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EXECUTIVE SUMMARY 
 
Weigh-In-Motion (WIM) systems have been widely used by state agencies to collect the traffic data on 
major state roadways and bridges to support traffic load forecasting, pavement design and analysis, 
infrastructure investment decision making, and transportation planning. The significant amount of data 
being collected on a daily basis by WIM system requires a substantial amount of effort to verify data 
accuracy and ensure data quality. However, the WIM system itself presents difficulty in obtaining 
accurate data due to sensor characteristics that are sensitive to vehicle speed, weather condition, and 
changes in surrounding pavement conditions. This research focuses on developing a systematic 
methodology to detect WIM sensor bias and support WIM calibration in a more efficient manner. 
 
An implementation guideline for WIM sensor calibration was developed. A mixture modeling technique 
using Expectation Maximization (EM) algorithm was developed to divide the vehicle class 9 Gross 
Vehicle Weight (GVW) into three normally distributed components, unloaded, partially loaded, and fully 
loaded trucks. A popular statistical process control technique, Cumulative Sum (CUSUM) was performed 
on daily mean GVW estimates for fully loaded class 9 vehicles to identify and estimate any shift in the 
WIM sensor. Special attention was given when presence of auto-correlation in the data was detected by 
fitting time series model and then performing CUSUM analysis on the fitted residuals. Results from the 
analysis suggested that the proposed methodology was able to estimate shift in the WIM sensor accurately 
and also indicated the time point when the system went out-of-calibration. An out-of control CUSUM 
behavior is solely attributed to a plausible shift in WIM sensor. However, several case studies indicated 
that this might not be true always.  
 
The proposed methodology first identified a learning period. The learning sample was then analyzed to fit 
a time series model. To identify if there is any shift in WIM sensor, a CUSUM analysis on residuals, 
which were obtained from predictions, on testing sample was performed. The underlying assumption of 
the methodology is if the data is generated from a stable process then the predictions based on the model 
estimated from the learning sample should consistently capture the variation in the testing sample. Any 
introduction of instability or sensor shift in the testing sample should be reflected in the residuals. Then 
CUSUM algorithm was implemented to detect such shift in WIM sensor.  This methodology could 
benefit state agencies such as MnDOT by identifying when calibration was lost and subsequently a proper 
modification factor could be applied to the out-of-calibration data to adjust for the bias. 
 
Additional unknown factors besides WIM sensors, such as varying truck population and other external 
factors, are found to influence WIM measurements. With only limited information available, it is not 
possible to identify such factors and provide explanations for such an inconsistent pattern. At this point 
the goal is to propose a methodology that would alert the WIM operator whenever such anomaly is 
detected. To identify such scenarios a revised implementation plan is proposed and tested for a simulated 
set of observations. Although, the proposed plan looks promising, further investigation and analysis on 
historical data will be performed for validation and final implementation. 
 
A data analysis software tool, WIM Data Analyst, was developed using the Microsoft Visual Studio 
software development package based on the Microsoft Windows® .NET framework. An open source 



      

 
 

software tool called R.NET (https://rdotnet.codeplex.com/) was integrated into the Microsoft .NET 
framework to interface with the R software (http://www.r-project.org/), which is another open source 
software package for statistical computing and analysis. The developed WIM data analyst tool consists of 
two key components, i.e., EM Fitting and CUSUM analyses. In addition, a HTML online help document 
was also created and embedded into the software tool to provide comprehensive online help information. 
 
The EM analysis takes a monthly WIM raw data (CSV) file of each WIM station from MnDOT and 
estimates the mean and deviations of GVW of class 9 fully loaded trucks. Results of the EM analyses are 
stored in a file directory for CUSUM analysis. The CUSUM analysis takes inputs from the EM results 
and a calibration file based on MnDOT calibration logs to model a learning sample and estimates the 
residuals between the prediction and WIM observation. Output from the CUSUM analysis will indicate 
whether there is any sensor drift during the analysis period. 
 

https://rdotnet.codeplex.com/
http://www.r-project.org/
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CHAPTER 1  
INTRODUCTION 

1.1 Background 

WIM system tends to go out of calibration from time to time, as a result generate biased and inaccurate 
measurements. Several external factors such as vehicle speed, weather, pavement conditions, etc. can be 
attributed to such anomaly. In order to overcome this problem a statistical quality control technique is 
warranted that would provide the WIM operator with some guidelines whenever the system tends to go 
out of calibration.  
 
