle characteristics and the local speed limits.                             

          During this stage, a number of irregularities in the input data were observed. Specifically, 

in two locations the placement of the entrance ramp loop detector was not the one reported in the 

plans. Because of the sensor misplacement, the simulation results deviated substantially from the 

actual measurements in spite of careful screening of the data entry process prompting an 

investigation. After some analysis and visits to the field the true location of the detectors and the 

nature of the problem was revealed. Mn/DOT was not aware of these discrepancies until that 

time. 
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Stage 2:  

           At the beginning of this stage, the actual mainline speeds were compared with the 

simulated mainline ones through contour graphs as shown in figures 2(a) and 2(b) respectively. 

As can be seen from the contours, there was significant discrepancy between the speeds in spite 

the stage 1 calibration; moreover the bottleneck locations did not match the observed ones. 

Hence, the second stage of the calibration process was performed which required approximately 

100 additional simulation iterations during which the local speed limits, mainline section grades, 

and lane changing parameters were adjusted through trial-and-error. Following this, the matching 

of the bottleneck locations improved considerably as can be seen from the speed contour graphs 

in Figure 2(c). The simulator parameter values obtained at the end of this stage are shown in 

Table 2.  As can be observed from the table, the parameters related to vehicle characteristics did 

not have to be altered much, but the local speed limits had to be modified substantially.  

 

Stage 3:  

           After stage 2, when the simulation was performed with ramp metering, it was observed 

that the simulated and the actual merge detector counts, at almost all the entrance ramps did not 

match during the ramp-metering period. As a result, the simulated and the real ramp queues did 

not match. An example of this on a single ramp is depicted in Figure 3. This problem was 

considered major and prompted development and implementation of the 3rd stage in the 

proposed calibration methodology. This stage required approximately 100 additional simulation 

iterations. At the end of this stage, the simulated ramp queues on all the entrance ramps had a 

close match with the actual ones as shown for the TH-55WB example ramp of Figure 3.  The 

simulator parameter values did not generally change in this stage, as can be seen in Table 2. 
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What changed were the speed limits and grades on specific sections (less than 10% of the total 

site). 

After the 3 stages of the calibration process the simulation model was validated based on the 

remaining two days, i.e. March 21st and March 22nd, 2000. The results were very satisfactory as 

indicated by the values of the test statistics shown in Table 1. It can therefore be seen that the 

adopted calibration methodology is very effective. 

Since the calibration process involved modification of the simulator parameters iteratively by 

trial-and-error, it was a very time-consuming procedure. The volume, speed and queue-based 

calibrations required a total of about 4 months to complete, while the volume alone required 2 

months.  

 

AUTOMATION OF THE CALIBRATION PROCESS 
 

As the previous section suggests, the number of iterations, effort and time involved in a 

rigorous calibration can be substantial. Clearly, there is a need to automate the iterative process, 

of manually modifying the simulator parameters, to the extent possible. Typically this is 

achieved through optimization techniques which seek the best-suited values of the model 

parameters through efficient search procedures. Such an approach was followed and presented 

here. The optimization problem in the context of the problem at hand is to calibrate the simulator 

parameters so that an objective function is minimized. The sum of squared errors of the mainline 

station volumes is defined here as the objective function to be minimized, subject to bounds on 

the simulator parameters. Mathematically, the optimization problem can be stated as: 

∑∑
= =

−=
st

j

m

i

j
ai

j
si vv

1 1

2)(F   Minimize  
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Subject to  

Lxp     <   xp   < Uxp  ,p = 1, 2, …, n 

where F is the objective function to be minimized 

            vsi
j is the simulated traffic measurement of station j during time interval i 

            vai
j is the actual traffic measurement of station j during time interval i 

            Lxp is the lower limit of simulator parameter xp

            Uxp is the upper limit of simulator parameter xp

 n is the number of simulator parameters to be optimized 

 st is the number of detector stations on the freeway section 

 m is the number of time intervals. 

