MINNESOTA’S BEST PRACTICES FOR
Traffic Sign Maintenance/Management Handbook
Including Insight on How to Remove Unnecessary and Ineffective Signage

REPORT NO. 2014RIC20
VERSION 2.0
October 2014

MnDOT Research Services Section
MS 330, 395 John Ireland Blvd.
St. Paul, Minnesota 55155
Phone: 651-366-3780
Fax: 651-366-3789
E-mail: research.dot@state.mn.us

The University of Minnesota is an equal opportunity educator and employer.
Acknowlegements

Thanks to the following sponsors and participants for their valuable input in the production of this document.

TAP Members
- Lon Aune, Marshall County Engineer
- Joe Gustafson, Washington County
- Kyle Hartnett, MN Township Association
- Sulmaan Khan, MnDOT
- Renae Kuehl, SRF
- Heather Lott, MnDOT
- Victor Lund, St. Louis County
- Tim Plath, City of Eagan
- Howard Preston, CH2M HILL
- Brent Roshell, Anderson Passe
- Rich Sanders, Polk County Engineer
- Kristi Sebastian, Dakota County
- Shirlee Sherkow, MnDOT
- Edward Terhaar, Wenck and Associates
- Mark Vizecky, MnDOT

Funding Sponsors
- Minnesota Local Road Research Board (LRRB), MnDOT and University of Minnesota LTAP

Production
- Minnesota Local Road Research Board

Writing
- Howard Preston, Michael Barry, and KC Atkins, CH2M HILL

The contents of this handbook reflect the views of the authors who are responsible for the facts and accuracy of the data presented. The contents do not necessarily reflect the views or policies of the Local Road Research Board or the Minnesota Department of Transportation at the time of publication. This handbook does not constitute a standard, specification or regulation.
The information in this Best Practices guide is provided to assist agencies in their effort to better maintain the traffic signs on their system of roads and highways.

- This Best Practices Guide does **not** set requirements or mandates.
- This Best Practices Guide is **not** a best practice document for design or operations.
- This Best Practices Guide contains **no** warrants or standards and does **not** supersede other publications that do.
- This Best Practices Guide is a resource document and is intended to help transportation professionals develop a technically sound set of policies and practices to better maintain their system of traffic signs.
- This Best Practices Guide is **not** a standard and is neither intended to be, nor does it establish, a legal standard of care for users or professionals.
- This Best Practices Guide does not supersede publications such as the USDOT FHWA's Manual on Uniform Traffic Control Devices (MUTCD); Association of American State Highway Transportation Officials’ (AASHTO) “Green Book” titled *A Policy on Geometric Design of Highways and Streets*; or other AASHTO and agency guidelines, manuals and policies.
- This Best Practices Guide does not endorse products or manufacturers. Any trade or manufacturers’ names that may appear herein do so solely because they are considered essential to this Guide.
Table of Contents

Acknowledgements

- ii

Document Information and Disclaimer

- iii

Part A – Background

- Minnesota Manual on Uniform Traffic Control Devices – Background .. A-2
- Minnesota Manual on Uniform Traffic Control Devices ... A-3 to A-4
- Specified Levels of Retroreflectivity .. A-5
- Retroreflective Sheeting Designations ... A-6
- Comparison of Reflective Sheeting Material .. A-7
- Traffic Sign Life Expectancy .. A-8
- Retroreflectivity Compliance Dates .. A-9

Part B – Maintenance Methods

- Maintenance Methods ... B-2
- Assessment Methods ... B-3 to B-4
- Management Methods ... B-5
- What Method is Best for Your Agency? .. B-6 to B-7

Part C – Financial Budgeting

- Financial Budgeting ... C-2
- Financial Budgeting – Townships .. C-3 to C-4
- Financial Budgeting – Cities under 5,000 Population C-5 to C-6
- Financial Budgeting – Cities over 5,000 Population C-7 to C-8
- Financial Budgeting – Counties ... C-9 to C-10
- Real Life Sign Removals - Stevens County Townships C-11
- Which Signs Were Removed? - Stevens County Township C-12 to C-15
- What Could This Mean for my Township - C-16

Part D – Policy Development

- Policy Development ... D-2
- Example Policy Outline – Sign Maintenance D-3
- Model Sign Maintenance Policy .. D-4
- Example Policy Outline – St Louis County, MN D-5
- Example Signing Policy – City of Eagan, MN D-6
- Example Signing Policy – Rural County .. D-7
- Case Study #1: Monnens vs. City of Orono D-8 to D-10

Part E – Implementation

- Process Chart – Implementation .. E-2
- Sign Inventory ... E-3
- Sign Inventory – Pencil & Paper .. E-4
- Sign Inventory – Software .. E-5
- Engineering Study Process .. E-6 to E-7
- Engineering Study / MN MUTCD Guidance E-8 to E-10
- Engineering Study / System Consideration Example - Rural Curves E-11 to E-12
- Engineering Study / System Consideration Example - Urban & Rural Low Volume .. E-13
- MN MUTCD Guidance .. E-14 to E-16
- Regulatory Sign Usage ... E-17 to E-19
- Warning Sign Usage ... E-20 to E-23
- Guide Sign Usage .. E-24 to E-26
- Low Volume Road Sign Usage .. E-27 to E-29
- Which Signs are Required by the 2014 MN MUTCD? E-30
- Case Study #2: Ireland vs. Lengsfeld and Carver County E-31 to E-33

Part F – Effectiveness of Traffic Signs

- How to Measure Effectiveness? .. F-2
- Effectiveness of Regulatory Signs – Speed Limit F-3
- Effectiveness of Regulatory Signs – STOP signs F-4
- LED STOP and YIELD signs .. F-5
- Effectiveness of Warning Signs – Children at Play F-6
- Effectiveness of Warning Signs – Horizontal Alignment F-7
- Effectiveness of Warning Signs – Pedestrian Crossings F-8
- Effectiveness of Warning Signs .. F-9
- Effectiveness of Guide Signs ... F-10
- Sign Effectiveness Summary .. F-11
- Making the Case For Considering Sign Removal F-12
- Sign Removal – Which Signs Are Candidates? F-13 to F-14
- Potential Sign Removal Examples ... F-15 to F-19
- Sign Removal – Managing Risk ... F-20
- A Final Thought About Sign Removal F-21
- Case Study #3: City of South Lake Tahoe, CA vs. Markham F-22 to F-23
- Case Study #4: Pedrosa vs. City of Alhambra, CA F-24

Part G – Summary of Key Points

- Key Points .. G-2
- Answers to Quiz ... G-3

Appendix

- Example Signing Policy – Metro County .. AP-2
- Example Signing Policy – Cass County .. AP-3
- Sample Response to Request for SLOW CHILDREN Sign AP-4
- Why Won’t They Put Up “Children at play” Signs? AP-5
- Blind Fire Department Driveway Request AP-6
- Sample Agreement-Blind Fire Department Driveway AP-7
- Why Don’t They Put In More STOP SIGNS? AP-8
- When Will a Lower Speed Limit be Posted on My Street? AP-9
Part A - Background

Minnesota Manual on Uniform Traffic Control Devices – Background A-2
Minnesota Manual on Uniform Traffic Control Devices A-3 to A-4
Specified Levels of Retroreflectivity .. A-5
Retroreflective Sheeting Designations ... A-6
Comparison of Reflective Sheeting Material A-7
Traffic Sign Life Expectancy ... A-8
Retroreflectivity Compliance Dates .. A-9
Consequences for Non-Compliance .. A-10

What’s wrong with these pictures?
(See page G-3 for answer.)
Minnesota Manual on Uniform Traffic Control Devices – Background

- 23 Code of Federal Regulations (CFR), Part 655.603 adopts the MUTCD as the national standard for any street, highway or bicycle trail open to the public.

- Section 15 of the Uniform Vehicle Code adopts the MUTCD as the standard of the conformance of signs, signals, markings and other devices intended to regulate, warn or guide traffic.

- The Commissioner of Transportation has adopted the MN MUTCD for all public roadways [and private roadways open to the public] in Minnesota (Commissioner Order No. 92452 – December 15, 2011).

- MS 169.06 empowers the Commissioner and local road authorities to place and maintain traffic control devices on roadways within their jurisdiction, to regulate, warn, or guide traffic.

Yes, the MN MUTCD applies to your roads – it applies to all public roads and private roads open to the public in Minnesota

www.dot.state.mn.us/trafficeng/publ/mutcd/index.html
Current Requirements

- Signs have always been required to be retroreflective. No minimum values had previously been required.
- Language adopted in the MN MUTCD requires all agencies that maintain roadways open to public travel to adopt a sign maintenance program designed to maintain traffic sign retroreflectivity at or above specific levels.
- All agencies responsible for maintaining traffic signs are required to comply with the new MN MUTCD requirements.
- **STANDARD** Public agencies or officials having jurisdiction **shall** use an assessment or management method that is designed to maintain sign retroreflectivity at or above the minimum levels in the MN MUTCD Table 2A-3 (page A-5).

COMPLIANCE DATE: June 13, 2014

Reminder

- In the MN MUTCD words have very specific meanings:
 1. **STANDARD** - a statement of required practice and the verb **SHALL** is used.
 2. **GUIDANCE** - a statement of recommended practice with deviations allowed based on engineering judgement. The verb **SHOULD** is used.
 3. **OPTION** - a statement of practice that is permissive. The verb **MAY** is used.
Specified Levels of Retroreflectivity

The minimum retroreflectivity levels are in units of – Candelas / lux / meter² measured at an observation angle of 0.2° and an entrance angle of -4.0°.

All Regulatory, Warning and Guide signs and object markers are required to be retroreflective or illuminated to show the same shape and similar color by both day and night. The requirement for sign illumination is not considered to be satisfied by street, highway or strobe lighting. An agency may exclude the following signs from the retroreflectivity maintenance policy. Guide signs should be added to an agency’s policy as resources allow.

- Guide Signs
- Parking, Standing and Stopping signs (R7 and R8 series)
- Walking/Hitchhiking/Crossing signs (R9 series, R10-1 through R10-b)
- Adopt-A-Highway signs
- All signs with blue (motor services) or brown (recreational) backgrounds
- Bikeway signs that are intended for exclusive use by bicyclists or pedestrians

Table 2A-3: Minimum Maintained Retroreflectivity Levels

<table>
<thead>
<tr>
<th>Sign Color</th>
<th>Beaded Sheeting</th>
<th>Prismatic Sheeting</th>
<th>Additional Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>White or Green</td>
<td>W<sup>+</sup> G<sup>-</sup> >7</td>
<td>W<sup>-</sup> G<sup>-</sup> >10</td>
<td>W<sup>-</sup> G<sup>-</sup> >24</td>
</tr>
<tr>
<td>Black on Yellow</td>
<td>W<sup>-</sup> G<sup>-</sup> >7</td>
<td>W<sup>-</sup> G<sup>-</sup> >50</td>
<td>W<sup>-</sup> G<sup>-</sup> >300</td>
</tr>
<tr>
<td>Black on Orange</td>
<td>Y<sup>-</sup> G<sup>-</sup> >30</td>
<td>Y<sup>-</sup> G<sup>-</sup> >150</td>
<td>Y<sup>-</sup> G<sup>-</sup> >600</td>
</tr>
<tr>
<td>White on Red</td>
<td>W<sup>-</sup> G<sup>-</sup> >7</td>
<td>W<sup>-</sup> G<sup>-</sup> >75</td>
<td>W<sup>-</sup> G<sup>-</sup> >300</td>
</tr>
<tr>
<td>Black on White</td>
<td>W<sup>-</sup> G<sup>-</sup> >7</td>
<td>W<sup>-</sup> G<sup>-</sup> >75</td>
<td>W<sup>-</sup> G<sup>-</sup> >300</td>
</tr>
</tbody>
</table>

1. The minimum maintained retroreflectivity levels shown in this table are in units of cd/ lux/ m² measured at an observation angle of 0.2° and an entrance angle of -4.0°.
2. For text and fine symbol signs measuring at least 48 inches, and for all sizes of bold symbol signs.
3. For text and fine symbol signs measuring less than 48 inches.

This sheathing type shall not be used for this color for this application except as noted in 2A.8.

Bold Symbol Signs
- W1-1. 2 – Turn and Curve
- W1-3. 4 – Reverse Turn and Curve
- W1-5 – Winding Road
- W1-6, 7 – Large Arrow
- W1-8 – Chevron
- W1-10 – Intersection in Curve
- W1-11 – Hairpin Curve
- W1-15 – 270 Degree Loop
- W3-1 – Cross Road
- W3-2 – Exit Number
- W4-5 – Divided Highway
- W4-7 – Two-Way Traffic
- W5-1, 2, 3, 4, 5, 11, 12 – Grade Crossing
- W6-1 – Flagger

Fine Symbol Signs - Symbol signs not listed as Bold Symbol Signs.

Special Cases
- W3-3 – Yield Ahead: Red retroreflectivity ≥ 7
- W3-4 – Preceding: White retroreflectivity ≥ 5
- W3-5 – Signal Ahead: Red retroreflectivity ≥ 7
- W3-6 – Overpass: White retroreflectivity ≥ 5
- W3-7 – Pedestrian Crossing: Red retroreflectivity ≥ 7
- W3-8 – Snowmobile Crossing: White retroreflectivity ≥ 5
- W3-9 – Equine Crossing: Red retroreflectivity ≥ 7
- W3-10 – Fire Station: White retroreflectivity ≥ 5
- W3-11 – Track Crossing: Red retroreflectivity ≥ 7
- W3-12 – Double Arrow: White retroreflectivity ≥ 5
- W3-13 – Lab Signs: White retroreflectivity ≥ 5
- W3-14 – Warning: Red retroreflectivity ≥ 7
- W3-15 – Advisory: White retroreflectivity ≥ 5
- W3-16 – Stop: Red retroreflectivity ≥ 7
- W3-17 – Slow: White retroreflectivity ≥ 5
- W3-18 – Cross Traffic: Red retroreflectivity ≥ 7

Specified Levels of Retroreflectivity

Which meet retroreflectivity requirements?

Source: 2014 MN MUTCD
Frequently Asked Questions about Sign Maintenance

- Can any type of sheeting material be used as long as it meets the minimum retroreflectivity levels?
 - Type I sheeting shall not be used for Warning, Guide or Work Zone signs. Type II and III should not be used on Overhead Guide signs. (Even brand new Type I, II, and III sheeting material is not bright enough to be used in these applications.)
 - Type I sheeting may be used for STOP signs and Black on White Regulatory signs.
 - Even though a particular type of sheeting may initially meet the minimum retroreflectivity levels when new, it might quickly degrade to below the specified threshold levels. The use of higher performance sheeting, even though it has a higher initial cost, usually provides a better life cycle cost.

- Is brighter always better for sign sheeting?
 - Usually. It is generally true that brighter signs are more conspicuous and legible. However, legibility is also a function of letter (or image) size—a good rule of thumb is 30 feet of legibility distance for each inch of letter height.
 - Older drivers may have trouble seeing signs with very high retroreflectivity levels in dark, rural locations. To mitigate this, signs may be turned at an angle to the roadway or a lesser retroreflective sheeting material may be used.

- When upgrading the sheeting material, do sign supports also need to be addressed?
 - Post-mounted sign and object marker supports within the clear zone shall be crashworthy (breakaway, yielding or shielded with a longitudinal barrier or crash cushion). (See page E-14 for details)

<table>
<thead>
<tr>
<th>ASTM Type</th>
<th>Previous Designation</th>
<th>Typical Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Engineering Grade</td>
<td>Highway Signing, construction-zone devices and delineators</td>
</tr>
<tr>
<td>II</td>
<td>Super Engineering Grade</td>
<td>Highway Signing, construction-zone devices and delineators</td>
</tr>
<tr>
<td>III</td>
<td>High Intensity</td>
<td>Highway Signing, construction-zone devices and delineators</td>
</tr>
<tr>
<td>IV</td>
<td>High Intensity Prismatic</td>
<td>Highway Signing, construction-zone devices and delineators</td>
</tr>
<tr>
<td>V</td>
<td></td>
<td>Delineators</td>
</tr>
<tr>
<td>VI</td>
<td>Diamond Grade</td>
<td>Temporary roll-up signs, warning signs, traffic cone collars and post bands</td>
</tr>
<tr>
<td>VII</td>
<td>Long Distance Performance (LDP)</td>
<td>Highway Signing, construction-zone devices and delineators</td>
</tr>
<tr>
<td>VIII</td>
<td>MVP Prismatic</td>
<td>Highway Signing, construction-zone devices and delineators</td>
</tr>
<tr>
<td>IX</td>
<td>Visual Impact Performance (VIP)</td>
<td>Highway Signing, construction-zone devices and delineators</td>
</tr>
<tr>
<td>X</td>
<td>Crystal Grade</td>
<td>Highway Signing, construction-zone devices and delineators</td>
</tr>
<tr>
<td>XI</td>
<td>Diamond Grade (DG3)</td>
<td>Highway Signing, construction-zone devices and delineators</td>
</tr>
</tbody>
</table>
Comparison of Reflective Sheeting Material

Life Cycle Costs & Initial Retroreflectivity

<table>
<thead>
<tr>
<th>Sheeting Material (ASTM)</th>
<th>Type I</th>
<th>Type IV</th>
<th>Type IX</th>
<th>Type XI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material Cost ($/SF)</td>
<td>$0.85</td>
<td>$1.20</td>
<td>$4.25</td>
<td>$3.50</td>
</tr>
<tr>
<td>Finished Sign Cost</td>
<td>$30</td>
<td>$25</td>
<td>$51</td>
<td>$45</td>
</tr>
<tr>
<td>Anticipated Life (years)</td>
<td>5 – 7</td>
<td>10-12</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>Life Cycle Cost</td>
<td>$130</td>
<td>$50</td>
<td>$119</td>
<td>$45</td>
</tr>
<tr>
<td>Initial Retroreflectivity (white)</td>
<td>70</td>
<td>300</td>
<td>380</td>
<td>580</td>
</tr>
</tbody>
</table>

Source: 3M Traffic Safety Systems Division, August 2014

Typical Installation Cost

<table>
<thead>
<tr>
<th></th>
<th>Stop (30x30)</th>
<th>Warning (36x36)</th>
<th>Regulatory (24x30)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stop (30x30)</td>
<td>$240</td>
<td>$240</td>
<td>$260</td>
</tr>
<tr>
<td>Warning (36x36)</td>
<td>$240</td>
<td>$260</td>
<td>$280</td>
</tr>
<tr>
<td>Regulatory (24x30)</td>
<td>$230</td>
<td>$230</td>
<td>$250</td>
</tr>
</tbody>
</table>

Source: MnDOT

<table>
<thead>
<tr>
<th>Sheet Type</th>
<th>Material Cost ($/SF)</th>
<th>Life Cycle Cost</th>
<th>Anticipated Life (years)</th>
<th>Initial Retroreflectivity (white)</th>
<th>Typical Installation Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type IX Yellow</td>
<td>$0.85</td>
<td>$130</td>
<td>5 – 7</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Type IX Yellow</td>
<td>$1.20</td>
<td>$50</td>
<td>10-12</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>Type IX Yellow</td>
<td>$4.25</td>
<td>$119</td>
<td>15</td>
<td>380</td>
<td></td>
</tr>
<tr>
<td>Type IX Yellow</td>
<td>$3.50</td>
<td>$45</td>
<td>20</td>
<td>580</td>
<td></td>
</tr>
</tbody>
</table>

Sample Degradation Curve

Type IX Yellow

A comparison of the types of reflective sheeting material suggests:
- The low initial cost material would meet most of the minimum retroreflectivity levels but would be expected to degrade quickly below minimum levels.
- The higher performance sheeting, initially more expensive, provides a much longer anticipated life, much higher levels of retroreflectivity and superior life cycle costs.