This study focuses on developing such models that would detect any abnormal change in the 
measurements from WIM system and provide an estimate of the bias which can be then used to adjust the 
biased measurements to retrieve accurate measurements. Following the methodology developed in the 
first phase of this research (Liao & Davis, 2012) where a mixture modeling technique using Expectation 
Maximization (EM) algorithm was used to divide the Gross Vehicle Weight (GVW) measurements of 
vehicle class 9 into three components, i.e., unloaded, partially loaded, and fully loaded trucks. Once the 
average daily GVW estimates of fully loaded trucks are obtained statistical process control techniques 
such as CUSUM technique was used to identify any abrupt change in mean level of GVW measurements. 
 
However, the previous analysis doesn’t account for any presence of correlation in the measurements. 
Presence of such auto-correlation can have a serious impact on CUSUM type analysis causing dramatic 
increase in the frequency of false alarms (Montgomery and Mastrangelo, 1991). This research proposes 
methods where first time series models are used to adjust for any auto-correlation and then CUSUM is 
used to detect and estimate any change in the mean levels. 
 

1.2 Objectives 

The objective of this study is to characterize the WIM measurements and develop a statistical quality 
control methodology to effectively detect any sensor drifts and estimate the measure of the drift. To 
achieve the goal first we need to understand the characteristics of GVW weight measurements obtained 
from a period when the WIM system is supposedly in-control. Then the statistical model based on GVWs 
under normal condition is used to predict the GVWs for the period where the system drifted and then 
CUSUM analysis is performed on the deviation of predicted from the GVW measurements obtained from 
EM algorithm. 
 

1.3 Literature Review 

Weigh-In-Motion (WIM) systems have been widely used to collect the traffic loading data to support 
traffic load forecasting (Qu et al., 1997; Lee & Nabil, 1998; Seegmiller, 2006; and Ramachandran, 2009), 
pavement design and analysis (NCHRP, 2004; Elkins, 2008), infrastructure investment decision making, 
and transportation planning. MnDOT and other state DOTs collect WIM data every year to meet federal 
traffic reporting requirements as part of the Long Term Pavement Performance Program (LTPP) and 
Vehicle Travel Information System (VTRIS). Traffic data quality control procedures were recommended 
to address general traffic data quality issues (Nichols & Bullock, 2004; Turner, 2007). However, WIM 
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sensor measurements drift over time due to its sensitivity on road surface smoothness, temperature, 
vehicle dynamics, and many other factors.  
 
The American Society for Testing and Materials (ASTM) has developed a standard specification for 
highway WIM systems. The procedure for WIM acceptance and calibration involves using a combination 
of test trucks and statically-weighed, randomly-selected vehicles from the traffic stream. The standard 
specifies that each type of WIM system shall be capable of performing weight measurements within 15% 
for heavy-duty vehicles gross weight and 30% for a single axle weight for 95% of all vehicles weight 
(ASTM, 1994). Although this is an improved method, it is impractical to use in most cases due to the 
unavailability of static scales at most portable WIM sites. 
 
Dahlin (1992) proposed a WIM performance monitoring methodology and calibration procedure for class 
9 five-axle tractor-semitrailers. He recommended three measures for WIM data quality analysis, including 
bimodal Gross Vehicle Weight (GVW), front axle weight, and flexible Equivalent Single Axle Load 
(ESAL) factor. Han et al. (1995) used statistical quality control methods to monitor WIM systems based 
on Dahlin’s 3 classes of GVW. However, the proposed statistical quality control methodology was 
unusable due to calibration drift.  
 
Later Ott and Papagiannakis (1996) investigated using class 9 steering axle weights for monitoring 2 
subgroups (less and greater than 50 kips). Static and dynamic GVW variations were estimated to generate 
anticipated Confidence Interval (CI) plots for a WIM station. Nichols and Cetin (2007) introduced multi-
component mixture models to characterize class 9 GVW distributions which is consist of several 
homogeneous, normally distributed, subpopulations. Expectation Maximization (EM) algorithm was then 
used to estimate subpopulation parameters. They illustrated several patterns suggesting calibration drift 
and component failure. 
 
