Workshop Agenda

I. Introductions
II. Load Rating Basics
III. General Equations
IV. Load Rating Procedure
V. Incorporating Member Distress
VI. Posting, SHV’s and Permitting
VII. Load Rating Example #1
 ▪ Simple Span Non-composite Steel
Load Rating Procedure

- Gather Bridge Data
- Collect Information From On-site Inspections
- Determine Applied Loads
- Determine Capacity of Member
- Conduct Load Rating Calculations
- Submit Results to MnDOT
Gather Bridge Data

- Bridge design plans
- Bridge fabrication drawings
- Design calculations
- All repair plans for structure
- Most recent Structure Inventory Report
Collect info from on-site inspections

- Changed conditions
 - Damage
 - Repairs
 - Section loss
 - Traffic
Bridge Inspection

• When design plans or fabrication drawings for a bridge are unavailable or unreadable, or when conditions change from those detailed in the plans, field measurements are required.

• Field measurements should be made only with sufficient precision to serve the purpose for which they are intended.
Bridge Inspection

• The following limits of accuracy are generally ample for field measurements:
 - Timber members - Nearest ¼”
 - Concrete members - Nearest ½”
 - Asphalt surfacing - Nearest ½”
 - Steel rolled sections
 • Necessary accuracy to identify section
 • More precise measurements warranted for determination of section loss
 - Span Lengths - Nearest 0.1 foot
General Equation

Reserve Capacity for Live Load

Maximum Design (HS) or Legal Live Load

\[RF = \frac{C - A_1 D}{A_2 (L + I)} \]

- \(RF \): Rating factor for live load capacity
- \(C \): Capacity of the member
- \(D \): Dead load effect on member
- \(L \): Live load effect on member
- \(I \): Impact Factor
- \(A_1 \): Factor for dead load
- \(A_2 \): Factor for live load
Determine the Loads

- **Dead Loads**
 - **Compute according to existing conditions**
 - Point loads – pilasters, lighting, diaphragms, etc.
 - Line loads – Beams, stool, etc.
 - Distributed loads – Slab, sidewalk, railings, overlay, gravel, etc.
 - Material unit weight must be at least the value specified in the AASHTO Design Specs.
Determine the Loads

- **Live Loads**
 - AASHTO HS20 Truck Live Load
Determine the Loads

- **Live Loads**
 - Standard AASHTO HS lane loads may be used for all span lengths where it will result in greater effects than the standard HS truck (simple span greater than 140’)
- **Legal Trucks**
 - (Type M3, Type M3S2, Type M3S3 and new Single Unit (SU) trucks)
- **Permit Trucks**
Determine the Loads

- **Live Loads**
 - Number of loaded lanes and transverse placement of wheels shall be in accordance with AASHTO Design Specs (Section 3).
 - Roadway widths 18-20 ft, 2 design lanes, each half the width, centered live load
 - Widths less than 18 ft, 1 design lane
Determine the Loads

- **Live Loads**
 - For vehicle load distribution (Consult Section 3 of AASHTO Standard Specs)
 - **Steel Beams**
 - **Concrete beams**
 - **Concrete Slabs**
 - **Longitudinal and Transverse Timber Deck**
 - **Floor Beams**
Impact

- Impact Factor (I) is added to all live loads to account for the speed, vibration, and momentum of vehicular traffic.
- Per AASHTO 3.8.1.2 – Impact not considered for Timber members
Determine Capacity of Member

- Nominal capacity based on Load Factor section of AASHTO Standard Specs 17th ed.
 - Structural steel
 - Reinforced concrete
 - Prestressed concrete
Determine Capacity of Member

- Load Factor methods for timber and masonry are not available – Use ASR
- MUST include the affects of deteriorated or damaged sections
Determine Capacity of Member

- **Calculate section properties**
 - Incorporate distress
 - Composite properties
 - Non-composite properties
Select Safety Factors

- Select Factors for Rating Method used:
 - Allowable Stress Rating Method (ASR)
 - Load Factor Rating Method (LFR)
 - Load and Resistance Factor Rating Method (LRFR)
Conduct Live Load Analysis

- AASHTO Manual for Condition Evaluation of Bridges Tables (Appendix)
 - Simple spans
 - HS-20 truck
 - Legal trucks
 - Continuous spans need computer program
Conduct Load Rating Calculations

• Inventory Rating (*frequent loads*)
 - Load the bridge can carry for extended periods
 - Design Load (live load for which bridge was originally intended)
Conduct Load Rating Calculations

- Operating Rating (*less frequent loads*)
 - Absolute maximum permissible load.
 - Unlimited vehicles operating at this level may reduce bridge life.
Conduct Load Rating Calculations

- Typically the superstructure is the only component rated.
- If other portions of the bridge system are deteriorated, they should be fully analyzed and considered in the load rating calculations.
Rating Members

• Typically not checked
 ▪ Splices or connections
 ▪ Fatigue
 ▪ Concrete deck
 ▪ Local failure (bearing, yielding)
 ▪ Shear for slabs
 ▪ Substructure (bearings, piles, movement)
 ▪ Secondary members (diaphragms, wind bracing)
Submit Results to MnDOT

Bridge Management
Attn: Jim Pierce
3485 Hadley Ave N
Oakdale MN 55128
Bridge Loads by Deflection
Extra Credit!!

Inventory deflection
Operating deflection
Fracture load
Safety Factor

Capacity = DL + Fracture LL