The fairly narrow range of typical sign installation costs (sign blank + sheeting + posts + labor) suggests that agencies would pay a premium of between 5% to 15% for using higher performance sheeting.

Additional installation cost information provided by a number of agencies indicates that quantity discounts could reduce the per sign cost by 20% to 30%.
Regarding the anticipated life of signs – there is a high level of interest in establishing a specific value for each type of sheeting material. However, current research suggests that available data is inconclusive, but supports a life expectancy range of 12 to 20 years for beaded sheeting material (Types I, II and III) and 15 to 30 years for prismatic sheeting (Types III, IV, VI, VII, VIII, IX, X, XI). A summary of this research is provided in a recent report published by MnDOT (Traffic Sign Life Expectancy – Report No. 2014-20).

MnDOT Report No. 2014-20 analyzed retroreflectivity readings from approximately 400 signs in Minnesota and concluded that the results were similar to those reported in other states, but that the small sample size was not sufficient to produce statistically reliable results.

As part of this study, MnDOT established a sign sheeting test deck at the MnROAD facility and has indicated that they intend to maintain the test deck and continue recording the retroreflectivity until the sheeting material degrades below the established thresholds. This effort would help define the expected life of sheeting material in Minnesota.
Retroreflectivity Compliance Dates

- May 14, 2012 - 2009 MUTCD compliance dates revised (most eliminated).
- June 13, 2014 – All agencies must implement and use an assessment or management method that is designed to maintain Regulatory and Warning traffic sign retroreflectivity at or above the established minimum levels.
- ALL signs must now be at or above minimum retroreflectivity levels or illuminated to show the same shape and similar color by both day and night.
- Existing signs must be compliant as outlined in the sign assessment or management method.

2012

May 14

2013

June 13

2014

All agencies must implement and use an assessment or management method.
Consequences for Non-Compliance

- There are no sign police in Minnesota to check to see if your agency is complying with MN MUTCD.
- However, the closer an agency’s practices are to being consistent with the guidance in the MN MUTCD, the better the agency will be from a risk-management standpoint.
- It also appears that an agency’s culture, relating to adopting signing practices consistent with the MN MUTCD, is established by the agency’s manager – the County or City engineer. The better these professionals understand the guidance in the MN MUTCD and share that knowledge with designers and field personnel during training sessions, the more likely the agency’s actual practices will be consistent with the MN MUTCD.
- In Minnesota the standard of care against which traffic professionals are measured is –what would a reasonable person have done under a given set of circumstances. In most cases the better answer is to have followed the guidance in the MN MUTCD.
- **ALL** signs are required to be retroreflective or illuminated to show the same shape and similar color by both day and night.
- Only Regulatory and Warning signs are required to be included in an agency’s retroreflectivity maintenance policy. Guide signs should be added as resources allow.
Part B – Maintenance Methods

Maintenance Methods ... B-2
Assessment Methods ... B-3 to B-4
Management Methods .. B-5
What Method is Best for Your Agency? B-6 to B-7

What’s wrong with this picture?
(See page G-3 for answer.)
Maintenance Methods

Assessment
- Visual Nighttime Assessment
- Measured Sign Retroreflectivity

Management
- Expected Sign Life
- Blanket Replacement
- Control Signs

Combination or Other Methods
Some examples include:
- Blanket Replacement & Expected Sign Life
- Visual Nighttime Inspection & Control Signs
- Other Methods documented in an Engineering Study

What Are The Choices?
- Assessment Methods
 - Visual Nighttime Assessment
 - Calibration Signs Procedure
 - Comparison Panels Procedure
 - Consistent Parameters Procedure
 - Measured Sign Retroreflectivity
- Management Methods
 - Expected Sign Life
 - Blanket Replacement
 - Control Signs
- Combination or Other Methods
 - Blanket Replacement & Expected Sign Life
 - Visual Nighttime Inspection & Control Signs
 - Other Methods documented in an Engineering Study

How Do I Decide?
Assessment Methods (1/2)

1. Visual Nighttime Assessment

This is an in the field assessment of retroreflectivity made by trained inspectors during nighttime conditions. The inspection should be conducted at normal speed from the travel lane, using the low-beam headlights and at typical viewing distances (180 feet for street name blades, 300 feet for stop signs and up to 1,100 feet for symbol type warning signs based on a 30 feet per inch legibility distance). One or more of the following procedures should be used to support the visual nighttime inspections.

Calibration Signs Procedure*

An inspector views a calibration sign each time prior to conducting a nighttime field review. The calibration signs have known retroreflectivity levels at or above the specified minimums. The calibration signs are set up in a maintenance yard where the inspector can view the signs in a manner similar to nighttime field inspections. The inspector uses the visual appearance of the calibration sign to establish the evaluation threshold for that night’s inspection activities.

Comparison Panels Procedure*

This procedure involves assembling a set of comparison panels that represent retroreflectivity levels above the specified minimums. Inspectors then conduct a nighttime field review and when a marginal sign is found, a comparison panel is attached and the sign/panel combination is viewed. The signs found to be less bright than the panel would then be scheduled for replacement.

Consistent Parameters Procedure

The nighttime inspections would be conducted under similar factors that were used in the research to develop the minimum retroreflectivity levels. These factors include:

- Using a sport utility vehicle or pick-up truck to conduct the inspection.
- Using a model year 2000 or newer vehicle for the inspection.
- Using an inspector who is at least 60 years old with 20/40 normal or corrected and 105 degrees of peripheral vision.

* A kit with samples of sheeting material at the thresholds currently available from Avery Dennison®
www.averydennison.com

Inspectors must be trained. Training courses are available through many Local Technical Assistance Programs (LTAP); check http://www.ltap.org
Assessment Methods (2/2)

2. Measured Sign Retroreflectivity

- The retroreflectivity of every sign in your system is measured with a retroreflectometer* and the results are compared to the threshold levels documented in Table 2A-3 of the MN MUTCD. Signs with actual retroreflectivity levels below the specified minimums would be scheduled for replacement.

* Purchases or rentals are currently available from pppcatalog.com

Source: FHWA Sign Retroreflectivity Guidebook, September 2009
Management Methods

1. Expected Sign Life
 - When signs are installed, the installation date would be recorded so that the age of the sign is known. The age of the sign is compared to the expected sign life – based on the documented retroreflectivity degradation for a specific geographic area compared to the minimum levels. Signs older than the expected sign life would be scheduled for replacement.

2. Blanket Replacement
 - All signs in an area/corridor would be replaced at specified intervals. The replacement interval would be based on the expected sign life or warranty period. This method eliminates the need to assess retroreflectivity or track the life of individual signs. If the warranty period is 12 years, replacing 1/12 of the signs each year would demonstrate compliance with the specified minimum retroreflectivity levels.

3. Control Signs
 - Replacement of signs in your system would be based on the performance of a small sample of control signs. For convenience and safety, the small sample of signs (all of the basic colors, oriented in the most adverse direction) would be located in a maintenance yard and these signs would then be monitored to determine when they are at the end of their retroreflective life. All field signs, represented by the control sample would then be replaced just before the control samples reach the minimum specified levels. New signs would have to be added to the control sample every year.

Source: FHWA Sign Retroreflectivity Toolkit
What Method is Best for Your Agency? (1/2)

Assessment Methods (Visual Assessment, Measured Sign Retroreflectivity)

- Requires training and lots of staff hours on the road. Your inspectors will have to view every one of your signs in the field (at 20 signs/hour, 10,000 signs [typical county] \(\approx \) 500 hours per year).
- May require the purchase of technology—a retroflectometer or reflective sheeting samples—and an investment of training your staff.
- The primary advantage of using one of the Assessment Methods is that your agency will get the most years of service from each sign in your inventory as is practicably possible.

Management Methods (Expected Sign Life, Blanket Replacement, Control Signs)

- Reduces staff time in the field versus possibly replacing some signs before they meet the minimum thresholds.
- It has been suggested that if you are concerned about replacing signs with some life left in the sheeting material, you could go through the effort of measuring for retroreflectivity of salvaged signs after they are delivered to your maintenance yard for use as replacements for signs damaged by vandalism or knockdowns.

<table>
<thead>
<tr>
<th>Maintenance Methods</th>
<th>Types</th>
<th>Staff Hours</th>
<th>Technology</th>
<th>Service Life Lost From Each Sign</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assessment</td>
<td>Visual Nighttime Inspection, Measured Sign Retroreflectivity</td>
<td>$$$</td>
<td>$$$</td>
<td>$</td>
</tr>
<tr>
<td>Management</td>
<td>Expected Sign Life, Blanket Replacement, Control Signs</td>
<td>$</td>
<td>$</td>
<td>$$$</td>
</tr>
</tbody>
</table>

Source: FHWA Sign Retroreflectivity Guidebook, September 2009
What Method is Best for Your Agency? (2/2)

So which Method is Best?

No one can tell you which method is best. Sign Retroreflectivity A Minnesota Toolkit can provide some assistance, but you know the characteristics of your system and your organization better than anyone else. Think about three primary factors:

- **Inventory**
 - If the number of signs on your system is small (<500), conducting an annual inspection would be relatively easy.
 - If the number of signs on your system is large (>10,000), conducting an annual inspection could require 500 or more staff hours per year; so you should consider one of the management methods.

- **Staff**
 - If your professional staff is trained and has experience conducting nighttime inspections, it would be easy to continue.
 - If you don’t have trained staff, the choices would include adding staff and training them or using one of the management methods.

- **Technology**
 - If you already own or are willing to purchase a retroreflectometer* or buy a kit with samples of sheeting material at the thresholds**, the measurement method may be best.
 - If you are not willing to make these investments, the visual assessment, consistent parameters or one of the management methods would be a better choice.

Make a decision, move forward, evaluate, and make changes if you have to.

* Purchases or rentals are currently available from ppcatalog.com
** A kit with samples of sheeting material at the thresholds currently available from Avery Dennison® www.averydennison.com

www.lrrb.org
Part C – Financial Budgeting

Financial Budgeting .. C-2
Financial Budgeting – Townships .. C-3 to C-4
Financial Budgeting – Cities under 5,000 Population ... C-5 to C-6
Financial Budgeting – Cities over 5,000 Population ... C-7 to C-8
Financial Budgeting – Counties ... C-9 to C-10

Real Life Sign Removals - Stevens County Townships ... C-11
Which Signs Were Removed? - Stevens County Township .. C-12 to C-15
What Could This Mean for my Township Sign Maintenance Budget .. C-16
Financial Budgeting – Summary .. C-17
Financial Budgeting

OK, I get it – the retroreflectivity requirements apply to my agency! How much is it going to cost to comply?

That depends…

- Number of signs in your inventory
- Selected replacement schedule and method
- Estimated annual cost to address vandalism and knockdowns
A typical Township has approximately 30 miles of roadway with an average of 6 total traffic signs per mile (both directions).

The Township Sign Program documented an average cost for sign replacement to be $150 per sign. *

The total cost to upgrade/replace regulatory and warning signs in a typical Township would be:

\[
30 \text{ miles} \times 6 \text{ signs/mile} \times $150/\text{sign} = $27,000
\]

All signs must be retroreflective or illuminated. Only Regulatory and Warning signs must be a part of your assessment or management method. Add Guide signs as resources allow.

A strategy to consider in an effort to reduce your assessment or management method costs – reduce your inventory of signs.

1 MnDOT Township Sign Inventory and Replacement Pilot Program
* Replacement costs include sign blank, sheeting material, sign posts and installation. Constant 2014 $
Maintaining your system of signs has always been a good idea, but now it’s a required action.

Given the minimum level of required maintenance, agencies should re-evaluate their sign maintenance budgets.

Annual sign maintenance budget = cost to address retroreflectivity + cost to address vandalism, knockdowns and mother nature.

A study from the North Carolina Department of Transportation found that approximately 2.4% of signs are vandalized or knocked down in a year.

Annual cost to address degradation of retroreflectivity (Assuming a 15 year replacement cycle) = $1,800

Annual cost to address damage by vandalism and knockdowns = $650

A typical township annual sign maintenance budget = $2,450

Reduce the sign maintenance budget by removing signs that are NOT required.

1 North Carolina Department of Transportation, “Designing an Efficient Nighttime Sign Inspection Procedure to Ensure Motorist Safety”

* Constant 2014$
A typical small city has approximately 50 miles of streets with an average of 25 regulatory and warning signs per mile plus 6 guide signs per mile (both directions).

A typical cost for replacing the regulatory and warning signs is $200 per sign* and $250 per sign* for the guide (street name) signs.

The total cost to upgrade/replace ALL of the signs in a typical small city would be:

25 signs/mile x $200/sign x 50 miles = $325,000

6 signs/mile x $250/sign

All signs must be retroreflective or illuminated. Only Regulatory and Warning signs must be a part of your assessment or management method. Add Guide signs as resources allow.

Consider reducing your inventory of signs.

* Replacement costs include sign blank, sheeting material, sign posts, and installation.
 Constant 2014 $
Maintaining your system of signs has always been a good idea, but now it’s a required action.

Given the minimum level of required maintenance, agencies should re-evaluate their sign maintenance budgets.

Annual sign maintenance budget = cost to address retroreflectivity + cost to address vandalism, knockdowns and mother nature.

A study from the North Carolina Department of Transportation\(^1\) found that approximately 2.4% of signs are vandalized or knocked down in a year.

Annual cost to address degradation of retroreflectivity (Assuming a 15 year replacement cycle) = $21,650

Annual cost to address damage by vandalism and knockdowns = $7,800

A typical small city annual sign maintenance budget = $29,450

Reduce the sign maintenance budget by removing signs that are NOT required.

\(^1\) North Carolina Department of Transportation, “Designing an Efficient Nighttime Sign Inspection Procedure to Ensure Motorist Safety”
Financial Budgeting – Cities over 5,000 Population (1/2)

- A typical large city has approximately 200 miles of city streets with an average of 25 regulatory and warning signs per mile plus 6 guide signs per mile (both directions).
- A typical cost for replacing the regulatory and warning signs is $200 per sign and $250 per sign for the guide (street name) signs.
- The total cost to upgrade/replace ALL of the signs in a typical large city would be:

\[
\begin{align*}
200 \text{ miles} \times & \ 25 \text{ signs/mile} \times \$200/\text{sign} \\
& = \$1,300,000
\end{align*}
\]

- All signs must be retroreflective or illuminated. Only Regulatory and Warning signs must be a part of your assessment or management method. Add Guide signs as resources allow.
- **Consider reducing your inventory of signs**

Replacement costs include sign blank, sheeting material, sign posts, and installation. Constant 2014 $
Maintaining your system of signs has always been a good idea, but now it’s a required action.

Given the minimum level of required maintenance, agencies should re-evaluate their sign maintenance budgets.

Annual sign maintenance budget = cost to address retroreflectivity + cost to address vandalism, knockdowns and mother nature.

A study from the North Carolina Department of Transportation found that approximately 2.4% of signs are vandalized or knocked down in a year.

Annual cost to address degradation of retroreflectivity (Assuming a 15 year replacement cycle) = $87,000

Annual cost to address damage by vandalism and knockdowns = $31,000

A typical large city annual sign maintenance budget = $118,000

Reduce the sign maintenance budget by removing signs that are NOT required.