FHWA has developed a framework that provides guidelines and methodologies for calculating data 
quality measures for various applications (FHWA 2004, Turner 2002). The data quality measurement 
framework suggested 6 fundamental measures (accuracy, completeness, validity, timeliness, coverage and 
accessibility) for traffic data quality. These quality parameters are often user-specific or application-
specific. They are typically derived from either the underlying quality indicators or other quality 
parameters (Wang et al. 2001). Traditionally, traffic data quality control is performed manually. However, 
due to the increasing data volume and complexity, a logical structure for evaluating traffic data is needed. 
A pooled fund study (Flinner, 2002) led by MnDOT was conducted in 2002 to determine traffic data 
editing procedures. As a result of the study, 120 traffic data quality rules were generated. However, the 
study was not able to “develop software to assist in the evaluation of the rule base and to put revised 
software into production” due to extensive data system integration and testing were needed. 
 
Cumulative Sum (CUSUM) chart is a commonly used quality control method to detect deviations from 
benchmark values. Hawkins & Olwell (1998) used the CUSUM charts and charting as Statistical Process 
Control (SPC) tools for quality improvement. Luceño (2004) used generalized CUSUM charts to detect 
level shifts in auto correlated noise. Lin et al. (2007) developed an adaptive CUSUM algorithm to 
robustly detect anomaly. The cumulative sum of difference between each measurement and the 
benchmark value is calculated as the CUSUM value. In addition to the regular CUSUM charts, an 
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adjusting CUSUM methodology will be used to for data quality assurance in this study. Liao and Davis 
(2012) used adjusting CUSUM methodology to detect anomaly of the GVW of class 9 fully loaded 
trucks.  
 

1.4 Report Organization 

This report is organized as follows. WIM data modeling and analysis are presented in Chapter 2. Software 
development and implementation are discussed in Chapter 3. User’s manual of the WIM data analyst tool 
is discussed in Chapter 4. Finally, Chapter 5 included project summary.  
 
A few cases of WIM data analysis with non-stationary behavior were included in Appendix A.  



      

 

CHAPTER 2   
WIM DATA MODELING AND ANALYSIS 

2.1 Mixture Model 

In finite mixture modeling of normal densities, the unknown density of a multivariate random vector g(x) 
can be expressed using the following equation (McLachlan and Peel, 2000). 
 

 (2-1) 
  

 Where, 
    is the ith component density with normal distribution, 
    is the ith non-negative component proportion,  
 
The GVW of class 9 vehicles (GVW9) consists of unloaded, partially loaded and fully loaded 
components. A three-component mixture model, as described in equation 2-2, was formulated to estimate 
the parameters of the normal densities and corresponding mixture proportions using the Expectation 
Maximization (EM) algorithm (Dempster et al., 1997). The EM algorithm allows us to estimate the 
maximum likelihood of the model parameters. R (http://www.r-project.org/) scripts were developed to 
process GVW9 mixture modeling using EM fitting technique. 
 

 (2-2) 
  
 Where, 
   is the Class 9 Gross Vehicle Weight (GVW) distribution,     

 is the empty class 9 truck normal GVW distribution, 
 is the partially loaded class 9 truck normal GVW distribution, 
 is the filly loaded class 9 truck normal GVW distribution, 

    is the ith non-negative component proportion, . 
 

2.2 Simulation Based Analysis  

The CUSUM chart is a commonly used quality control method to detect deviations from benchmark 
values. Hawkins & Olwell (1998) used CUSUM charts and charting as Statistical Process Control (SPC) 
tools for quality improvement. Luceño (2004) used generalized CUSUM charts to detect level shifts in 
auto correlated noise. Lin et al. (2007) developed an adaptive CUSUM algorithm to robustly detect 
anomaly. 
 
To demonstrate our proposed methodology we would first analyze simulated GVW weight measurements 
with serial correlation, and show how an abrupt change in mean level can be detected and estimated.  
 
 First, a simulated sequence of time series measurements with first order autoregressive (AR) model was 
created. The AR (1) correlation is defined as follows, 
 
Simulated AR (1) process: φ=0.7 

 
  (2-3) 

4 

http://www.r-project.org/
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Where,   
Mean, μ=80 and  

 
 

Figure 1 shows the time series measurements from the simulated sequence. 
 

 
Figure 1: Simulated AR 1 process with mean=80 kips 

 
 

       
 
 

The mean (  and correlation coefficient (  can be estimated using statistical estimation technique 
available in standard R software. 
 