It should be noted here that the objective function is not an explicit function of the simulator 

parameters. Therefore, the optimization problem cannot be solved by the usual approach of 

differentiating the objective function and setting it to zero to obtain a solution corresponding to 

the minimum. The alternative is to employ an appropriate optimization technique. The problem 

defined above is a non-linear unconstrained one; such problems can be solved using nonlinear 

programming techniques like the quasi-Newton methods, the method of steepest descent, 

Newton-Raphson method, Fletcher-Powell method, etc.  

Several computer programs are available that incorporate such non-linear programming 

techniques. The well-proven and state-of-the-art optimization program ‘MINOS’ [19,20,21,22] 

was selected here because of its widespread use and ability to solve a variety of large-scale 

optimization problems. These include problems that are linear, non-linear, bounded, unbounded, 

constrained or unconstrained based on the form of the objective function. If the objective 
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function is non-linear and is unconstrained as in the problem at hand, the quasi-Newton 

algorithm is used in MINOS. 

Implementation              

           A computer program was written that integrates MINOS as a subroutine with AIMSUN 

and facilitates the data transmission between these two modules. From the manual calibration 

methodology only stage one has been automated in order to demonstrate the technique; in 

addition, automation of the first stage alone significantly reduces the calibration effort as this 

stage is the most time consuming one. This section describes the results of the implementation of 

the automated calibration in the selected simulator.  

 

Sensitivity analysis and preliminary experimentation              

             Prior to implementation of the automated calibration process a sensitivity analysis of the 

critical simulator parameters was conducted in order to determine the behavior of the objective 

function and the solution that can be expected from the program. Space limitations do not allow 

presentation of the details here; suffice it to say that the objective function resulting from 

changes to all the simulator parameters was non-smooth due to interaction effects of these 

parameters. The objective function which considers the interaction of all the parameters can 

therefore be expected to be highly non-smooth. Hence, the gradient-based optimization 

technique can be expected to provide a solution that lies in one of the local minima of the 

objective function.  

In any optimization algorithm, specification of the appropriate step size is a required step. In 

MINOS, the step size is represented by the ‘difference interval’ denoted here as ‘h’. In order to 
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estimate the gradient of the objective function with respect to a variable x, the variable is 

perturbed by h(1+|x|). Several values for the difference interval were tried; the one that provided 

the best value of the objective function was 0.03 and was therefore used subsequently. 

The effect of using different initial simulator parameter values was also analyzed. It was found 

that even though the final values of the simulator parameters obtained through the optimization 

depend on their initial estimates, the final objective function values were comparable. This 

further simplifies the calibration task as good initial simulator parameter values need not be 

specified in order to obtain a satisfactory solution. Moreover, this suggests the existence of 

multiple solutions, at least for the selected simulator, all of which might be equally acceptable. 

Results  

The implementation results of the optimization technique are shown in Tables 1 and 2. The 

automated calibration process required about 9 iterations of the simulator. In each iteration, 

approximately 100 different combinations of the simulator parameters were tried. It can be seen 

from the Table 1 that the values of all the goodness-of-fit measures obtained using the automated 

calibration process are very close to the manual process with significant savings in time and 

effort; for instance, not only the number of iterations was reduced substantially but also the time 

to obtain the desired results was reduced to 6 hours, compared to 2 months of the manual process 

for stage one of the calibration.  

 

CONCLUSIONS 
 

           In this paper, a three-stage general and systematic methodology for manually calibrating 

microscopic traffic simulators was presented. Its implementation on a selected simulator proved 
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very effective.  For example, an average correlation coefficient of 0.961 between the simulated 

and the actual mainline station volumes was obtained when all calibration stages were 

completed. This is an unusual high fit which can be explained by the detailed data collected as 

input and the quality of the simulator which resulted in high accuracy even prior to calibration ( r 

= 0.78). The Theil’s goodness-of-fit statistics presented here were effective in identifying 

discrepancies between simulated and actual volumes that would not have been accounted for by 

commonly used tests. Furthermore, the correct bottleneck location identification was enabled in 

the second stage of the calibration. Finally, the third stage of the calibration process also proved 

very effective in obtaining a close match between the simulated and the actual entrance ramp 

queues.  