1 North Carolina Department of Transportation, “Designing an Efficient Nighttime Sign Inspection Procedure to Ensure Motorist Safety”
Financial Budgeting – Counties (1/2)

- A typical county highway system consists of approximately 500 miles of rural roadways with an average of 20 traffic signs per mile (both directions).
- A typical sign replacement cost is $200 per sign*.
- The total cost to upgrade/replace signs in a typical County would be:

$$500 \text{ miles} \times 20 \text{ signs/mile} \times \$200/\text{sign} = \$2,000,000$$

- All signs must be retroreflective or illuminated. Only Regulatory and Warning signs must be a part of your assessment or management method. Add Guide signs as resources allow.
- Another strategy to consider in an effort to reduce your costs – **reduce your inventory of signs**.

* Replacement costs include sign blank, sheeting material, sign posts, and installation. Constant 2014 $
Maintaining your system of signs has always been a good idea, but now it’s a required action.

Given the minimum level of required maintenance, agencies should re-evaluate their sign maintenance budgets.

Annual sign maintenance budget = cost to address retroreflectivity + cost to address vandalism, knockdowns and mother nature.

A study from the North Carolina Department of Transportation \(^1\) found that approximately 2.4% of signs are vandalized or knocked down in a year.

Annual cost to address degradation of retroreflectivity (Assuming a 15 year replacement cycle) = $133,000

Annual cost to address damage by vandalism and knockdowns = $48,000

A typical county annual sign maintenance budget = $181,000

Reduce the sign maintenance budget by removing signs that are NOT required.

\(^1\) North Carolina Department of Transportation, “Designing an Efficient Nighttime Sign Inspection Procedure to Ensure Motorist Safety”
Real Life Sign Removals – Stevens County Townships

How do I get my agency on board with removing signs?

- In 2011 and 2012, MnDOT piloted a program with Townships in Stevens County to inventory signs and conduct an engineering investigation to determine which signs could be removed.
- The investigation identified 285 Regulatory, Warning and Guide Signs (28% of the total number of signs in these townships) as candidates for removal. The townships have agreed to the removals!
- Of 285 signs to be removed:
 - 93% are Warning (i.e., STOP/YIELD Ahead, Cross Road, T-Intersection signs)
 - 4% are Regulatory (i.e., YIELD, Speed Limit signs)
 - 1% are Guide (i.e., Street signs)
- The townships then benefit from long term savings by reducing costs for installation, along with yearly inventory and maintenance.
Which signs were removed? – Stevens County Townships

- **Intersection warning signs:** where the intersection is visible (MN MUTCD Table 2C-4).
- **STOP or Yield Ahead signs:** where the STOP or Yield sign is clearly visible to the driver (MN MUTCD Table 2C-4).
- Neither of these signs are required by MN MUTCD.
- There is no proof that these signs have ever proven to be effective at improving safety or changing driver behavior when the condition is visible to the driver.
- System wide consistency and consideration for signs at similar locations is important.
- If no apparent risks are associated with the intersection (i.e. visibility, high traffic volumes), then signs are candidates for removal.
Which signs were removed? – Stevens County Townships

- **Watch for children signs:** these are not effective at increasing safety and do not change driver behavior.
 - Do not give clear and enforceable guidance to drivers.
 - Provide a false sense of security to parents and children that may increase risk.
 - Give the false impression that areas without signs do not have children.
 - Represent an unnecessary cost that then propagates as additional signs are requested.
 - Violates the principle that signage should be based on engineering not political judgment.

- Research indicates that signs that warn of occasional conditions (a child that may be present on the road only occasionally as opposed to a curve that is always present) that are rare are virtually ignored by most drivers.

- The basic objective of warning signs is to make drivers aware of unexpected conditions that are not readily apparent - it is hard to imagine that encountering a tractor on a rural road in an agricultural area would be either unexpected or not readily apparent.

- Not required by MN MUTCD.

1 Wisconsin Department of Transportation, “Effectiveness of Children at Play” Warning Signs, Transportation Synthesis Report, 2007
Which signs were removed? – Stevens County Townships

- A Turn sign should be used instead of a Curve sign in advance of curves that have advisory speeds of 30 MPH or less.
- Horizontal alignment series signs are required by MN MUTCD on roads with greater than 1,000 vehicles per day and is suggested for other roads based on speed differential on curve approaches.
- Warning signs were removed where the roadway does not match the scenario on the provided sign or if they were not needed or required in the first place.
- Key is consistency - If curve warning signs are used at some locations, all curves with similar radii should have similar signs and advisory speeds.
Which signs were removed – Stevens County Townships

- **Yield signs**: were removed along Minimum Maintenance Roads (MN Statue § 160.095) since these roads, by definition, are “only occasionally or intermittently used for passenger and commercial travel”.

- Research has proven that at extremely low volume intersections, increasing the level of intersection control by adding STOP or YIELD sign does not improve safety.¹ ²

¹ Wisconsin Department of Transportation, “Effectiveness of Children at Play” Warning Signs, Transportation Synthesis Report, 2007
What Could This Mean for my Township Sign Maintenance Budget?

- Reducing your sign inventory by 28%, would result in a 28% savings in your annual sign maintenance budget.
- This is a representation of total savings in Townships. In jurisdictions with larger sign inventory, the savings would be even greater.

![Graph showing sign maintenance costs]

<table>
<thead>
<tr>
<th>Year</th>
<th>Old Cost (New Blanket Replacement)</th>
<th>New Blanket Replacement Cost</th>
<th>New Vandalism & Knockdowns</th>
<th>Old Cost (Total)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>$2,450/year</td>
<td>$1,330/year</td>
<td>$470/year</td>
<td>$2,450/year</td>
</tr>
<tr>
<td>2020</td>
<td>$2,450/year</td>
<td>$1,330/year</td>
<td>$470/year</td>
<td>$2,450/year</td>
</tr>
<tr>
<td>2025</td>
<td>$2,450/year</td>
<td>$1,330/year</td>
<td>$470/year</td>
<td>$2,450/year</td>
</tr>
<tr>
<td>2030</td>
<td>$2,450/year</td>
<td>$1,330/year</td>
<td>$470/year</td>
<td>$2,450/year</td>
</tr>
</tbody>
</table>

Additional savings of $680 annually.
Financial Budgeting – Summary

- You probably found these suggested levels of investments necessary to maintain your inventory of signs as shocking as we did.
- These levels are likely to be 10 to 20 times more than you have previously spent.
- Please don’t walk away from this issue and either do nothing or merely continue on with your previous levels of replacement - from a risk management perspective, the stakes are too high.
- The only part of the cost formula that you can control is the size of your inventory.
- It appears that the best way to reduce your sign maintenance costs is to reduce the size of your inventory and that will require removing some signs.
- It also appears that the best way to manage your risk when removing signs is to bring your actions under two umbrellas of immunity (from liability)
 - Discretionary Immunity - policy driven
 - Official Immunity - exercise of engineering judgement
- Another way to reduce your sign maintenance costs is to group your agency’s signs with another or multiple agencies to perform maintenance and get a bulk savings.
- Intrigued? Please continue...
Part D – Policy Development

Policy Development... D-2
Example Policy Outline – Sign Maintenance ... D-3
Model Sign Maintenance Policy ... D-4
Example Policy Outline – St Louis County, MN .. D-5
Example Signing Policy – City of Eagan, MN ... D-6
Example Signing Policy – Rural County ... D-7
Case Study #1: Monnens vs. City of Orono ... D-8 to D-10
Policy Development

- Signing activities have been a source of claims of negligence against highway agencies.
- Having a sign policy documenting an agency’s approach to manage their signing program is a proven, effective technique for improving operations and managing risk.
- Minnesota tort law provides protection from claims of negligence called discretionary immunity for actions that are consistent with policies adopted by an agency’s elected officials.
- The League of Minnesota Cities encourages their members to develop and adopt a variety of policies relative to municipal maintenance activities.
- Five specific benefits associated with policy development include:
 - Guiding allocation of resources
 - Providing direction to staff
 - Establishing the procedures to be followed
 - Setting priorities
 - Supports establishing discretionary immunity
- The League of Minnesota Cities had developed a number of model policies – check out: www.lmc.org
- The Minnesota Township Association also has a model policy at www.mntownships.org
- One caution – work with your agency’s attorney when developing a policy.
Example Policy Outline – Sign Maintenance

- Purpose and Goal
- Applicable Signs and Roadways
- Resource Materials
- Sign Inventory
- Adopted Sign Maintenance Method
- Sign Replacement, i.e.:
 - High Priority (STOP) within 1 business day
 - Intermediate Priority (Regulatory, Warning and Guide signs required by MN MUTCD) – within 2 business days
 - Low Priority (All others) – within 3 business days
- Signs Placed on the Agency’s Right-of-Way
- Removal of Signs
- Modification and Deviation from Policy

STANDARD - Public agencies or officials having jurisdiction shall use an assessment or management method that is designed to maintain regulatory and warning sign retroreflectivity at or above the minimum levels in Table 2A-3.

Guide signs should be added to the maintenance plan as resources allow.

MnDOT Research Report 2014-20, “Traffic Sign Life Expectancy” has best practices for sign policies.
Model Sign Maintenance Policy

- Which sign maintenance method is adopted? (Blanket Replacement - replace 1/15 of signs/year)
- Which **Roads** are to be covered by the policy?
 - All
 - Low Volume
 - Roadway Classifications
 - Residential
 - Collector
 - Minor Arterial
 - Principal Arterial
- Which **Signs** are to be covered by the policy?
 - All
 - Regulatory
 - Warning
 - Guide
 - All signs must conform to MN MUTCD

- What is the **Objective** of the policy?
 - Document the maintenance method
 - Exclude certain types of signs from usage (Not Required, Not Effective, i.e, No warning signs on residential streets, speed limit signs only on collectors and arterials, no marked pedestrian crossings at uncontrolled intersections, etc.)

- What **Actions** are required to implement the policy?
 - Inventory
 - Sign Replacement
 - Sign Removal
 - Engineering Study
 - Notification of Decisions/Actions
 - Sign Sheeting Material
 - Establish Budget

The following pages provide examples of signing policies from around Minnesota. Additional examples can be found in the Appendix.
Example Signing Policy – St. Louis County, MN

Find more information at www.stlouiscountymn.gov
IV. SIGN MAINTENANCE

A. Sign Installation: Signs will be installed and maintained to meet federal standards set forth in the most recent Minnesota Manual on Uniform Traffic Control Devices (MNUCTD) in accordance with City of Eagan guidelines, standard installation plate and practices.

B. Maintain Signing, Overall Responsibility: Eagan sign maintenance practices are established to meet all requirements and ensure appropriate signing for the traveling public.

C. Sign Retro-Reflectivity: The City of Eagan has maintained a field sign inventory database in the form of a sign management system (software) since 1993. The city is currently analyzing the database to determine the best approach to meet Federal Sign Retro-reflectivity Standards.

1. The City of Eagan will use a combination of EXPECTED SIGN LIFE and CONTROL SIGNS as management methods.

a. EXPECTED SIGN LIFE

i. Evaluation of retro-reflectivity of city signs will continue on a 2 year cycle at it has to date (1/2 of city signs) each year.

ii. As per federal directives, a group of "calibration signs" will be assembled to represent a sample of each color to be used to establish the calibration levels to be expected. The technician will use the visual appearance of the calibration signs to establish the calibration levels to be expected.

iii. A group of small portable samples known to have retro-reflectivity levels at or above minimum levels will be maintained by the City of Eagan.

b. CONTROL SIGNS

i. Evaluation of retro-reflectivity of signs will continue on a yearly basis as it has to date (1/2 of city signs) each year.

ii. Signs will be installed and maintained to meet federal standards set forth in the most recent Minnesota Manual on Uniform Traffic Control Devices.

The technician will use the visual appearance of the calibration signs to establish the calibration levels to be expected.

2. The City of Eagan will plan for (budget for) replacement of all signs found via the control section/nighttime sign checking process. The eventual goal will be that the majority of retro-reflectivity related sign replacement will be handled through the expected life cycle/sign life process.

D. Sign Maintenance Responsibility: Main signs and street identification signs on all City of Eagan roadways (specific agency name) highways, with the exception of:

a. Signage on approaches to county highways are not installed or maintained by the City of Eagan.

b. Specific signs installed by others (Mn/DOT, transit agencies, and private signs as agreed upon by the City of Eagan).

c. Bike path and other pedestrian-control signs not pertaining to vehicle traffic, installed by commercial entities other than the city.

d. Signs on approaches to city streets installed by private business and/or property owners.

E. Response to Incident Report for Sign Repair Needs: Sign maintenance staff

a. Respond to telephone inquiries.

b. Support staff will be informed and updated regarding sign maintenance operations (e.g., schedules and other priority needs or maintenance duties in an efficient, effective and responsive manner).

c. Unauthorized signs will be removed from city rights of way.

d. Support staff will be informed and updated regarding sign maintenance operations (e.g., schedules and other priority needs or maintenance duties in an efficient, effective and responsive manner).

e. Bike path and other pedestrian-control signs not pertaining to vehicle traffic, installed by commercial entities other than the city.

f. Signs on approaches to city streets installed by private business and/or property owners.

Find more information at www.cityofeagan.com

City of Eagan, MN

March, 2010
Simple policy includes sign inspection details, the adopted sign maintenance method, the types of sheeting material used and the assumed sign life.

In addition, this policy states that ALL signs placed within the County’s right-of-way must be consistent with the MN MUTCD AND have the County Engineers approval. This statement has been effective in helping agencies deny requests for unusual signs, such as SLOW CHILDREN at specific locations.

Agencies should also consider conducting a nighttime sign inspection.

Find more information at www.co.chippewa.mn.us
In 2001, the City of Orono adopted a Community Management Plan that codified the City’s desire to maintain the natural, wooded private residential nature of the community and to provide that virtually all city streets be low volume, low speed roadways.

The Plan also identified general design (paved roads, narrow gravel shoulders, no curb and gutter and no traffic control devices that are **NOT** required by MN MUTCD) and maintenance practices (tree removal and trimming limited to sight line maintenance for motorists) intended to support the preservation of the natural, rural, residential character of the City.

In May 2001, Kristal Monnens was killed in a single vehicle crash that occurred along one of the local roads - North Arm Drive.
Case Study #1: Monnens vs. City of Orono (2/3)

- The vehicle in which Ms. Monnens was a passenger was drag racing and was estimated exceeding 60 mph. When the vehicle failed to negotiate a curve to the left, it veered off the roadway and collided with a tree.

- The expert for the plaintiffs testified that Orono’s failure to place a curve warning sign was the primary cause of the crash and was evidence of the City’s negligence because the MN MUTCD required the use of the warning sign (though in fact, it did NOT).

- The City argued summary judgment - dismissal of the lawsuit based on three key facts.
 - First, the City’s Community Management Plan specifies that in order to support the rural, residential nature of their local roads, traffic control devices that are NOT required will NOT be used.
 - Second, none of the Horizontal Alignment series of Warning signs were required (a SHALL condition) by the MN MUTCD - they were all optional signs that could be used based on engineering judgment.
 - The City had consistently avoided the use of Warning signs along their local roads.
Case Study #1: Monnens vs. City of Orono (3/3)

- Minnesota tort law provides for Discretionary Immunity where actions are found to be consistent with policies enacted by the highest decision making body of an organization (City Council, County Board, etc.) AND where there is evidence that the body considered social and economic issues.

- The Court issued the Summary Judgment – agreed that Curve Warning signs were NOT required at that time and that the action (of not installing the curve warning sign) was consistent with the city’s ordinance and was in fact covered by Discretionary Immunity.

LESSON LEARNED ➔ The establishment of ordinances and/or policies that restrict the use of traffic control devices are a proven method for managing risk associated with actions that are consisted with the adopted ordinances.
Part E – Implementation

Process Chart – Implementation... E-2
Sign Inventory ... E-3
Sign Inventory – Pencil & Paper .. E-4
Sign Inventory – Software .. E-5
Engineering Study Process .. E-6 to E-7
Engineering Study / MN MUTCD Guidance ... E-8 to E-10
Engineering Study / System Consideration Example - Rural Curves... E-11 to E-12
Engineering Study / System Consideration Example - Urban & Rural Low Volume E-13

MN MUTCD Guidance... E-14 to E-16
Regulatory Sign Usage ... E-17 to E-19
Warning Sign Usage .. E-20 to E-23
Guide Sign Usage .. E-24 to E-26
Low Volume Road Sign Usage .. E-27 to E-29
Which Signs are Required by the 2014 MN MUTCD? ... E-30
Case Study #2: Ireland vs. Lengsfeld and Carver County .. E-31 to E-33
A key premise underlying all of the guidance in the MN MUTCD is the exercise of Engineering Judgment!
Sign Inventory

- The first step in the Implementation process involves documenting the location, type, installation date, sheeting type, direction facing, sign post type, and condition of all the signs along your system – conduct a Sign Inventory.
 - There are 2 basic approaches:
 - Pencil & Paper
 - Commercially available software
- Both approaches require investing time and resources:
 - Time in the field collecting data
 - Time in the office analyzing data
- Which approach is best for your agency?
 - Probably depends on how many signs are in your system – if you only manage a small system with relatively few signs, it probably wouldn’t be worth the expense associated with buying software, attending training, and spending time in the field.
These are examples of traffic sign inspection sheets that would be used to conduct the field inventory of sign location, type and condition.

The inventory sheets can be linked with GIS to create system sign maps.

Data can be entered directly into spreadsheets in the field or back at the office.
Sign Inventory – Software

- There are many sign management software options available
- A free version can be found at:
 - Signs Plugin offered by Utah LTAP
 - www.utahltap.org/software
Engineering Study Process (1/2)

The MN MUTCD defines an Engineering Study as:
- The comprehensive analysis and evaluation of available information.
- The application of Principles, Standards and Guidance and practices contained in this Manual.
- For the purpose of making a decision about the application, design, operation or installation of a traffic control device.