Estimation Results are listed as follows:  
 

Table 1: Estimated AR (1) parameters for simulated data 

 
 

The residuals for the fitted model can be obtained as follows: 
 
                         Residuals,      
                  

 

                                                  
                                       

  

 

 

 

 

 

 

 

(2

(2-

-

5)

4)

 

 

 
CUSUM and Decision Interval (Hawkins and Olwell, 1998) were plotted (Figure 1 & 2) to detect if there 
is any change in the mean level. More detailed information about the CUSUM methodology and the 
decision interval selection can be found in Chapter 3.2 of the research report by Liao & Davis (2012). 
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Figure 2: CUSUM based decision interval for AR (1) residuals 

 
                         
 
A new AR (1) process is as follows. 
 

    (2-6) 
  (2-7) 

 
The above process suggests that there is change of 5 kips in mean level for time index greater than 70.  
We use the estimated model to predict the measurements for t >70 and record the residuals based on 
predicted values. Figure 3 shows the residuals for the non-stationary AR (1) process. 
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Figure 3: Residuals after fitting a non-stationary AR (1) process 

 
The next step is to perform CUSUM analysis on the residuals. Figure 4 and 5 shows CUSUM plot and 
decision interval plots for the residuals. 

 
Figure 4: CUSUM plot for AR (1) residual 

                                               



      

8 
 

 
Figure 5: CUSUM based decision interval for AR (1) residual with change in mean 

 
As expected the lower CUSUM begins to deviate from 0 after time index 70 and exceeds the decision 
boundary (h= -4) at time index 74. The estimated shift in mean can be calculated as  

, which is consistent with the simulated 
sequence. 
 
The analysis based on simulation data demonstrates how we can identify any potential change in mean 
level (for e.g. in this case 6% change) and correctly estimate the bias. 
 

2.3 Analysis for WIM Measurements 

In this study we would primarily focus our analysis on fully loaded trucks as calibration tests are used 
with fully loaded trucks. As mentioned in the previous section our usual line of attack would be to 
partition the data into two sets: (1) Learning set (2) Testing set. The learning set is defined by the period 
when the WIM system is supposedly in-control.  The learning period is characterized by either of the two 
following conditions. 
 

• Begin with a change in calibration to a time with no change in calibration 
• Begin with no change in calibration to a time with no change in calibration 

 
The testing set is the data from the period where the WIM system went out of calibration. To identify 
those period WIM calibration files were referred and the data corresponding to those periods were 
extracted for selected stations. In the following section, we would demonstrate our analysis for selected 
stations. 
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The first step in the analysis is using the learning sample fit a time series model. Auto-Correlation 
Function (ACF) and Partial Auto-Correlation Function (PACF) suggested AR (1) process as a good 
candidate to explain the serial correlation. Formally AR (1) process is given by, 
 
                                         (2-8) 

Where,  
 represents tth observation 

               represents mean of the process 
             is the lag 1 autocorrelation coefficient 

 are independent and identically distributed normal random variables with 
mean=0 and standard deviation, σ representing the inherent variability of the process. 

 
The residuals (et) are given by following equation, 
 
                                                                              (2-9) 
 
If the AR (1) model explains the serial correlation in the observations correctly then residuals et can be 
treated as independent and identically distributed normal random variables with mean 0 and standard 
deviation σ. Suppose, the true mean value μ shifts to μ* at time tc. Assuming  and  are unbiased 
estimates of the true parameters, expected standardized residuals are given by 
 
                                             

                                                      

                                                    =                               (2-10)   
 
Now, suppose the  segment of  the CUSUM began to shift from general horizontal pattern to a non-
horizontal linear drift after time point m, for which CUSUM value Sm =0 and then crossed the decision 
interval (h) at time point n, where CUSUM value is given by Sn.  Then from equation (2-12), the upward 
CUSUM on standardized residuals is given by, 
 
                                                                                 (2-11) 
 
Substituting residuals with its expected value and after some algebra we get an estimator of δ,   
 

                                                                                                           (2-12)               

     Where,  
δ =μ*-μ denotes the true shift in mean level.       