          The procedure for automating a significant part of the calibration process through 

optimization yielded comparable results as the manual calibration process with substantial 

savings in time. For instance, the automated volume-based calibration process required about 6 

hours for 9 iterations (plus 2 months for manual stage 2 & 3 calibration) resulting in a final 

average correlation coefficient of 0.946 whereas the corresponding fully manual calibration 

required about 4 months for 300 iterations to obtain an average correlation coefficient of 0.961. 

This suggests that even though the gradient-based optimization procedure employed here does 

not ensure attainment of the global optimum, it is sufficient for practical purposes. It is worth 

mentioning that although optimum simulator parameter estimation depends on their initial 

values, the final objective function values obtained using rough initial parameter values through 

the unconstrained non-linear optimization proved to be satisfactory. This suggests that unlike the 

manual procedure, the automated calibration technique does not rely on very good initial 

parameter estimates, which further simplifies the calibration task. It also indicates the existence 
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of multiple solutions, all of which are equally acceptable at least for the simulator employed and 

the example at hand. Finally, the automated calibration procedure used here is general and allows 

employment of any optimization technique one wishes to use; such techniques include genetic 

algorithms, simulated annealing, Nelder-Mead, and others that could possibly result in better 

parameter estimates.  

 Before concluding it is worth mentioning that the proposed methodology is not restricted 

to freeways only but it can be used for arterial streets as well. This was recently demonstrated in 

another study [23] in which this calibration was implemented in a freeway corridor that included 

5 major arterial streets and 250 intersections in addition to the freeway and its ramps. 
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Table 1: Volume statistical measures prior to and after calibration. 

Root 
Mean 

Square 
Error % 

Correlation 
coefficient 

Theil’s 
Inequality 
Coefficient 

Theil’s 
Bias 

Proportion 

Theil’s 
Variance 

Proportion 

Theil’s 
Covariance 
Proportion 

Initial 40      0.78 0.3 0.40 0.31 0.29

Mar 21st 10.62 0.98 0.00426 0. 30877 0.01052 0. 68070 

Mar 22nd 6.42      0.97 0.00154 0.12352 0.05365 0.82281

Mar 23rd 7.39      0.96 0.00238 0.08826 0.03098 0.88075

Automated 8.84      0.95 0.004 0.078 0.011 0.91
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Parameter Initial After stage 
1 (manual) 

After stage 
2 

(manual) 

After stage 
3 (manual) 

After stage 1 
(automated) 

Max. desired 
speed (kmph) 

100.000 110.000 110.000 110.000 104.249 

Max. acc. rate (m/s2) 2.800 3.000 3.000 3.000 2.838 
Normal dec. rate 
(m/s2) 

4.000 4.000 4.000 4.000 3.983 

Max. dec. rate (m/s2) 8.000 7.000 7.000 7.000 6.901 
Reaction time (sec) 0.750 0.590 0.590 0.590 0.512 
Percent overtake 0.950 0.950 0.940 0.940 0.950 
Percent recover 1.000 1.000 0.990 0.990 1.000 
Max. speed 
difference (kmph) 

40 40 60 60 40 

Max. speed 
difference on-ramp 
(kmph) 

50 50 70 70 50 

Av. section speed 
(regular section, 
kmph) 

110 100 105 105 110 

Av. section speed 
(weaving section, 
kmph) 

90 75 70 72 90 

Av. section speed 
(ramp section, kmph) 

60 60 55 55 60 

Table 2: Simulator parameter values prior to and after calibration 

 

 



Hourdakis, Michalopoulos, and Kottommannil 33

 

 

 

 

 

 

 

                        (a): Illustration of unsatisfactory Um                                                (b): Illustration of unsatisfactory Uc 

 

 

 

 

                            

 

                     (c): Illustration of unsatisfactory Uc and Um                                          (d): Illustration of unsatisfactory Us 
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Figure 1: Examples of Unsatisfactory Um, Us, and Uc.: Lane Volume vs. Time
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(a): Actual speed contour 

 

 

 

 

 

 

 

(b): Simulated speed contour before stage 2 
 

 

 

 

 

 

 

(c): Simulated speed contour after stage 2 

Figure 2: Average Mainline speed contours used in calibration.
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Figure 3: Simulated and actual queue at TH-55WB ramp. 
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