The MN MUTCD also defines the requirements for individuals that are assigned the task of conducting the Engineering Study as:
- An engineer or staff working under the supervision of an engineer.
- Having knowledge of the procedures, policies and criteria established by the engineer.

These definitions clearly indicate:
- Trained professional staff should be making the decisions about the application and design of traffic control devices (as opposed to elected officials).
- The key steps in the study process include: understanding MN MUTCD basics, location/system characteristics, agency policies, and obtaining and evaluating information.
Engineering Study Process (2/2)

Understand Basic MN MUTCD Guidance:
- Objective’s of Traffic Control Devices
- Requirements to be Effective
- Engineering Study Process Usage
- Effectiveness

Understand:
- Specific Location Characteristics
- System Characteristics
- Agency Policies

Decide/Document:
- What is the Problem/Issue to be addressed?
 - Safety
 - Speed
 - Congestion
- Identify the applicable Guidelines
 - MN MUTCD
 - AASHTO
 - MnDOT
 - Local Agency
- Identify possible Alternatives
 - In virtually ALL cases there will be multiple choices
- Identify the evaluating Criteria
 - Effectiveness
 - Cost (first and ongoing maintenance)
 - Potential Impacts
 - Consistency
- Implementation
STANDARD: The MN MUTCD describes the application of traffic control devices, but is not a legal requirement for their installation.

The MN MUTCD provides Standards, Guidance, Options and Support for the design and application of traffic control devices. – It is NOT a substitute for engineering judgment.

The MN MUTCD previously recommended that agencies should establish a process to provide and maintain reasonable nighttime sign visibility and legibility.

1. **STANDARD** - a statement of required practice and the verb **SHALL** is used.

2. **GUIDANCE** - a statement of recommended practice with deviations allowed based on engineering judgement. The verb **SHOULD** is used.

3. **OPTION** - a statement of practice that is permissive. The verb **MAY** is used.
Purpose of Traffic Control Devices:
- Notify road users of regulations
- Provide warning and guidance needed for safe, uniform and efficient operation
- Any message not related to traffic control is prohibited

Basic Requirements of Effective Traffic Control Devices:
- Fulfill a need
- Command attention
- Convey a clear, simple message
- Command respect
- Give adequate time to respond
Use only standard signs and place signs only when judgment or studies indicate a need for the signs.

REGULATORY signs give notice of traffic laws or regulations.

WARNING signs give notice of situations that are not self-evident.

GUIDE signs provide information as to highway routes, directions, destinations, distances, services and points of interest.

Signs are ordinarily not needed to confirm rules of the road or laws.

Signs should not be installed that are not consistent with the rules (for example, Speed Limit 20 MPH).
Engineering Study / System Consideration Example - Rural Curves (1/2)

- On **Rural** roads a typical system consideration involves the use of Curve Warning signs. These signs are only required on roads with 1,000 or greater AADT and a recent MnDOT research project\(^1\) found that about 80% of the curves in the sample selected for analysis had these signs in place. However, the usage was found to be inconsistent—some curves in each of the radius categories (0-500 feet, 500-1,000 feet, etc.) did not have the advance warning signs. It doesn’t appear that any particular set of criteria or strategy was used to identify at-risk curves.

- The MnDOT report also noted that the Curve Warning signs appeared to have only a small effect on crashes and then only on curves in a fairly narrow range of radii. The Advance Warning signs at curves with radii between approximately 1,000 and 1,800 feet and chevrons at very short radius curves (be careful—very small sample size) appear to be effective.

- The information in MnDOT’s report combined with the results from a Texas Transportation Institute Report\(^2\) suggest a possible new approach to systematically deploying Warning signs at horizontal curves. Both reports indicate that the crash risk at curves is a function of radius—long radius curves have crash rates similar to the system average for rural roads, but as the radius decreases the crash rate increases.

\(^1\) Pitale, J., Shankwitz, C., Preston, H., Barry, M. Benefit:Cost Analysis of In-Vehicle Technologies and Infrastructure Modifications as a Means to Prevent Crashes Along Curves and Shoulders, Mn/DOT, December 2009

\(^2\) Texas Transportation Institute (FHWA/TX-07/0-5439-1)
The Minnesota County Road Safety Program analyzed 18,959 curves
- Of these curves, 63% of severe crashes occurred in curve radii between 500 and 1200 feet.
- 65% of severe runoff road crashes occurred between 500 and 1200 feet.

A sample system curve warning policy could include:
- Curves > 1,200 foot radius (low crash risk/at system average crash rate) ➔ No advance warning signs
- Curves between 500 and 1,200 foot radii (High crash risk) ➔ Advance warning sign and Chevrons
- Curves < 500 foot radius (Low crash risk) ➔ Advance warning signs and Arrow Board

To support **ANY** system wide approach to consistently sign curves, an inventory of your curves is required including estimating either the radius or degree of curvature (Radius = 5729.6/Degree of Curve).

It is **NOT** necessary to have a precise measurement of the radius of every curve - the curve research in Minnesota estimated curve radii using measurements from aerial photography. Other methods could include using as-built plans, county maps, information for a county surveyor or the measuring feature on Google Earth.

Greater Minnesota Curve Radius

<table>
<thead>
<tr>
<th>Radius Range</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-100</td>
<td>0.00</td>
</tr>
<tr>
<td>100-200</td>
<td>0.00</td>
</tr>
<tr>
<td>200-300</td>
<td>0.00</td>
</tr>
<tr>
<td>300-400</td>
<td>0.00</td>
</tr>
<tr>
<td>400-500</td>
<td>0.00</td>
</tr>
<tr>
<td>500-600</td>
<td>0.00</td>
</tr>
<tr>
<td>600-700</td>
<td>0.00</td>
</tr>
<tr>
<td>700-800</td>
<td>0.00</td>
</tr>
<tr>
<td>800-900</td>
<td>0.00</td>
</tr>
<tr>
<td>900-1000</td>
<td>0.00</td>
</tr>
<tr>
<td>1000-1100</td>
<td>0.00</td>
</tr>
<tr>
<td>1100-1200</td>
<td>0.00</td>
</tr>
<tr>
<td>1200-1300</td>
<td>0.00</td>
</tr>
<tr>
<td>1300-1400</td>
<td>0.00</td>
</tr>
<tr>
<td>1400-1500</td>
<td>0.00</td>
</tr>
<tr>
<td>1500-1600</td>
<td>0.00</td>
</tr>
<tr>
<td>1600-1700</td>
<td>0.00</td>
</tr>
<tr>
<td>1700-1800</td>
<td>0.00</td>
</tr>
<tr>
<td>1800-1900</td>
<td>0.00</td>
</tr>
<tr>
<td>1900-2000</td>
<td>0.00</td>
</tr>
<tr>
<td>2000-2100</td>
<td>0.00</td>
</tr>
<tr>
<td>2100-2200</td>
<td>0.00</td>
</tr>
<tr>
<td>2200-2300</td>
<td>0.00</td>
</tr>
<tr>
<td>2300-2400</td>
<td>0.00</td>
</tr>
<tr>
<td>2400-2500</td>
<td>0.00</td>
</tr>
<tr>
<td>2500-2600</td>
<td>0.00</td>
</tr>
<tr>
<td>2600-2700</td>
<td>0.00</td>
</tr>
<tr>
<td>2700-2800</td>
<td>0.00</td>
</tr>
<tr>
<td>2800-2900</td>
<td>0.00</td>
</tr>
<tr>
<td>2900-3000</td>
<td>0.00</td>
</tr>
<tr>
<td>3000-3100</td>
<td>0.00</td>
</tr>
<tr>
<td>3100-3200</td>
<td>0.00</td>
</tr>
<tr>
<td>3200-3300</td>
<td>0.00</td>
</tr>
<tr>
<td>3300-3400</td>
<td>0.00</td>
</tr>
<tr>
<td>3400-3500</td>
<td>0.00</td>
</tr>
<tr>
<td>3500-3600</td>
<td>0.00</td>
</tr>
<tr>
<td>3600-3700</td>
<td>0.00</td>
</tr>
<tr>
<td>3700-3800</td>
<td>0.00</td>
</tr>
<tr>
<td>3800-3900</td>
<td>0.00</td>
</tr>
<tr>
<td>3900-4000</td>
<td>0.00</td>
</tr>
<tr>
<td>4000-4100</td>
<td>0.00</td>
</tr>
<tr>
<td>4100-4200</td>
<td>0.00</td>
</tr>
<tr>
<td>4200-4300</td>
<td>0.00</td>
</tr>
<tr>
<td>4300-4400</td>
<td>0.00</td>
</tr>
<tr>
<td>4400-4500</td>
<td>0.00</td>
</tr>
<tr>
<td>4500-4600</td>
<td>0.00</td>
</tr>
<tr>
<td>4600-4700</td>
<td>0.00</td>
</tr>
<tr>
<td>4700-4800</td>
<td>0.00</td>
</tr>
<tr>
<td>4800-4900</td>
<td>0.00</td>
</tr>
<tr>
<td>4900-5000</td>
<td>0.00</td>
</tr>
<tr>
<td>5000-5100</td>
<td>0.00</td>
</tr>
<tr>
<td>5100-5200</td>
<td>0.00</td>
</tr>
<tr>
<td>5200-5300</td>
<td>0.00</td>
</tr>
<tr>
<td>5300-5400</td>
<td>0.00</td>
</tr>
<tr>
<td>5400-5500</td>
<td>0.00</td>
</tr>
<tr>
<td>5500-5600</td>
<td>0.00</td>
</tr>
<tr>
<td>5600-5700</td>
<td>0.00</td>
</tr>
<tr>
<td>5700-5800</td>
<td>0.00</td>
</tr>
<tr>
<td>5800-5900</td>
<td>0.00</td>
</tr>
<tr>
<td>5900-6000</td>
<td>0.00</td>
</tr>
<tr>
<td>6000-6100</td>
<td>0.00</td>
</tr>
<tr>
<td>6100-6200</td>
<td>0.00</td>
</tr>
<tr>
<td>6200-6300</td>
<td>0.00</td>
</tr>
<tr>
<td>6300-6400</td>
<td>0.00</td>
</tr>
<tr>
<td>6400-6500</td>
<td>0.00</td>
</tr>
<tr>
<td>6500-6600</td>
<td>0.00</td>
</tr>
<tr>
<td>6600-6700</td>
<td>0.00</td>
</tr>
<tr>
<td>6700-6800</td>
<td>0.00</td>
</tr>
<tr>
<td>6800-6900</td>
<td>0.00</td>
</tr>
<tr>
<td>6900-7000</td>
<td>0.00</td>
</tr>
<tr>
<td>7000-7100</td>
<td>0.00</td>
</tr>
<tr>
<td>7100-7200</td>
<td>0.00</td>
</tr>
<tr>
<td>7200-7300</td>
<td>0.00</td>
</tr>
<tr>
<td>7300-7400</td>
<td>0.00</td>
</tr>
<tr>
<td>7400-7500</td>
<td>0.00</td>
</tr>
<tr>
<td>7500-7600</td>
<td>0.00</td>
</tr>
<tr>
<td>7600-7700</td>
<td>0.00</td>
</tr>
<tr>
<td>7700-7800</td>
<td>0.00</td>
</tr>
<tr>
<td>7800-7900</td>
<td>0.00</td>
</tr>
<tr>
<td>7900-8000</td>
<td>0.00</td>
</tr>
<tr>
<td>8000-8100</td>
<td>0.00</td>
</tr>
<tr>
<td>8100-8200</td>
<td>0.00</td>
</tr>
<tr>
<td>8200-8300</td>
<td>0.00</td>
</tr>
<tr>
<td>8300-8400</td>
<td>0.00</td>
</tr>
<tr>
<td>8400-8500</td>
<td>0.00</td>
</tr>
<tr>
<td>8500-8600</td>
<td>0.00</td>
</tr>
<tr>
<td>8600-8700</td>
<td>0.00</td>
</tr>
<tr>
<td>8700-8800</td>
<td>0.00</td>
</tr>
<tr>
<td>8800-8900</td>
<td>0.00</td>
</tr>
<tr>
<td>8900-9000</td>
<td>0.00</td>
</tr>
<tr>
<td>9000-9100</td>
<td>0.00</td>
</tr>
<tr>
<td>9100-9200</td>
<td>0.00</td>
</tr>
<tr>
<td>9200-9300</td>
<td>0.00</td>
</tr>
<tr>
<td>9300-9400</td>
<td>0.00</td>
</tr>
<tr>
<td>9400-9500</td>
<td>0.00</td>
</tr>
<tr>
<td>9500-9600</td>
<td>0.00</td>
</tr>
<tr>
<td>9600-9700</td>
<td>0.00</td>
</tr>
<tr>
<td>9700-9800</td>
<td>0.00</td>
</tr>
<tr>
<td>9800-9900</td>
<td>0.00</td>
</tr>
<tr>
<td>9900-10000</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Severe Crashes (480 crashes)
Severe Run Off Road Crashes (328 crashes)
Total Curves (18,959 curves)
Engineering Study / System Consideration Example - Urban & Rural Low Volume

- On urban and rural low volume roads, a typical system consideration involves the use of STOP signs, particularly at low volume residential intersections.
- A casual drive around the Minneapolis/St. Paul metropolitan area reveals that STOP signs are regularly used at low volume intersections where there is rarely a need to actually stop.
- This overuse of STOP signs is likely contributing to the fact that only around 20% of the people actually stop.
- Studies of low volume intersections by Texas Transportation Institute\(^1\) and Iowa State University\(^2\) found that increasing levels of intersection control at these low volume locations does NOT improve safety.
- The MN MUTCD also advises against using STOP signs for speed control—because there is no proof of effectiveness.
- It appears that the bottom line relative to the use of STOP signs at low volume intersections is:
 - STOP signs are not required
 - STOP signs are not a safety device
 - STOP signs have been deployed at many locations where we do not mean stop and as a result only about 20% of drivers actually stop

All of this suggests developing a systemwide STOP sign policy that:
- Limits the deployment to locations where your judgment indicates that there is a need to stop (residential streets intersecting with collectors, collectors with minor arterials, etc.).
- Prohibits the deployment (or calls for the removal of existing STOP signs) at locations where there is no need to stop (low volume residential intersections).

The research clearly indicates that at low volume intersections, there are NO safety benefits associated with increasing the level of intersection control; uncontrolled intersections have the lowest frequency of crashes and the highest function of intersections with no crashes.

If your agency is uncomfortable with the notion of uncontrolled intersections, consider the use of YIELD signs—compared to STOP signs they have a lower crash frequency, a higher fraction of intersections without crashes and would be more consistent with actual driver behavior.

\(^2\) Guidelines for Removal of Traffic Control Devices in Rural Areas, Center for Transportation Research and Education and Iowa State University, October 2005.
MN MUTCD Guidance (1/3)

- The MN MUTCD identifies suggested sign mounting heights and lateral offsets.
- These are suggestions - but, be careful! Some experts have been known to say that these are standards that **must** be followed.
- Ground-mounted sign supports shall be breakaway, yielding, or shielded with a longitudinal barrier or crash cushion if within the clear zone.
 - Three (3) pound U-posts, Wood posts with drilled holes and the square post detail below are considered breakaway and have been tested for crashworthiness.
- Do you know how your signs measure up?

Source: 2014 MN MUTCD
The MN MUTCD also includes examples for locations for signs at intersections.

Note: Lateral offset is a minimum of 6 feet measured from the edge of the shoulder, or 12 feet measured from the edge of the traveled way. See Section 2A.19 for lower minimums that may be used in urban areas, or where lateral offset space is limited.

Source: 2014 MN MUTCD
This table provides guidelines for the advance placement of Warning signs. The basic premise is to place Warning signs so that the drivers have sufficient time to understand the message and react.

For example:
- If you are on a 65 mph rural expressway and want to place a Curve Warning sign in advance of a 50 mph curve - the suggested distance is 200 feet.
- If you are on a 55 mph rural two-lane and want to place a STOP AHEAD sign - the suggested distance is 325 feet.

Longer advance placement distances can be used based on engineering judgment to account for unique conditions (restricted sight lines, sign spacing, etc.) at specific locations. Risk management best practices suggest that the thought process and ultimate decision to vary from the guidance in the MN MUTCD should be documented.

Table 2C-4. Guidelines for Advance Placement of Warning Signs

<table>
<thead>
<tr>
<th>Posted or 85th percentile speed mph (mph)</th>
<th>Advance Placement Distance1</th>
<th>Condition A: Speed Reduction and Lane Changing in Heavy Traffic2</th>
<th>Condition B: Deceleration to the listed advisory speed (MPH) for the condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>225</td>
<td>100⁴</td>
<td>See Notes³</td>
</tr>
<tr>
<td>25</td>
<td>325</td>
<td>100⁴</td>
<td>See Notes³ See Notes⁵</td>
</tr>
<tr>
<td>30</td>
<td>460</td>
<td>100⁴</td>
<td>See Notes³ See Notes⁵</td>
</tr>
<tr>
<td>35</td>
<td>565</td>
<td>100⁴</td>
<td>See Notes³ See Notes⁵</td>
</tr>
<tr>
<td>40</td>
<td>670</td>
<td>125 100⁶</td>
<td>See Notes⁵</td>
</tr>
<tr>
<td>45</td>
<td>775</td>
<td>175 125 100⁶</td>
<td>See Notes⁵</td>
</tr>
<tr>
<td>50</td>
<td>885</td>
<td>250 200 175 125 100⁶</td>
<td>See Notes⁵</td>
</tr>
<tr>
<td>55</td>
<td>990</td>
<td>325 275 225 200 125 See Notes⁵</td>
<td>100⁶</td>
</tr>
<tr>
<td>60</td>
<td>1100</td>
<td>400 350 325 275 200 100⁶</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>1200</td>
<td>475 450 350 275 200 100⁶</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>1250</td>
<td>525 500 450 375 275 150</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>1350</td>
<td>650 625 600 550 475 375 250</td>
<td>100⁶</td>
</tr>
</tbody>
</table>

Notes:

1. The distances are adjusted for a sign legibility distance of 180 ft for Condition A. The distances for Condition B have been adjusted for a sign legibility distance of 250 feet, which is the appropriate for an alignment warning symbol sign. For Condition A and B, warning signs with less than 6-inch legend or more than 4 words, a minimum of 100 feet should be added to the advance placement distance to provide adequate legibility of the warning sign.