 
The underlying assumption of the methodology is if the data is generated from a stable process then the 
predictions based on the model estimated from the learning sample should consistently capture the 
variation in the testing sample. Any introduction of instability or sensor shift in the testing sample should 
be reflected in the residuals. Then CUSUM algorithm can be implemented to detect such shift in WIM 
sensor.  This methodology could benefit state agencies such as MnDOT by identifying when calibration 
was lost and subsequently a proper modification factor could be applied to the out-of-calibration data to 
adjust for the bias. 
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2.3.1 Case I: Station# 26, Lane # 3, Period: From 01/21/2011 to 01/23/2012 

In Figure 6 red dotted lines indicates the time when WIM calibration was changed and green dotted line 
represents the time point when no change in calibration was made. The first step is to characterize the 
learning sample and then use the learning sample to fit a time series model.  
 
Figure 7 confirms presence of auto-correlation in the time sequence of GVWs. The next step is to 
estimate the time series model. Estimation results after fitting an AR (1) process are shown in Table 2. 
 

 
Figure 6: GVW for average daily fully loaded trucks, station 26: Case I 
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Figure 7: CF and PACF plots for Case I 

Table 2 Estimated AR (1) parameters for learning sample: Case I 
 

 
 

AR (1) model is deemed suitable as it was able to knock out all the auto-correlation present in the 
learning sample. Figure 8 below shows the fitting results for the learning sample. 
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Figure 8: Fitting learning sample: Case I 

 
Based on the estimated parameters from the learning sample we estimate the measurements for the testing 
sample. And then the residual is calculated as the difference of the estimated from the observed. Figure 9 
shows the comparison of the estimated and extracted testing sample. The figure also indicates the 
calibration factor was increased by 6% after the testing period. 
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Figure 9: Comparison between estimated and observed testing sample: Case I 

 
The next step is to perform CUSUM analysis on the standardized residuals. Figure 10 shows the CUSUM 
plot along with CUSUM based decision plot for the residuals. The CUSUM analysis also indicates that 
the system went out of calibration at the end of the testing period. 

 
Figure 10: CUSUM based decision plots for Case I 
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2.3.2 Case II: Station# 29, Lane# 1, Period: 10/06/2010 to 06/17/2011 

In Figure 11, red dotted lines indicates the time when WIM calibration was changed and green dotted line 
represents the time point when no change in calibration was made. The first step is to characterize the 
learning sample and then use the learning sample to fit a time series model. 

 
Figure 11: GVW for average daily fully loaded trucks, station 29: Case II 

 
 
Estimation results from AR (1) process for learning sample is shown in Table 3. 
 

                     
Table 3 Estimated AR (1) parameters for learning sample: Case II 

 
Figure 12 below shows the fitting results for the learning sample. Based on the estimated parameters from 
the learning sample we estimate the measurements for the testing sample. Figure 13 shows the 
comparison of the estimated and extracted testing sample. The figure also indicates the calibration factor 
was decreased by 8.2% after the testing period. 
 

 

Learning Sample 

Testing Sample 
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Figure 12: Fitting learning sample: Case II 
 
 

Calibration 
factor changed 

by -8.2% 

 
Figure 13: Comparison between estimated and observed testing sample: Case II 
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The next step is to perform CUSUM analysis on the standardized residuals.  Figure 14 shows the 
CUSUM plot along with CUSUM based decision plot for the residuals. 

 

 
Figure 14: CUSUM based decision plots for Case II 

 
The CUSUM analysis also indicates that the system went out of calibration after time index 40 of the 
testing period. 
 

2.3.3 Case III: Station# 37, Lane# 2, Period: 11/29/2011 to 05/21/2012 

In Figure 15, red dotted lines indicate the time when WIM calibration was changed and green dotted line 
represents the time point when no change in calibration was made. The first step is to characterize the 
learning sample. 
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Figure 15: GVW for average daily fully loaded trucks, station 37: Case III 

 
Estimation results from AR (1) process for learning sample is shown in Table 4. Figure 16 shows the 
fitting results for the learning sample. 
 

Table 4 Estimated AR (1) parameters for learning sample: Case III 

 
 

Learning Sample 
Testing Sample 
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Figure 16: Fitting learning sample: Case III 

 
Based on the estimated parameters from the learning sample we estimate the measurements for the testing 
sample. Figure 17 shows the comparison of the estimated and extracted testing sample. The figure also 
indicates the calibration factor was decreased by 4% after the testing period. 