2. Typical conditions are locations where the road user might use extra time to adjust speed and change lanes in heavy traffic because of a complex driving situation. Typical signs are Merge and Right Lane Ends. The distances are determined by providing the driver a PRT of 14.0 to 14.5 seconds for vehicle maneuvers (2004 AASHTO Policy, Exhibit 3-3, Decision Sight Distance, Avoidance Maneuver E) minus the legibility distance of 180 feet for the appropriate sign.

3. Typical condition is the warning of a potential stop situation. Typical signs are Stop Ahead, Yield Ahead, Signal Ahead and Intersection Warning signs. The distances are based on the 2004 AASHTO Policy, Exhibit 3-1, Stoping Sight Distance, providing a PRT of 2.5 seconds, a deceleration rate of 11.2 ft/second², minus the sign legibility distance of 180 ft.

4. Typical conditions are locations where the road user must decrease speed to maneuver through the warned condition. Typical signs are Turn, Curve, Reverse Turn, or Reverse Curve. The distance is determined by providing a 2.5 second PRT, a vehicle deceleration of 10 feet/second², minus the sign legibility distance of 250 ft.

5. No suggested distances are provided for these speeds, as placement location is dependent on site conditions and other signing. An alignment warning sign may be placed anywhere from the point of curvature up to 100 feet in advance of the curve. However, the alignment warning sign should be installed in advance of the curve and at least 100 feet from any other sign.

6. The minimum advance placement distance is listed as 100 feet to provide adequate spacing between signs.

Source: 2014 MN MUTCD
Regulatory Sign Usage (1/3)

- Regulatory signs – notice of traffic laws and regulations.
- These are examples of Regulatory signs described in the MN MUTCD.
- Size varies based on facility type.
- Oversized signs are used for special occasions, such as a STOP sign placed behind an at-grade railroad crossing where the railroad hardware impedes the driver’s view of the sign.

Source: MnDOT Standard Sign Summary
This is a more comprehensive list of the Regulatory signs found in Part 2B of the MN MUTCD.

An all too frequent response to the question – why did your agency install a particular sign is – the MN MUTCD required the installation.

Part 2B - Regulatory Signs

- Road/Bridge/Sidewalk Closed
- Pedestrian Crossing
- Speed Limits
- Pass With Care
- Do Not Enter
- All Way (Stop) Plaque
- Slower Traffic Keep Right
- Divided Highway
- Turn Prohibition
- Intersection Lane Control
- STOP & Yield
- State Law Signs
- Two-Way Left Turn Lane
- Wrong Way
- Speed Reduction
- Right/Left Turn Lane
- Weight Limits
- Cross Traffic Does Not Stop
- No Parking
- Begin/End One-Way
- Advance Intersection Lane Control
- End Speed Zone
- Keep Right
- Stop For Peds In Crosswalk
- Keep Off Median
- One Way
- Do Not Pass
- Traffic Signal (Clarifications)

Let’s determine which Regulatory signs are in fact required.
Understand the difference in the levels of guidance provided in the MN MUTCD.

In the category – Regulatory Signs – the only signs that are required are:

- Speed Limits (if in an established speed zone)
- ONE WAY / DO NOT ENTER
- Turn Prohibitions
- ALL-WAY STOP supplementary plaque
- STOP or YIELD* at at-grade passive railroad crossings (railroad responsibility)

All other Regulatory signs may be used based on your agency's policies, system considerations, and the results of an engineer (or their designated representative) exercising their judgment.

This is not an error – STOP signs are **NOT** required. The MN MUTCD states that STOP signs **SHOULD** be used based on the results of an engineering study and that one of the suggested applications should be at a street entering a “through highway.” Minnesota Statute §169.30 says that the through highway is generally the approach with the highest traffic flow. Minnesota Statute §169.30 also says that normally it is **desirable** to erect STOP signs at all public entrances to highways.

STANDARD GUIDANCE OPTION SUPPORT

<table>
<thead>
<tr>
<th>(Shall)</th>
<th>(Should)</th>
<th>(May)</th>
<th>SUPPORT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed Limits</td>
<td>Stop</td>
<td>Yield</td>
<td>No Parking</td>
</tr>
<tr>
<td>One Way</td>
<td>Road/Bridge/ Sidewalk Closed</td>
<td>Slower Traffic Keep Right</td>
<td>End Speed Zone</td>
</tr>
<tr>
<td>Do Not Enter</td>
<td>Turn Prohibition</td>
<td>Pass With Care</td>
<td>Wrong Way</td>
</tr>
<tr>
<td>Turn Prohibition</td>
<td>All Way (Stop) Supplementary Plaque</td>
<td>Intersection Lane Control</td>
<td>Cross Traffic Does Not Stop</td>
</tr>
<tr>
<td></td>
<td>Stop or Yield* at at-grade passive railroad crossings (railroad responsibility)</td>
<td>Two-Way Left Turn Lane</td>
<td>Advance Intersection Lane Control</td>
</tr>
<tr>
<td></td>
<td>Right/Left Turn Lane</td>
<td>Stop For Peds In Cross Walk</td>
<td></td>
</tr>
<tr>
<td></td>
<td>State Law Signs</td>
<td>Do Not Pass</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Speed Reduction</td>
<td>Keep Off Median</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Traffic Signal (Clarifications)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pedestrian Crossing</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Weight Limits</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Determination of the need for a STOP or YIELD sign is based on a site visit with MnDOT, the railroad and road authority.
Warning Sign Usage (1/4)

Warning signs – call attention to unexpected conditions.

These are examples of warning sign described in the MN MUTCD.

<table>
<thead>
<tr>
<th>Sign Number</th>
<th>Sign Picture</th>
<th>Sign Colors</th>
<th>Sign Size (in. x in.)</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>W9-1</td>
<td>Black on Yellow</td>
<td>30x30</td>
<td>Minimum</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>36x36</td>
<td>Single Lane & Multi-Lane Conventional/Expressway</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>48x48</td>
<td>Freeway/Oversized Minimum</td>
<td></td>
</tr>
<tr>
<td>W9-2 (R or L)</td>
<td>Black on Yellow</td>
<td>30x30</td>
<td>Minimum</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>36x36</td>
<td>Single Lane & Multi-Lane Conventional/Expressway</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>48x48</td>
<td>Freeway/Oversized Minimum</td>
<td></td>
</tr>
<tr>
<td>W10-1</td>
<td>Black on Yellow</td>
<td>18x18</td>
<td>Bicycle Facilities</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>24x24</td>
<td>Minimum</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>30x30</td>
<td>Single Lane & Multi-Lane Conventional</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>36x36</td>
<td>Expressway</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>48x48</td>
<td>Oversized Minimum</td>
<td></td>
</tr>
<tr>
<td>W10-1a</td>
<td>Black on Yellow</td>
<td>24x12</td>
<td>Single Lane & Multi-Lane Conventional/Expressway</td>
<td></td>
</tr>
</tbody>
</table>

Source: MnDOT Standard Sign Summary
Warning Sign Usage (2/4)

- This is a more comprehensive list of Warning Signs found in Part 2C of the MN MUTCD.

Part 2C - Warning Signs
- Hill
- Pavement Ends
- Dead End/No Outlet
- Horizontal Alignment
- Speed Bump/HumpRoad/Bridge Narrows
- Next XX Miles Distance Plaque
- One Direction Large Arrow Divided Highway
- Slippery When Wet
- Chevron Alignment
- Prepare To Stop
- Advisory Speed Plaque
- Lane Ends
- Bump/Dip
- Railroad Crossing
- Two Direction Large Arrow
- No Passing Pennant
- Soft Shoulder
- Two-Way Traffic
- Advance Traffic Control (Limited Sight Distance)
- Added Lane
- Intersection Warning
- Cross Traffic Does Not Stop
- Playground
- Merge Advance Traffic Control (General Application)
- Low Clearance (Less Than 12 In. Above Legal Max. Height)
- Crossings(Pedestrians, Bicycles,Snowmobilers, etc.)

Which Warning Signs are required?
Warning Sign Usage (3/4)

- In the category – Warning Signs – the only signs that are required are:
 - Railroad Crossing
 - Low Clearance
 - Advance Traffic Control (if sight distance to the device is limited or impaired)
 - No Train Horn
 - Horizontal Alignment series on roads with more than 1,000 AADT

- All other Warning signs may be used based on your agencies policies, system considerations and the results of an engineer (or their designated representative) exercising their judgment.

<table>
<thead>
<tr>
<th>STANDARD (Shall)</th>
<th>GUIDANCE (Should)</th>
<th>PTION (May)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Railroad Crossing</td>
<td>Hill</td>
<td>No Passing Pennant</td>
</tr>
<tr>
<td>Low Clearance (Less Than 12 In. Above Legal Max. Height)</td>
<td>Road/Bridge Narrows</td>
<td>Horizontal Alignment</td>
</tr>
<tr>
<td>Advance Traffic Control (Limited Sight Distance)</td>
<td>Divided Highway</td>
<td>Next XX Miles Distance Plaque</td>
</tr>
<tr>
<td>No Train Horn</td>
<td>Bump/Dip</td>
<td>Advisory Speed Plaque</td>
</tr>
<tr>
<td>Horizontal Alignment series on roads with more than 1,000 AADT</td>
<td>Pavement Ends</td>
<td>One Direction Large Arrow</td>
</tr>
<tr>
<td>Speed Bump/Hump</td>
<td>Chevron Alignment</td>
<td></td>
</tr>
<tr>
<td>Soft Shoulder</td>
<td>Dead End/No Outlet</td>
<td></td>
</tr>
<tr>
<td>Added Lane</td>
<td>Slippery When Wet</td>
<td></td>
</tr>
<tr>
<td>Lane Ends</td>
<td>Prepare To Stop</td>
<td></td>
</tr>
<tr>
<td>Two Direction Large Arrow</td>
<td>Crossings(Pedestrians, Bicycles, Snowmobilers, Etc)</td>
<td></td>
</tr>
<tr>
<td>Two-Way Traffic</td>
<td>Merge</td>
<td></td>
</tr>
<tr>
<td>Cross Traffic Does Not Stop</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Playground</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intersection Warning</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advance Traffic Control (General Application)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vehicular Traffic Signs</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Railroad Crossing Warning signs are required by the MN MUTCD.*

Various signs and guidelines have been established for various types of railroad crossings. A few scenarios include:

- Parallel road is over 100 feet from crossing,
- Parallel road is within 100 feet of crossing and intersecting road traffic must stop
- Low ground clearance, and
- Restricted storage distance when intersecting road must stop.

For more information on Warning sign usage, refer to the MnDOT Office of Freight, Rail, and Waterways website:

- www.dot.state.mn.us/ofrw/

*STOP or YIELD signs at the at-grade crossing are the railroads responsibility. Determination of the need for a STOP or YIELD sign is based on a site visit with MnDOT, the railroad and road authority.
Guide Sign Usage (1/3)

- Guide signs – provide information about route numbers/names, directions, destinations and distances.
- These are examples of Guide signs described in the MN MUTCD.

<table>
<thead>
<tr>
<th>Sign Number</th>
<th>Sign Picture</th>
<th>Sign Colors</th>
<th>Sign Size (in. x in.)</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1-1</td>
<td></td>
<td>White on Red and Blue</td>
<td>24x24</td>
<td>Minimum & Conventional Road</td>
</tr>
<tr>
<td></td>
<td></td>
<td>White on Green</td>
<td>36x36</td>
<td>Oversized</td>
</tr>
<tr>
<td>M1-2</td>
<td></td>
<td>White on Black</td>
<td>24x24</td>
<td>Minimum & Conventional Road</td>
</tr>
<tr>
<td></td>
<td></td>
<td>White on Green</td>
<td>36x36</td>
<td>Oversized</td>
</tr>
<tr>
<td>M1-4</td>
<td></td>
<td>White and Gold on Blue</td>
<td>24x24</td>
<td>Minimum & Conventional Road</td>
</tr>
<tr>
<td></td>
<td></td>
<td>White on Blue</td>
<td>36x36</td>
<td>Oversized</td>
</tr>
<tr>
<td>M1-5</td>
<td></td>
<td>White and Gold on Blue</td>
<td>24x24</td>
<td>Minimum & Conventional Road</td>
</tr>
<tr>
<td></td>
<td></td>
<td>White on Blue</td>
<td>36x36</td>
<td>Oversized</td>
</tr>
<tr>
<td>M1-6</td>
<td></td>
<td>White and Yellow on Blue</td>
<td>24x24</td>
<td>Minimum & Conventional Road</td>
</tr>
<tr>
<td></td>
<td></td>
<td>White on Green</td>
<td>36x36</td>
<td>Oversized</td>
</tr>
<tr>
<td>D1-1</td>
<td></td>
<td>White on Green</td>
<td>Varies x 18</td>
<td>Minimum & Conventional Road</td>
</tr>
<tr>
<td>D2-1</td>
<td></td>
<td>White on Green</td>
<td>Varies x 18</td>
<td>Minimum & Conventional Road</td>
</tr>
</tbody>
</table>
Guide Sign Usage (2/3)

This is a more comprehensive list of Guide Signs found in Part 2E of the MN MUTCD.

Part 2E - Guide Signs

- Confirming Assemblies
- Street Names
- County Name Marker
- City Name Marker
- Junction Assembly (Jct US 63)
- Route Numbers (On All Numbered Highways)
- Destination and Distance
- Reference Location (Mile Markers)
- Advance Route Turn Assembly

Which Guide signs are required?
In the category – Guide Signs – the only signs that are required are:

- Route Numbers (on all numbered highways)
- Junction Assembly (i.e., Jct US 63)
- Advance Route Turn Assembly

The MN MUTCD has been changed and now requires a package of Guide signs on multi-lane conventional roads approaching an interchange. Guide signs shall be provided to identify which direction of turn is to be made and/or which specific lane to use for ramp access to each direction of a freeway or expressway. It is important to note that this change applies to both State highways and roads under local jurisdiction. MnDOT plans to install these signs as part of construction projects and will be responsible for their maintenance. As a result, there should be little or no impact on local agency sign maintenance budgets.
Low Volume Road Sign Usage (1/3)

- Low volume roads are defined in the Manual as:
 - Having fewer than 400 vehicles per day
 - Not being on a designated State road system
 - Being in a rural area outside of towns and cities
 - Not a neighborhood street or a freeway frontage road

- “Low Volume Roads” there are few usage requirements:
 - Only STOP or YIELD signs are required at passive railroad crossings – several should/may be used based on engineering judgment.
 - Three types of Warning signs are required – Advance Intersection Traffic Control, Rail Road Crossing signs and MINIMUM MAINTENANCE ROAD signs.

<table>
<thead>
<tr>
<th>Regulation</th>
<th>STANDARD (Shall)</th>
<th>GUIDANCE (Should)</th>
<th>OPTION (May)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regulatory Signs</td>
<td>STOP or YIELD at passive railroad crossing</td>
<td>STOP YIELD</td>
<td>Speed Limit No Parking</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Traffic Movement Traffic Prohibition</td>
<td></td>
</tr>
<tr>
<td>Warning Signs</td>
<td>STOP Ahead (Limited Sight Distance) YIELD Ahead (Limited Sight Distance) Rail Grade Crossing Rail Advance Warning MINIMUM MAINTENANCE ROAD</td>
<td>ONE LANE BRIDGE Crossings (vehicles)</td>
<td>Horizontal Alignment Intersections Narrow Bridge Hill PAVEMENT ENDS Crossings (Pedestrians) Advisory Speed Plaque DEAD END/NO OUTLET</td>
</tr>
<tr>
<td>Guide Signs</td>
<td>Destinations</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

These are the only signs REQUIRED by the MN MUTCD. Other signs may be used based on Engineering Judgment.
UNDERSTANDING MINIMUM MAINTENANCE ROADS

by Troy J. Gilchrist, Attorney

In 1985, the legislature created an opportunity for local road authorities to designate certain roads as minimum-maintenance. This statute, codified as Minn. Stat. § 160.095, provides two distinct benefits to town boards: (1) minimum-maintenance roads may be maintained at a level lower than other town roads; and (2) the town, its officers, and employees are provided protection from liability on minimum-maintenance roads. One of the most important things to remember about both of these benefits is that they only apply to minimum-maintenance roads that were properly established and signed. Failure to comply with these requirements, or any of the other requirements contained in the statute, could unnecessarily expose the town to liability. To help avoid these risks, and clear up some of the misunderstandings that surround minimum-maintenance roads, the following will break down and discuss the various aspects of Minn. Stat. § 160.095.

The first thing to realize about this statute is that only certain roads are proper to designate as minimum-maintenance roads. The authority to designate a road minimum-maintenance is specifically conditioned on the town board finding the road is used “only occasionally or intermittently for passenger and commercial travel.” Minn. Stat. § 160.095, subd. 1. Therefore, attempting to designate a road receiving even moderate amounts of traffic could jeopardize the designation and the protections it offers. Even if a road is only occasionally used, a town board should be very hesitant to designate a road as minimum-maintenance if there are homes on the road. Because school buses and postal carriers often refuse to travel on minimum-maintenance roads, designating a road minimum-maintenance could significantly impact homeowners on the road. Also, the lower level of maintenance on these roads could raise concerns over access by emergency vehicles. These concerns should lead any board considering designating a road with homes or other structures on it to proceed with caution and in cooperation with the owners on the road.

Once the board determines a particular road is eligible, the next step is to pass a resolution making the designation. The resolution must include a description of the road, the board’s determination that the road qualifies under the statute, and a description of the beginning and end points of the designation. See APPENDIX A for a sample resolution. If the town has adopted an official map of its road under Minn. Stat. § 164.35, the map must show the minimum-maintenance roads.

After the resolution is passed, the board must have minimum-maintenance signs “posted at the entry points to and at regular intervals along a minimum-maintenance road.” Minn. Stat. § 160.095, subd. 2. The designation is not effective until the proper signs are erected. The signs must conform to the Minnesota Department of Transportation’s Manual of Uniform Traffic Control Devices. The Manual provides the following standards and guidance:

- Minimum Maintenance roads provide two benefits to Townships:
 - These roads may be maintained at a lower level than other township roads.
 - The township, its officers and employees have protection from liability on issues related these roads.
- These benefits only apply to Minimum Maintenance roads that were properly established and have the necessary signs.
- For a township to designate a road as being Minimum Maintenance, the township board must find the road to be used “only occasionally or intermittently for passenger or commercial travel.”
- Roads with homes should not be considered due to concerns about access by school buses, postal carriers and emergency responders.
Low Volume Road Sign Usage (3/3)

- We have established that most township roads likely meet the definition of Low Volume Roads, as a result very few signs (see E-27) are considered required.
- We’ve also established that the average annual sign maintenance cost for a typical township would be approximately $2,450 per year.
- If townships are unable to establish this level of funding in their annual budget, consideration should be given to conducting a sign inventory and study then removing signs that are not required.
- The Federal Highway Administration has suggested that sign reductions in the range of 25% should be easily achieved without any adverse effect on safety.
- The idea of sign reduction has been discussed with a number of township officials and many have been skeptical. A common response involves perceived concerns about safety – the signs were installed to address safety, if they are taken down there will be an adverse effect. In reality, the general safety effect of most signs is not well documented (See Part F) and in particular the effect on low volume township roads has never been studied. However, the graph of fatal crashes on township roads in Minnesota indicates that the long-term trend line is flat – even after the last major township signing initiative in the mid 1980’s.
 - This suggests that replacing signs on low volume township roads that are primarily used by local drivers does not appear to be associated with improved safety.
Which Signs are Required by the 2014 MN MUTCD?

<table>
<thead>
<tr>
<th>Regulatory</th>
<th>Warning</th>
<th>Guide</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Speed Limits IF a speed zone (other than a statutory limit) has been established.</td>
<td>- Rail Road Advance Warning and No Train Horn IF quiet zone established</td>
<td>- Route Numbers on ALL numbered highways</td>
</tr>
<tr>
<td>- ONE-WAY & DO NOT ENTER where applicable.</td>
<td>- Clearance IF clearance is less than 14'-6" (12" above the statutory minimum clearance height)</td>
<td>- Junction Assembly</td>
</tr>
<tr>
<td>- The ALL-WAY STOP plaque at All-Way Stops.</td>
<td>- Advance Traffic Control IF there is limited sight distance.</td>
<td>- Advance Route Turn Assembly</td>
</tr>
<tr>
<td>- STOP or YIELD IF at a passive railroad crossing</td>
<td>- Horizontal Alignmentment IF more than 1,000 AADT</td>
<td></td>
</tr>
<tr>
<td>- Prohibition signs where applicable</td>
<td>- Minimum Maintenance</td>
<td></td>
</tr>
</tbody>
</table>

Note: The determination as to which signs in the MN MUTCD are required is based on the 2014 version. Subsequent editions may result in additions to or deletions from the list.

- If you have Low Volume roads, only the Warning signs listed above are required.
- Bottom Line – out of the hundreds of signs contained in the MN MUTCD – 15 types of signs are required.
- This suggests that if you decide to put up a sign – most of the time that action will be based on exercising your judgment and NOT on the requirements in the MN MUTCD.
Case Study #2: Ireland vs. Lengsfeld and Carver County (1/3)

Background:
- Design
- Crash History
- Issues

Lessons Learned:
- Importance of Documentation
- Application of Doctrine of Official Immunity Applied to Traffic Engineering
Case Study #2: Ireland vs. Lengsfeld and Carver County (2/3)

Background
- 55 MPH Speed Limit
- Curve Warning Sign in Place
- Stop Ahead Sign in Place
- Rumble Strips in Place/Partially Filled
- Crash Occurred in the Middle of a Clear, Bright Summer Day

Issues
- No Speed Advisory on Curve Warning Sign
- No Distance Plaque on Stop Sign Ahead Sign
- Stop Ahead Sign at 750 Feet instead of 450 feet
- Maintenance of Rumble Strips

Crash History
- 2 Crashes per Year
- Crash Rate = 0.5 Crashes/Million Entering Vehicles
- Statewide Average = 0.6 Crashes/Million Entering Vehicles
- Critical Rate = 1.3 Crashes/Million Entering Vehicles
Case Study #2: Ireland vs. Lengsfeld and Carver County (3/3)

Legal Process:
1. Criminal Trial
2. Civil Case
 - County’s Motion for Summary Judgement (Denied)
 - County’s Appeal (Reversed District Courts Decision)
 - Plaintiffs Appeal to State Supreme Court (Refused to Hear the Case - Appeals Court Decision Stands)

Court of Appeals Decision (CX-96-19)
1. Reversed District Court Decision
 - Affirmed the sign placement was discretionary
 - Acknowledged MN MUTCD’s express deference to the judgment of engineers in installing traffic control devices
 - Affirmed that rumble strip maintenance is discretionary
 - Extended the Doctrine of Official Immunity to the decision making of a traffic engineer
 - In the future, plaintiffs will have to demonstrate that the government employee engaged in willful or malicious acts

Lessons Learned ➔ Written documentation of decisions regarding the placement of traffic signs (including a clear understanding of the guidance, facts that caused you to vary from the guidance and your ultimate decision) is a proven method for managing risk associated with actions that may not be entirely consistent with the MN MUTCD. No one expects you to document every decision you make – you will need to exercise your judgment to decide which of your decisions are potentially controversial enough to make the added investment of your time worth the effort.
Part F – Effectiveness of Traffic Signs

How to Measure Effectiveness? ... F-2
Effectiveness of Regulatory Signs – Speed Limit F-3
Effectiveness of Regulatory Signs – STOP signs F-4
Effectiveness of Regulatory Signs - LED STOP and YIELD signs F-5
Effectiveness of Warning Signs – Children at Play F-6
Effectiveness of Warning Signs – Horizontal Alignment F-7
Effectiveness of Warning Signs – Pedestrian Crossings F-8
Effectiveness of Warning Signs ... F-9
Effectiveness of Guide Signs ... F-10
Sign Effectiveness Summary ... F-11
Making the Case For Considering Sign Removal F-12
Sign Removal – Which Signs Are Candidates? F-13 to F-14
Potential Sign Removal Examples ... F-15 to F-19
Sign Removal – Managing Risk .. F-20
A Final Thought About Sign Removal ... F-21
Case Study #3: City of South Lake Tahoe, CA vs. Markham F-22 to F-23
Case Study #4: Pedrosa vs. City of Alhambra, CA F-24

What’s wrong with these pictures? (See page G-3 for answer.)
How to Measure Effectiveness?

- In order to determine the effectiveness of signs – you have to ask what is the Performance Measure?
- The most commonly cited measure is **CRASHES**, but that is a very difficult piece of information to work with because only a very few signs are related to safety and there are too few crashes at most locations to produce statistically reliable results.
- It appears that a second (and possibly better) measure of effectiveness would be **DRIVER BEHAVIOR**. Did the sign change behavior in the desired way? Was the response consistent among drivers?
Effectiveness of Regulatory Signs – Speed Limit

Drivers select a speed they perceive as safe based on their reaction to actual conditions, presence of pedestrians, road width, parked vehicles, etc.) along a roadway.

Speed limit signs have never proven to change driver behavior.

Drivers only comply with speed limits (and the signs) if the posted limits are consistent with a driver’s perception of the road environment and their selection of a safe speed, that is approximated by the 85th percentile speed.

Lower speed limits are frequently requested in order to improve safety. There is one very substantial problem with this theory – it is NOT consistent with actual crash data. Analysis of a sample of urban, conventional roads found that crash rates decreased with increased speed limits.

<table>
<thead>
<tr>
<th>Study Location</th>
<th>Before</th>
<th>After</th>
<th>Sign Change +/- mph</th>
<th>85% Before</th>
<th>Change mph</th>
</tr>
</thead>
<tbody>
<tr>
<td>T.H. 65</td>
<td>SPEED LIMIT 40</td>
<td>SPEED LIMIT 30</td>
<td>-10</td>
<td>34</td>
<td>34</td>
</tr>
<tr>
<td>T.H. 65</td>
<td>SPEED LIMIT 50</td>
<td>SPEED LIMIT 40</td>
<td>-10</td>
<td>44</td>
<td>45</td>
</tr>
<tr>
<td>Anoka CSAH 1</td>
<td>SPEED LIMIT 45</td>
<td>SPEED LIMIT 40</td>
<td>-5</td>
<td>48</td>
<td>50</td>
</tr>
<tr>
<td>Anoka CSAH 24</td>
<td>SPEED LIMIT 30</td>
<td>SPEED LIMIT 45</td>
<td>+15</td>
<td>49</td>
<td>50</td>
</tr>
<tr>
<td>Anoka CR 51</td>
<td>SPEED LIMIT 40</td>
<td>SPEED LIMIT 45</td>
<td>+5</td>
<td>45</td>
<td>46</td>
</tr>
<tr>
<td>Henn. CSAH 4</td>
<td>SPEED LIMIT 50</td>
<td>SPEED LIMIT 40</td>
<td>-10</td>
<td>52</td>
<td>51</td>
</tr>
<tr>
<td>Nobles Ave.</td>
<td>SPEED LIMIT 30</td>
<td>SPEED LIMIT 35</td>
<td>+5</td>
<td>37</td>
<td>40</td>
</tr>
<tr>
<td>62nd Ave. N</td>
<td>SPEED LIMIT 35</td>
<td>SPEED LIMIT 30</td>
<td>-5</td>
<td>37</td>
<td>37</td>
</tr>
<tr>
<td>Miss. St.</td>
<td>SPEED LIMIT 30</td>
<td>SPEED LIMIT 35</td>
<td>+5</td>
<td>39</td>
<td>40</td>
</tr>
</tbody>
</table>

Before After

<table>
<thead>
<tr>
<th>TH 210 Baxter</th>
<th>Posted</th>
<th>55</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>% 85% Compliance</td>
<td>68</td>
<td>68</td>
<td></td>
</tr>
<tr>
<td>% Compliance</td>
<td>68</td>
<td>68</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TH 316 Hastings</th>
<th>Posted</th>
<th>45</th>
<th>35</th>
</tr>
</thead>
<tbody>
<tr>
<td>% 85% Compliance</td>
<td>65</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>% Compliance</td>
<td>60</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

Source: Unpublished MnDOT Data

MN Urban Roadway Crash Rates vs. Posted Speed Limits

Effectiveness of Regulatory Signs – STOP signs

- A comprehensive study of a sample of low volume rural intersections with STOP, YIELD and NO CONTROL found that the number of crashes was NOT related to the degree of control.¹

Summary of Significant Data¹

<table>
<thead>
<tr>
<th>Control Type</th>
<th>Statistic Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stop</td>
<td>Yields</td>
</tr>
<tr>
<td>Number of intersections</td>
<td>48</td>
</tr>
<tr>
<td>Average Volume (vpd)</td>
<td></td>
</tr>
<tr>
<td>Major Roadway</td>
<td>2,530</td>
</tr>
<tr>
<td>Minor Roadway</td>
<td>200</td>
</tr>
<tr>
<td>Average Crashes/Int</td>
<td>0.44</td>
</tr>
<tr>
<td>Intersections w/NO Crashes</td>
<td>69%</td>
</tr>
</tbody>
</table>

Driver Behavior

- Voluntary Stops: 19% 8% 9%
- Slow Entries (<=5mph): 65% 79% 80%
- Fast Entries (>=5mph): 16% 13% 11%

- Increasing levels of control at low volume intersections did NOT reduce the number of crashes.
- The fraction of intersections with NO crashes is inversely related to the level of control – 95% of the intersections with No Control had no crashes compared to 69% for STOP controlled intersections.
- STOP signs have proven to have only a marginal effect on driver behavior at the low volume intersections, where the need to stop (based on interacting with conflicting vehicles) may not be obvious. Fewer than 20% of vehicles voluntarily stopped at STOP signs (vs. 9% at No Control intersections) and the fraction of Fast Entries at STOP controlled intersections was 45% higher than at intersections with No Control.

Summary of Previous Research on Driver Behavior at STOP Signs¹

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Stops</td>
<td>47%</td>
<td>45%</td>
<td>38%</td>
<td>20%</td>
<td>17%</td>
<td>22%</td>
<td>12%</td>
</tr>
<tr>
<td>Partial Violation (Rolling Stop)</td>
<td>42%</td>
<td>34%</td>
<td>42%</td>
<td>69%</td>
<td>69%</td>
<td>48%</td>
<td>60%</td>
</tr>
<tr>
<td>Full Violation (No Stop)</td>
<td>11%</td>
<td>21%</td>
<td>20%</td>
<td>11%</td>
<td>14%</td>
<td>30%</td>
<td>28%</td>
</tr>
</tbody>
</table>

¹ Stockton, Brackett and Mounce “STOP, YIELD and NO CONTROL at Intersections, Report No. FHWA/RD-81/084, 1981

A recent study of intersections in Iowa² found that at low volumes (less than 150 entering vehicles per day), there was no statistically significant difference between the safety performance of a STOP controlled versus an uncontrolled intersection.

St. Louis County, MN recently added flags to an ALL-WAY STOP intersection and studied driver behavior. There was no statistical difference in STOP sign violations from before, during or after the flags were in place.
Effectiveness of Regulatory Signs – LED STOP and YIELD Signs

- MnDOT LRRB Report 2014-02 researched the impact of flashing LEDs on crash reduction and driver behavior at STOP signs.
 - 15 Minnesota locations with LED STOP signs in place for 3-years were chosen and compared to a group of 240 STOP signs without LEDs.
 - The study yielded mixed results.
 - There was a 42% decrease in right-angle crashes when LEDs were installed.
 - Drivers were much more likely to stop at LED STOP signs when there was opposing traffic present.
 - When no opposing traffic was present, no change in behavior at LED STOP signs was noted.
 - **Too few crashes made the results statistically uncertain.**

- From this research, MnDOT created a policy for when to install LED STOP or YIELD signs. Because the results of the study are inconclusive, this option is in the toolbox, but will be used in limited locations that meet at least 2 of the following criteria:
 - Limited visibility on approach to the intersection, as determined by the sight distance criteria for Warrant 1 in Section 9-4.00.0 of the Traffic Engineering Manual.
 - A history of crashes documented to be caused by a failure to stop and deemed preventable by implementation of conspicuity improvements.
 - At a rural junction of two or more high speed trunk highways to warn drivers of an unexpected crossing of another highway.
 - At a rural junction of a trunk highway and a local road which has no STOP controlled intersection within five miles.

- Local agencies could also take this criteria into account when deciding whether or not to use LED STOP or YIELD signs.
Effectiveness of Warning Signs – Children at Play

- A research synthesis prepared for the Wisconsin Department of Transportation found that there is no evidence that special Warning signs of this sort either change driver behavior or improve safety.
- MnDOT and the LRRB published research\(^1\) that found no evidence that Playground Warning signs reduced vehicle travel speeds. Instead, at these locations, vehicle speeds appeared to be related to the number of cars parked along the street.
- Traffic control devices are intended to change driver behavior and improve safety – these special Warning signs have not been found to do either.

2. CTC & Associates, Impacts of Playground Warning Signs on Vehicle Speeds, Minnesota Department of Transportation Report No.
The most frequently used Horizontal Alignment Warning signs include the Advanced Curve Warning and the Speed Advisory.

FHWA’s Desktop Reference for Crash Reduction\(^1\) indicates that the standard Advance Curve Warning signs have been found to reduce road departure crashes by about 20 to 30% and the use of enhanced delineation (Chevrons) reduced crashes by 20 to 50%.

A study of a sample of approximately 200 curves in Minnesota\(^2\) found the crash reduction associated in the Advanced Curve Warning was limited to curves with radii between 1,000 and 1,800 feet.

The analysis of approximately 19,000 curves along highways in Minnesota Counties (part of the MnDOT sponsored project to prepare safety plans for all counties) found that 70% of severe crashes occurred in curves with radii between 500 and 1,200 feet. This same analysis also found that longer radius curves present a much lower total crash risk and very short radius curves a much lower severe crash risk. This kind of information can be used to prioritize curves across a system and aid in the development of a system wide approach to deploy horizontal alignment signs.

A recent study\(^3\) of the effect of enhanced delineation – Chevrons – in Connecticut and Washington found crash reductions in the range of 20-30% and a benefit/cost ratio of 8:1.