 

Calibration 
factor changed 

by -4% 

 
Figure 17: Comparison between estimated and observed testing sample: Case III 

 
The next step is to perform CUSUM analysis on the standardized residuals. Figure 18 shows the CUSUM 
plot along with CUSUM based decision plot for the residuals. 
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Figure 18: CUSUM based decision plots for Case III 

 
The CUSUM analysis also indicates that the system went out of calibration at the end of the testing 
period. 

 

2.3.4 Case IV: Station# 26, Lane # 4, Period: From 01/25/2012 to 01/28/2013 

In Figure 19, red dotted lines indicates the time when WIM calibration was changed and green dotted line 
represents the time point when no change in calibration was made. The first step is to characterize the 
learning sample. 
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Figure 19: GVW for average daily fully loaded trucks, station 26: Case IV 

              
stimation results from AR (1) process for learning sample is shown in Table 5 as follows. 

Table 5 Estimated AR (1) parameters for learning sample: Case IV 

 
E
 

 
 

Figure 20 below shows the fitting results for the learning sample. Results suggest that the model may not 
able to capture the variability present in the learning sample. 

Learning Sample 

    Testing Sample 
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Figure 20: Fitting learning sample: Case IV 

 
Based on the estimated parameters from the learning sample we estimate the measurements for the testing 
sample. Figure 21 shows the comparison of the estimated and extracted testing sample. The figure also 
indicates the calibration factor was decreased by 7% after the testing period. 

Calibration factor 
changed by-7% 

 
Figure 21: Comparison between estimated and observed testing sample: Case IV 

 
 



      

22 
 

The next step is to perform CUSUM analysis on the standardized residuals. Figure 22 shows the CUSUM 
plot along with CUSUM based decision plot for the residuals. 

 
Figure 22: CUSUM based decision plots for Case IV 

 
 

The CUSUM decision plots suggests that WIM system had initially an upward drift  and then followed by 
a  downward drift at the end of testing period which is contrast to the calibration test run where a negative 
change in calibration factor was made. 
 

2.3.5 Case Analysis Summary 

Our analysis of WIM data suggests following. First, we found presence of auto-correlation in most of the 
WIM data. And hence it is essential to develop a model that could capture the auto-correlation. The 
preliminary analysis suggests AR (1) auto-correlation structure should be sufficient to capture such auto-
correlation and able to produce consistent results in terms of identifying any systematic calibration system 
(see Case I, II, III in previous section). However there are scenarios, such as Case IV, where the current 
methodology fails. The implicit assumption of our approach is the mean of the learning sample (defined 
as the period of no calibration changes) should be stationary in nature. That is, there should be no 
systematic trend or drift in the measurements when the WIM system is in-control. However, 
measurements from WIM system from various stations (see Appendix A for more cases) exhibit such 
kind of unexpected non-stationary behavior. Since these periods are marked by no change in calibration, 
some exogenous factor might be driving such pattern and without any knowledge of such factor our usual 
quality-control approach for change detection would provide inaccurate results.  
 
From implementation point of view, the first step is to detect and isolate those cases with unexpected 
trends and alert the WIM operator of their existence. For other cases without such trend our usual change-
detection approach based on CUSUM can be performed. Once a change in mean level is identified the 
WIM operator can be notified. 
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2.4 External Impacts on Truck Weights 

The underlying assumption of the proposed methodology is if the data is generated from a stable process 
then the predictions based on the model estimated from the learning sample should consistently capture 
the variation in the testing sample. Then a fixed shift in WIM sensor should be captured by CUSUM 
analysis on estimated residuals. An out-of control CUSUM behavior is solely attributed to a plausible 
shift in WIM sensor.  However, several case studies indicated that this might not be true always.  
 
Figure 23 is a typical evidence of such an inconsistent pattern. Figure 23 shows the average daily EM 
estimates of GVWs for fully loaded trucks for station 26, lane 4 from 01/25/2012 to 01/28/2013. As 
usual, the vertical red columns denote the days when the MnDOT’s test runs found the WIM system to be 
out of calibration, whereas green vertical strip (calibration date: 05/14/12) indicate the time point when 
the system was found to be “in-control” condition. Figure 23 suggests after 05/14/12 the WIM sensor 
seems to have a positive shift, however at the later part of the observation a clear downward shift can be 
observed. MnDOT’s  test run on 01/29/2013 which is a day before the last observation in Figure 23 
suggested a positive shift in the WIM sensor, and consequently calibration factor was adjusted by -7%.  
However the downward shift in the later part of the Figure 23 contradicts the positive shift found in the 
WIM sensor.  
 