\(^1\) Desktop Reference for Crash Reduction Factors, Report No. FHWA-SA-07-015, September 2007
\(^2\) Pitale, Shankewitz, Preston and Barry; Benefit Cost Analysis of In-Vehicle Technologies and Infrastructure Modifications to Prevent Crashes along Curves and Shoulders, Mn DOT Research Report 2008-XX, June, 2009
\(^3\) Techbrief: Safety Evaluation of Improved Curve Delineation, FHWA Report – HRT-09-046, November, 2009
Effectiveness of Signs (Pedestrians)

- One of the most commonly requested strategies to address pedestrian safety is the installation of a marked crosswalk accompanied by Pedestrian Crossing Warning signs.

- However, the results of two recent studies indicate that marked crosswalks (with pedestrian crossing warning signs) are NOT safety devices when used at uncontrolled intersections.

- A cross-sectional study of 2,000 intersections in 30 cities across the U.S. found that marked crosswalks at uncontrolled intersections resulted in higher pedestrian crash rates \(^1\) (than at unmarked/signalized crosswalks) and this effect is greatest for multi-lane arterials with traffic volumes over 15,000 vehicles per day.\(^2\)

- A Before vs. After study at over 500 intersections in San Diego and Los Angeles found a 70% reduction in pedestrian crashes following the removal of marked crosswalks at uncontrolled intersections.\(^3\)

\(^1\) Crash rate is the frequency of crashes divided by the number of pedestrians crossing at a particular location.

\(^3\) ITE (Institute of Transportation Engineers) Journal, September 2000
Effectiveness of Warning Signs

- A search of the safety research literature found **NO** documentation of crash reductions associated with **any** other Warning signs.
- It appears the use of Warning signs is more out of fear of litigation as opposed to the strategic application of a traffic control device to solve a specific problem at a specific location.
- The most comprehensive study\(^1\) of a Deer Crossing Warning signs found these signs did NOT either change driver behavior (reduce vehicle speeds) or reduce deer-vehicle crashes and concluded that in order to increase effectiveness, research should focus on developing a dynamic system that would provide accurate real time information.
- There appears to be a consensus among traffic engineers that static signs that warn of infrequent conditions or general possibilities – deer crossings, pavements that are slippery only when wet, rocks that may have fallen, low volume intersections and driveways with limited sight distances – are routinely ignored by drivers. This suggests that these signs would fail the effectiveness test because drivers do not choose to change their behavior based on information they determine to be either regularly wrong or of no value.
- Research\(^2,3\) has shown that the use of fluorescent yellow sheeting appears to improve driver recognition of Warning signs and increased legibility distances. As a result, MnDOT has adopted a practice to convert all Warning signs and yellow delineators to use fluorescent sheeting.

Effectiveness of Guide Signs

- The MN MUTCD suggests the use of Guide Signs – Junction, Advance Junction and Street Name to support navigation and way-finding.

- A recent study of the safety effectiveness of advanced street name signs at signalized intersections found a minimal and statistically insignificant effect on crashes.¹

- A preliminary evaluation of one rural expressway corridor in Minnesota found that upgrading the Advance Junction and street name signs from conventional to a freeway style sign resulted in a 30% reduction of right angle crashes. (Note: this is an interesting conclusion, moves the crash data in a desired direction, but is not statistically significant. The sample size is too small.)²

- Many Minnesota counties have decided to participate in the program to provide a complete set of street name signs to improve way-finding for emergency response. There is a general consensus that these signs are a high priority and an important component of an overall effort to reduce emergency response time.

¹ Safety Evaluation of Advance Street Name Signs. Federal Highway Administration. FHWA-HRT-09-030.
OK, which signs have been proven effective at either reducing crashes or changing driver behavior?

- A search of the traffic safety literature found that the only types of signs that have been proven effective are the Horizontal Alignment Series (but only in a fairly narrow range of curve radii).
- Research published by NCHRP found that pedestrian warning signs in combination with marked crosswalks at uncontrolled intersections in fact resulted in greater numbers of pedestrian crashes.
- Guide Signs have been found to only have a minimal effect on intersection crashes but are assumed to improve way finding and navigation.
- Bottom line – if your decision to install a sign is based on an expectation of effectiveness – either reducing crashes or changing driver behavior – the literature in support is virtually non-existent.
- It appears that most signs fall into a category of hope - hope they do some good and an expectation that at least they don’t do any harm.
Making the Case For Considering Sign Removal

When evaluating your inventory of signs and deciding which signs should be retained versus which would be candidates for removal, consider the following issues:

- What is the problem you are attempting to resolve and has the particular sign ever been effective at either changing driver behavior or reducing crashes?
- What is the cost of maintaining your inventory? Can you afford this?
- Is the use of a particular sign consistent with the guidance in the MN MUTCD? For example, the MN MUTCD discourages the use of stop signs for speed control because they aren’t effective.
- Think systematically – is the usage of a type of sign consistent along all of your roads?

If the answer to these questions are negative – not effective, can’t afford to maintain the system and inconsistent – then you should give very careful consideration to removing some signs in your inventory.
Sign Removal – Which Signs Are Candidates? (1/2)

- Speed Limit signs are only effective if the limit is near the 85th percentile speed. Speed Limit signs that merely state the statutory limit are not necessary.

- STOP and YIELD signs at low volume intersections are not safety devices, uncontrolled intersections have a lower expected crash frequency.

- Turn prohibitions relying solely on signage have only proven to be effective in the presence of law enforcement – you need to ask, how often will officers be present?

- The use of Turn Lane signs are linked to helping law enforcement get convictions and snow plow drivers clearing turn lanes. Ask law enforcement how much time they devote to going after passing on the shoulder? Would a delineator be sufficient to assist the plow drivers?

- Statements of the obvious are a waste of money if there is little or no enforcement of the law.

- Research suggests that typical drivers do NOT understand the concept of “CROSS TRAFFIC”. To traffic engineers “Cross Traffic” means traffic approaching from the right and left but some drivers thought that this referred to vehicles coming towards them (Crossing the highway) from the opposing minor leg approach to the intersection.
Sign Removal – Which Signs Are Candidates? (2/2)

- Static signs that warn drivers of hazardous conditions they rarely encounter quickly lose credibility and become part of the background noise that drivers tune out.

- MnDOT is removing DEER CROSSING Warning signs because they have not proven to be effective at reducing deer/vehicle collisions. (They also determined that the signs had proven ineffective at training the deer where to cross the highways.)

- Advance Curve Warning signs were found to be effective in only a fairly narrow range of curve radii – curves with radii between 1,000 feet and 1,800 feet. There was no safety effect in larger radius curves and in shorter radius curves it was found that a combination of Advance Curve Warning PLUS Chevrons was required to produce a crash reduction. Try to achieve consistency across your system. If you have curve warning signs in advance of long radius curves, those could be candidates for removal based on system wide considerations.

- A number of studies have found that marked pedestrian crosswalks and their Advance Warning signs are NOT safety devices when used at uncontrolled locations. Pedestrian crash rates are actually higher at marked locations.

- There is no evidence that special Warning signs of this type either change driver behavior (reduce travel speed) or improve safety.

- ONE WAY signs are not required in medians that are less than 30 feet wide if KEEP RIGHT signs are installed.

NOTE: On roads with 1,000 ADT or greater, the Horizontal Alignment sign series is required based on speed differentials.
If you can’t think of any opportunities in your system to remove signs, consider these examples:

- The Children at Play sign isn’t required (it isn’t even listed in the MN MUTCD) and recent studies couldn’t find any history of either crash reduction or changed driver behavior. In other words, this sign has never been observed to have a positive effect and may even contribute to making the situation worse – giving the parents a false sense of security that the sign is somehow protecting their children.

- The Keep Right and Left Turn Lane signs in this photo are along a 30 mph, multi-lane city street that has continuous street lighting. These signs aren’t required. The Left Turn Lane sign is merely telling drivers what they should already know – they are in a turn only lane. The Keep Right sign might provide guidance at night (the median noses are entirely visible in daylight), however, all of the intersections have street lights. When asked why all these signs were installed, the response was – they are in the MN MNTCD (absolutely true) and State Aid would pay for them. But the local agency has to pay for ALL future costs forever.

- On the approach to this STOP sign located along a 30 mph city street, an Intersection Ahead and a STOP AHEAD sign are provided to help drivers comply with a STOP sign that is entirely visible along a road that is travelled primarily by residents that live in the area. The Intersection Ahead warning sign is not required and has never been proven effective at either reducing crashes or changing driver behavior. The STOP AHEAD sign would be required – if there was any sight restriction on the approach, which isn’t the case.
Potential Sign Removal Examples (2/5)

- These signs were obstructed by tree limbs – if they are not important enough to trim the vegetation, they could be candidates for removal.

- A 30 mph Speed Limit sign was installed along this narrow, winding residential street. The sign merely restates the statutory residential speed limit and was likely installed to placate residents. However it has been proven that speed limit signs have virtually no effect on driving behavior unless the limit is consistent with the driver’s perceptions of the road or there is a significant presence of law enforcement. (This city does **NOT** have a police force).

- STOP signs have been routinely installed at hundreds of low-volume residential intersections where there is no compelling reason to stop. Also, there is no proof that these signs have ever accomplished anything other than wasting fuel. STOP signs could be removed if an engineering study determined that to do so did not result in an unusual level of hazard (or if an agency is uncomfortable with right-of-way at the intersection being based on drivers exercising the rule of the right, the STOP signs could be replaced with YIELD signs).
Potential Sign Removal Examples (3/5)

- In medians that are less than 30 feet wide, ONE-WAY signs are not required if KEEP RIGHT signs are installed.
- Often times, both types of signs are installed, which is more than required.
- Agencies could reduce sign installations, especially on signal poles by installing KEEP RIGHT signs instead of ONE WAY signs.
Potential Sign Removal Examples (4/5)

- Limited sight distance signs have never been proven effective at either reducing crashes or changing driver behavior. These signs do not convey a clear, simple message and doesn’t provide the driver with any guidance relative to an intended action.

- If you have any of these signs (or are ever considering installation), a better idea would involve adopting ordinances that prohibit land owners from planting trees or shrubs that impair visual sight lines at street or driveway intersections and that allow city crews to enter private property to trim landscaping in cases where there is a danger to the public.

- These examples were provided by Faribault and Eagan.
 - Faribault

 Information from City Code of Ordinances, Appendix B - Unified Development Regulations

 Sight distance triangle. A triangular shaped portion of land established at street or driveway intersections in which nothing is erected, placed, planted, or allowed to grow in such a manner as to limit or obstruct the sight distance of motorists entering or leaving an intersection. Such triangle shall be defined beginning at the intersection of the projected curb lines of two (2) intersecting streets or at the intersection of projected curb lines where a driveway intersects a street, measured twenty-five (25) feet along each curb line and connected by a diagonal line.

 Fences. (2) Any fence extending into a front building setback area, a corner side building setback area, or within a required sight distance triangle shall not exceed three (3) feet in height, except as provided under [Subsection] (3) below.

 Signs. (F) *Safety obstructions.* No sign in the city shall be placed or installed that obstructs access to fire escapes or required windows, doors, exits, or standpipes. Additional, no sign shall be placed within the twenty-five (25) foot sight distance triangle required at all intersections including driveways and alleys.
Potential Sign Removal Examples (5/5)

– Eagan

Information from City Code of Ordinances, Appendix B - Unified Development Regulations

D.4. Trees, shrubbery, and other plant material shall not be planted or maintained on public or private property in such a manner as to obscure or impede the visual sight lines required to ensure the safe and efficient circulation of vehicles and pedestrians on streets, intersections, trails, and sidewalks. Trees, shrubbery or other plant material shall not be planted as to block the visibility of any regulatory warning, or street identification sign or block the illumination of streetlights. The city shall have the authority to determine the minimal amount of required setback and clear zones in such circumstances. Property owners in violation of said requirements shall be given written notice, which notice shall be given by mail to their last known address, to remove, relocate, or trim all related plant materials in compliance with the directives given therein. If any owner or occupant fails to assume the responsibility of these requirements, the city may proceed to order the work done in accordance with subsections D.5. and D.6 of this subdivision.

E. Any tree, shrub or landscaping within a street right-of-way, which is in violation of this section, shall be trimmed or removed, as the city shall require, as to ensure elimination of any threat to public safety due to sight line or physical obstruction. The city shall have the authority to remove or trim any tree, shrub or landscaping, without first notifying the property owner, in the case where imminent public danger exists if removal or trimming is not immediately completed. It shall be the property owner’s responsibility to trim, or remove when necessary, any shrub or landscaping within the street right-of-way which is in violation of this subdivision. It shall be the responsibility of the city to trim and the responsibility of the property owner to remove when trimming is not a feasible option, any tree in violation of this subdivision. The city may perform the work that is the responsibility of the property owner when the property owner has failed to do so. The city may charge the property owner the cost incurred by the city in performing any work required under this paragraph pursuant to subdivision 5 herein.
Sign Removal – Managing Risk

Why Consider Removing Signs
- Maintenance Costs
- Problem → Solution Link
- Effectiveness/Ineffectiveness
- System Considerations
- Safety-Crosswalks, Unnecessary STOP signs, Children at Play – these types of signs could actually increase the number of crashes.

Process to Follow – Manage Risk
- Bring your decisions under an umbrella of immunity.
- Discretionary Immunity is generated by actions consistent with adopted policies and ordinances.
- Official Immunity is generated by exercising your engineering judgment as part of an engineering study and then documenting your actions.

- Have the highest decision making body (City Council, County Commission, Township Board) adopt a policy or pass a resolution – specifying types of sheeting material you use, expected sign life, signs to be installed and those that will not (candidates for removal).
- Document the outcome of your actions relative to installing/replacing signs vs. removing signs, consistent with the direction provided by your decision making body.
- Conduct an engineering study.
- Document the applicable guidelines in the MN MUTCD.
- Document the conditions in the field.
- Document your decision.

DISCRETIONARY

OFFICIAL

- Document the conditions in the field.
- Document your decision.
A Final Thought About Sign Removal

- If you decide to include sign removal as an integral part of your comprehensive sign maintenance/management program and intend to remove a variety of signs along your roads/streets - consider two public information/outreach actions.

- First, prepare a short public notice that could be run in your official paper, be distributed with newsletters or utility bills, posted on your website, etc.

- Second, if the sign removal involves intersection control (STOP or YIELD) consider the temporary placement (four weeks would be a typical duration) of Traffic Control Change Advance Warning Signs on a TYPE III barricade or a temporary support (supplement with flags to draw attention to the sign).
Case Study #3: City of South Lake Tahoe, CA vs. Markham (1/2)

Key Issue: STOP Sign Removal

Key Facts:

- The STOP sign for NB traffic on Eloise Avenue was knocked down early in the day, but no one notified the City.
- Driver #1 was traveling EB on Third Street and was familiar with the intersection knowing that EB/WB traffic had the right-of-way.
- Driver #2 was traveling NB on Eloise Avenue and was not familiar with the intersection, didn’t see the STOP sign that was down, and drove into the intersection hitting driver #1.
- The City was sued by both drivers for not maintaining the STOP sign – the lack of maintenance was alleged to have caused the crash.
- There have been a number of similar cases where a STOP sign had been knocked down and the roadway agency failed to re-erect the sign in a reasonable time and a crash resulted. In these cases the key issue was NOTICE – the agency was aware of the situation and simply failed to act in a timely fashion.

In this case, the City asserted that there was a very important difference – a STOP sign was NOT required and due to the very low traffic volumes the operation of the intersection without 2-way STOP control would not present a hazard.

The California legal code contains a statutory exception where an agency has immunity from liability for injuries caused by not erecting a sign. However, once a sign is erected, there is no immunity for failure to maintain the sign.

The California Appellate Court granted Summary Judgement and found:

- The City had NO duty to provide the sign and could NOT be held liable if no sign had ever existed. Therefore, the City cannot become liable if the sign is removed, whatever the reason for the removal (including knocked down by another motorist). To conclude otherwise would require the court to accept the proposition that once the STOP sign was in place, it could never be removed and that motorists, particularly those on Third Street, could forever after rely on its presence. This reasoning, which is implicit in the Plaintiff’s arguments, finds no support in Statute or State law.

Lesson Learned – An agency can remove a STOP sign(s) as long as the resulting intersection control does not present a hazard.

Case Study #4: Pedrosa vs. City of Alhambra, CA

Key Issue: Political Installation of STOP sign

Background:

- On September 15, 1982 a Rear End crash occurred at a mid-block STOP sign located on Hellman Avenue, just east of the Long Beach Freeway.

- The City of Alhambra, CA City Council debated installing STOP signs at the mid-block location in an effort to slow down students from Cal State, located just west of the freeway, when entering their City.

- During the City Council debate, the City Traffic Engineer sent a memo to the Council advising against installing the STOP signs as a result of a concern that the mid-block STOPs would actually increase crashes.

- The City Council decided to install the STOP signs – their desire to respond to residents complaints about students speeding through the neighborhood was more compelling than the concern for crashes.

- Following the crash, the driver of the lead vehicle sued the City and the driver of the following vehicle.

- A Pasadena Superior Court jury found the driver of the following car and the City negligent and awarded the lead driver $810,000.

Lesson Learned ➔ There can be real consequences for agencies that choose to disregard the advice of their professional staff.
Part G – Summary of Key Points

Key Points... G-2

Answers to Quiz... G-3

What’s wrong with this picture?
(See page G-3 for answer.)
Key Points

- The MN MUTCD is a compilation of guidelines regarding the design and installation of signs, markings and signals. However, unlike other design guides, the MN MUTCD carries with it a higher level of authority because it has been adopted by the State for use on ALL roads in the State.

- BUT – do not fall into the trap of saying that the MN MUTCD made you install a particular device. The authors clearly intended all of the guidance to be filtered through YOUR judgment and specifically states that the MN MUTCD is NOT a legal requirement for the installation of anything.

- The rules regarding an agency’s approach to sign maintenance have fundamentally changed. It was always a good idea to keep your signs in good shape – now it is required!

- The regulations require agencies to select a maintenance method and to engage in a program to keep levels of retroreflectivity at or above specified minimum levels.

- Compliance dates requiring all OLD signs to be updated are no longer valid. HOWEVER;

- Your agency is now “On the Clock”. You must now have a sign maintenance/management plan in place and being carried out (COMPLIANCE DATE of June 13, 2014). All new signs must be at or above minimum specified retroreflectivity levels.

- You are encouraged to work with your elected officials to develop a policy to guide your sign maintenance program. The policy would establish direction for your staff and support statutory discretionary immunity.

- Your agency will need to develop an implementation process – create one of your own or modify the approach identified in this guide. But make sure to include exercising engineering judgment and to create some kind of written record regarding signs to remain and signs to be removed – this supports establishing official immunity for your agencies actions.
Answers to Quiz

Part A Divider
In both photos the STOP AHEAD signs are clearly not needed – the STOP signs are completely visible. The use of these STOP AHEAD signs was likely based on a blanket practice of installing these warning signs at every intersection. Getting back to a location specific decision process would represent an opportunity to reduce an agency’s inventory of signs by supporting the removal at intersections with adequate sight distance.

Part B Divider
This speed limit sign merely states the statutory speed limit for urban streets. It is entirely obvious that the area is residential. The road is narrow and curvilinear. The sign fulfills no real purpose and could be considered for removal.

Part C Divider
The STOP and YIELD signs in the photo are at the intersection of two, low-volume residential streets. These signs are not required and research shows that the use of these signs in low-volume conditions are not safety devices. These signs could be candidates for removal at this particular location and across the system.

Part D Divider
The chevron in this photo is on a city street and is approximately 100 feet from a STOP sign at a multi-lane urban arterial. The horizontal alignment series of warning signs has proven to be effective at reducing road departure crashes, but never at curves with a 60 foot radius. It appears that the chevron is being used to supplement the STOP sign, a use for which it was never intended. It appears that this sign at this location is a candidate for removal.

Part E Divider
The static Deer/Turtle Crossing Warning signs have been found to be ineffective at reducing vehicle/deer/turtle crashes. As a result, a number of agencies (including MnDOT) have identified these signs as candidates for removal (not replacing them when knocked down or removed as part of corridor-based upgrades).

Part F Divider
Watch for Children and Slow Children signs have never been proven effective at either reducing crashes or changing driver behavior. As a result, their usage does NOT result in any real improvement for either the children or drivers and could actually make matters worse by giving parents a false sense of security based on the hope that a sign can somehow replace their own responsibility to supervise their children. These types of warning signs should be considered for removal because agencies cannot afford to install signs that are ineffective.

Part G Divider
This static Intersection Warning sign has never been proven effective at improving safety. In this case, the intersection has very low volumes and drivers almost certainly live in the area, knowing that there is an intersection ahead. The low volume at the intersection suggests that the probability of a crash is low and this sign has no history of reducing crashes – it should be considered a candidate for removal.

Appendix Divider
STOP and YIELD signs at low volume intersections are not safety devices, nor should they be used for traffic calming purposes. STOP signs have a marginal effect on driver behavior at low volume intersections with fewer than 20% of vehicle voluntarily stopping.
Appendix

Example Signing Policy – Metro County .. AP-2
Example Signing Policy – Cass County .. AP-3
Sample Response to Request for SLOW CHILDREN Sign AP-4
Why Won’t They Put Up “CHILDREN AT PLAY” Signs? AP-5

Blind Fire Department Driveway Request ... AP-6
Sample Agreement-Blind Fire Department Driveway AP-7
Why Don’t They Put In More STOP SIGNS? .. AP-8
When Will a Lower Speed Limit be Posted on My Street? AP-9
Example Signing Policy – Metro County

Sign Maintenance Policies and Procedures

Sample Document for use by Public Agencies (Sample from County).

Purpose

The purpose of the Traffic Operations Plan and Procedures is to establish and maintain uniform operations and uniform traffic control and operations standards. The County will provide both traffic control and traffic management policies, procedures, standards and guidelines. This plan will establish a system to manage traffic operations, including traffic control and traffic management, and will provide for effective use of time and resources.

I. Procedure

The sign maintenance supervisor or designated staff member will make decisions concerning sign maintenance scheduling and the procedures to be followed for daily traffic operations, maintenance needs, and equipment to be used. The sign maintenance supervisor will consult with the sign maintainers to ensure the effectiveness of the sign maintenance operations.

II. General Provisions

a. The sign maintenance supervisor or designated staff member will ensure that all signs are maintained in good condition and are readable and visible, and that all traffic control devices are maintained in good condition and are readable and visible.

b. The sign maintenance supervisor or designated staff member will ensure that all signs are maintained in good condition and are readable and visible, and that all traffic control devices are maintained in good condition and are readable and visible.

Sign Maintenance

a. Sign Maintenance

- Signs will be maintained to meet federal standards and will be in good condition.
- Properly maintained traffic signs will be located in a manner that is visible, readable, and effective.
- Properly maintained traffic signs will be located in a manner that is visible, readable, and effective.

b. Sign Maintenance

- Signs will be maintained to meet federal standards and will be in good condition.
- Properly maintained traffic signs will be located in a manner that is visible, readable, and effective.
- Properly maintained traffic signs will be located in a manner that is visible, readable, and effective.
Example Signing Policy – Cass County

CASS COUNTY HIGHWAY DEPARTMENT

SIGNING POLICY

"Slow, Children at Play" Signs

The Cass County Highway Department will not utilize these signs, because it is not recognized by the State of Minnesota Manual on Uniform Traffic Control Devices (MUTCD), the legal sign manual in the State. The reasons why these signs are not accepted by the MUTCD are:

1. These signs are unenforceable. Local law enforcement cannot write tickets based solely on these signs, unless motorists are exceeding the posted speed limit.
2. Motorists should be aware that children might be playing near all highways. To sign specific highways would imply that those highways without signs have no children nearby. If one highway is signed, all highways should be signed, which acts impractical.
3. These signs give parents and children a false sense of security.
4. There is no data to support that these signs effectively modify driver behavior.

Adopted by Cass County Board of Commissioners - May 17, 2005

Source: http://www.co.cass.mn.us/highway/pdfs/signing_policy.pdf
Sample Response to Request for SLOW CHILDREN Sign

Public Works Director,

I am a property manager for a town home association. I am not sure if you are the person I should talk to on this. At the town home board meeting last evening there was a request by several homeowners for four slow/children at play areas in the association (two on each side strategically placed). They have had several close calls with children and have one deaf child in the neighborhood. What is proper procedure to move forward with this?

Best Regards,
Concerned Resident

Concerned Resident:

The City doesn’t install (and has long removed all existing) SLOW CHILDREN-type signs from public streets like Windy Lane South. Some homeowners associations have installed them on their private streets (like Windy Lane North, where they have the responsibility for ownership/maintenance), but the City has no role in the process.

There never has been any factual information or research that indicated that those type of signs had any measurable impact on drivers. The Federal and State Sign manuals that we rely on for guidance stopped including them as an approved sign quite some time ago, and our Public Safety Committee in the mid-1990’s recommended to our City Council that we remove them from public streets. Besides being ineffective, there was a growing concern that residents, parents, etc., were assuming that the signs were somehow making the street a safe place for children to play.

Similarly, the Manuals do not provide for signs like DEAF CHILD, AUTISTIC CHILD, BLIND CHILD, etc., so the City doesn’t install those either. While seemingly well-intentioned, they seem to be relevant only to the people who know of the conditions anyway and there is no research or data that suggests that motorists change their behavior around such signs. Please let me know if you have any questions or require further information.

Public Works Director
Why Won’t They Put Up “CHILDREN AT PLAY” Signs?

An often heard neighborhood request concerns the posting of generalized warning signs with the “SLOW-CHILDREN AT PLAY” or other similar messages. Parental concern for the safety of children in the street near home, and a misplaced but wide-spread public faith in traffic signs to provide protection often prompt these requests.

Although some other states have posted such signs widely in residential areas, no factual evidence has been presented to document their success in reducing pedestrian accidents, operating speeds or legal liability. Studies have shown that many types of signs attempting to warn of normal conditions in residential areas have failed to achieve the desired safety benefits. If signs encourage parents and children to believe they have an added degree of protection, which the signs do not and cannot provide, a great disservice results.

Because of these serious considerations, Minnesota law does not recognize, and Federal Standards discourage, use of “Children at Play” signs. Specific warnings for schools, playgrounds, parks and other recreational facilities are available for use where clearly justified.

Children should not be encouraged to play within the street travelways. The sign has long been rejected since it is a direct and open suggestion that this behavior is acceptable.
Blind Fire Department Driveway Request

County Engineer,

The Town of Greenwood Fire Hall has a blind driveway along your County road that makes it difficult for fire trucks to exit during an emergency. We’ve seen a flashing beacon with a fire truck sign in other locations throughout the state similar to ours. Could you put one of these signs and beacons up at our location so that when we exit, vehicles traveling on your County road use caution when approaching the Fire Department driveway?

Thank you,

Fire Chief
Sample Agreement – Blind Fire Department Driveway

THIS AGREEMENT is made and entered into by and between the County of St. Louis, a duly organized county within the State of Minnesota, hereinafter referred to as the “County”, and the Town of Greenwood, hereinafter referred to as the “Town”, an organized township within St. Louis County, Minnesota.

WHEREAS County State Aid Highway No. 77 is hereinafter referred to as “Highway 77”; and

WHEREAS, the County has authorized the installation of remote activated solar flashing beacons mounted on fire hall warning signs on Highway 77, hereinafter referred to as “Warning Beacons”; and

WHEREAS, the County has approved a plan to install Warning Beacons; and

WHEREAS, the County and the Town shall participate in the cost, maintenance and operation of the Warning Beacons, as hereinafter set forth.

NOW THEREFORE, IT IS MUTUALLY AGREED AND UNDERSTOOD AS FOLLOWS:

1. The Town, at its cost and expense, shall prepare the Plan to furnish the Warning Beacons.

2. The County shall approve the Plan and the Warning Beacons, and all required hardware shall conform to the specifications and requirements of the County.

3. The Town shall pay one-hundred percent (100%) of the cost of materials and associated costs incurred by the Warning Beacon vendor or manufacturer required to furnish fully functional Warning Beacons in accordance with the approved Plan, but not limited to, the cost of the Warning Beacons and all required hardware for a complete installation.

4. The County shall install the Warning Beacons, fire hall warning sign panels (MUTCD Code W11-8) and mounting devices in accordance with the 2005 Edition of the Minnesota Department of Transportation “Standard Specifications for Construction”, the Minnesota Manual on Uniform Traffic Control Devices (MUTCD), and the American Association of State Highway and Transportation Officials (AASHTO) Roadside Design Guide at its cost and expense.

5. The County shall perform a final inspection of the completed installation of the Warning Beacons and shall notify the Town of the County’s acceptance or rejection of the installation of the Warning Beacons in writing to the Town. The County rejects the installation including, but not limited to, the workmanship thereof. The Town shall perform whatever modifications(s) required to satisfy County’s requirements.

6. If required, the Town shall provide an adequate electrical power supply to the Warning Beacons, and shall provide the necessary electrical power for the operation of the Warning Beacons at its cost and expense.

7. Should the County or the Town determine that any of the Warning Beacons are in need of repair or replacement, it is understood and agreed that the Town shall pay one-hundred (100%) of the cost of materials and any associated costs incurred by the Warning Beacon vendor or manufacturer required to repair or replace damaged or deteriorated Warning Beacons including, but not limited to, the cost of the Warning Beacons and all required hardware for a complete installation.

8. The County shall maintain the sign panel and mounting devices, and install Warning Beacon replacement components furnished by the Town, at its cost and expense.

9. Each Party designates an Authorized Representative for the purpose of administering this Agreement. A Party’s authorized representative has the authority to give and receive notices, and to make any other decision required or permitted by this Agreement.

a. For the County:
 Victor Lund
 Acting Traffic Engineer
 4787 Midway Road
 Duluth, MN 55811
 (218) 625-3873
 e-mail: lundv@co.st-louis.mn.us

b. For the Town:
 Ellen Tremenheir
 Town of Greenwood
 3000 County Road 77
 Tower, MN 55790
 (218) 753-2231

10. This Agreement represents the full and complete understanding of the Parties and the Parties represent that neither Party is relying on any prior agreements, understandings, whether oral or written. This Agreement shall be executed in all, with the signed, written consent of both Parties.

11. This Agreement may be terminated by any party upon thirty (30) days’ writing to the other Party’s authorized representative. Upon termination of this Agreement, the Warning Beacons shall be immediately removed by County and returned to the Town.

12. Each of the Parties hereto hereby agrees that it shall defend, indemnify and save harmless the other Party and all of its employees and agents from any and all claims, demands actions or causes of action of whatever nature or character arising out of or by reason of their negligent or intentional acts or omissions in the execution or performance of the work provided herein, including, but not limited to, the installation, maintenance or repair of any of the Warning Beacons on Highway 77.

13. Any and all employees of the County, while engaged in the performance of any work or service which the County is specifically required to perform under this Agreement, shall be considered employees of the County, and not the Town, and that any and all claims that may or might arise under the Workers Compensation Act of the State of Minnesota on behalf of said employees while so engaged and any claims made by any third parties as a consequence of any act of said employees, shall be the sole obligation of the County.

14. Any and all employees of the Town, while engaged in the performance of any work or service which the Town is specifically required to perform under this Agreement, shall be considered employees of the Town, and not the County, and that any and all claims that may or might arise under the Workers Compensation Act of the State of Minnesota on behalf of said employees while so engaged and any claims made by any third parties as a consequence of any act of said employees, shall be the sole obligation of the Town.
Why Don’t They Put In More STOP SIGNS?

A stop sign is one of our most valuable and effective control devices when used at the right place and under the right conditions. It is intended to help drivers and pedestrians at an intersection decide who has the right-of-way.

One common misuse of stop signs is to arbitrarily interrupt through traffic, either by causing it to stop, or by causing such an inconvenience as to force the traffic to use other routes. Where stop signs are installed as “nuisances” of “speed breakers,” there is a high incidence of intentional violation. In those locations where vehicles do not stop, the speed reduction is effective only in the immediate vicinity of the stop sign, and frequently speeds are actually higher between intersections. For these reasons, it should not be used as a speed control device.

A school crossing may look dangerous for children to use, causing parents to demand a stop sign to halt traffic. Now a vehicle which had been a problem for 3 seconds while approaching and passing the intersection becomes a problem for a much longer period. A situation of indecision is created as to when to cross as a pedestrian or when to start as a motorist. Normal gaps in traffic through which crossings could be made safely no longer exist. An intersection which previously was not busy now looks like a major intersection. It really isn’t – it just looks like it. It doesn’t even look safer and it usually isn’t.

Most drivers are reasonable and prudent with no intention of maliciously violating traffic regulations; however, when an unreasonable restriction is imposed, it may result in flagrant violations. In such cases, the stop sign can create a false sense of security in a pedestrian and an attitude of contempt in a motorist. These two attitudes can and often do conflict with tragic results.

Well-developed, nationally recognized guidelines help to indicate when such controls become necessary. These guidelines take into consideration, among other things, the probability of vehicles arriving at an intersection at the same time, the length of time traffic must wait to enter, and the availability of safe crossing opportunities.

MnDOT LRRB video on STOP signs: http://youtu.be/1SmbH5Oo15c
When Will a Lower Speed Limit be Posted on My Street?

A common belief is that posting a speed limit will influence drivers to drive at that speed. The facts indicate otherwise. Research conducted in many parts of this country over a span of several decades has shown that drivers are influenced more by the appearance of the highway itself and the prevailing traffic conditions than by the posted speed limit.

Minnesota’s Basic Speed Law requires that:

“No person shall drive a vehicle on a highway at a speed greater than is reasonable and prudent under the conditions and having regard to the actual and potential hazards then existing. In every event speed shall be so restricted as may be necessary to avoid colliding with any person, vehicle or other conveyance on or entering the highway in compliance with legal requirements and the duty of all persons to use due care.”

In Minnesota, the maximum speed limit in an urban district is 30 miles per hour unless otherwise posted. An urban district is defined as the territory contiguous to and including any street which is built up with structures devoted to business, industry, or dwelling houses situated at intervals of less than 100 feet for a distance of a quarter of a mile or more. Outside urban districts, the maximum speed limit for any passenger vehicle is currently 55 miles per hour. These speeds are not always posted but all Minnesota motorists are required to know these basic 30 and 55 mile per hour speed laws.

Under Minnesota law, intermediate speed limits (except school speed limits) between 30 and 55 miles per hour may be established on any road, including county highways and city streets, only by the State Commissioner of Transportation. The commissioner must establish the speed limit upon the basis of an engineering and traffic investigation. This investigation includes an analysis of roadway conditions, accident reports, and the prevailing speed of prudent drivers. If speed limit signs are posted for a lower limit than is needed to safely meet these conditions, many drivers will simply ignore the signs. At the same time, other drivers will stay within the posted limits. This generally increases the conflicts between faster and slower drivers, reduces the gaps in traffic through which crossings could be made safely and increases the difficulty for pedestrians to judge the speed of approaching vehicles. Studies have shown that where uniformity of speed is not maintained, accidents generally increase.

MnDOT LRRB video on speed limits: http://youtu.be/8edH-toBesM
MnDOT Research Services Section
MS 330, 395 John Ireland Blvd.
St. Paul, Minnesota 55155
Phone: 651-366-3780
Fax: 651-366-3789
E-mail: research.dot@state.mn.us