Without any further knowledge it is not possible to provide any explanation for such an inconsistent 
behavior. Several factors such as varying truck populations or miscellaneous conditions external to WIM 
system may have caused such phenomenon. More importantly, if such driving forces are not detected or 
identified our proposed methodology may provide incorrect conclusions about the status of WIM sensor. 
With only limited information available, at this point, the focus of our research is to propose a 
methodology to alert the WIM operators whenever such anomaly is detected. It would be up to the state 
agencies to take necessary actions or conduct further investigations to identify the factors driving such 
phenomenon. Figure 24, 25, and 26 shows more evidence of such anomalies in the estimates of GVWs 
for fully loaded trucks from other stations. 
 

 
Figure 23: Inconsistent GVWs for fully loaded trucks from Station #26 (Lane 4) 
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Figure 24: Inconsistent GVWs for fully loaded trucks from Station #37 

 

 
Figure 25: Inconsistent GVWs for fully loaded trucks from Station #32 
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Figure 26: Inconsistent GVWs for fully loaded trucks from Station #26 (Lane 1) 

 

2.5 Impact of External Factors on GVW Estimates: Simulation Study 

Now we define an AR (1) process as follows 
 

 
 

     (2-13) 
 
The above process indicates that the process began with mean=80 units.  After time index 80 the mean 
level shifted to 88 until time index 120, followed by another negative shift in mean level =70 to the end of 
the process. The first 80 outcomes of the above process can be treated as observations from WIM system 
when calibration is “in-control “condition. The next set of observations from t=80 to t=120    corresponds 
to the period when WIM sensor went out of calibration with a positive shift of 10 units. And the final 
period from t=121 to t=150 represents the period where mean level shifted to 70 as a consequence of 
possible change in truck population or other factors which are external to WIM system. Further, suppose 
the first 60 observations represents the period when the system is known to be “in-control” state, i.e., the 
learning sample. The rest of the observations are partitioned into two testing samples (testing sample I 
and testing sample II), as shown in Figure 27. Testing sample I includes data from index 61 to 100. And 
testing sample II includes data from index 101 to 150. 
 
The learned period is bracketed by green vertical strips. The red vertical strips represent two testing 
samples. As mentioned previously, the first step is to check for stationarity of the learning sample. In this 
case we know the learning set is stationary. Next, an AR (1) model is fitted to the learning sample (Figure 
28). Table 6 shows the estimated parameters for AR (1) process. 
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Table 6 Estimated AR (1) parameters for learning sample 

 
 

 
Figure 27: Simulated GVWs with WIM shift followed by an unstable GVW pattern 
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Figure 28: Fitted learning sample 

 
Based on the estimated parameters from the learning sample we estimate the measurements for the testing 
sample. Figure 29 shows the comparison of the estimated and extracted testing sample I. Figure 30 shows 
the CUSUM plot along with CUSUM based decision plot for the residuals. The CUSUM decision plots 
suggests that WIM system had an upward drift that exceed the threshold limit around 83rd data point. 
 

 
Figure 29: Predictions on testing sample I 
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Figure 30: CUSUM based decision interval for testing sample I 

 
Using equation (2-12) estimated shift was calculated as δ=8.28 units. Hence the mean level is updated to 
80+8.28=88.28 units. Using the updated mean level and keeping the other AR (1) parameters same, 
predictions are made for testing sample II. If the truck weights are generated from a stable population, 
then given the true shift in WIM sensor our predicted outcomes should able to capture the variability in 
testing sample II. Failure to predict the Testing sample observations correctly would suggest unstable 
truck weights which might be caused by some unknown factors external to the WIM system. CUSUM 
analysis is used again to identify such anomaly. Figure 31 indicates that updated mean level after 
accounting for estimated shift in WIM sensor could not able to capture the GVW estimates from the 
testing sample II.  
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Figure 31: CUSUM Analysis indicating unstable truck population 
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CHAPTER 3   
DEVELOPMENT AND IMPLEMENTATION 

A software implementation guideline and a Microsoft Windows based tool (called WIM Data Analyst) 
was developed using the Visual Studio package with R.Net library (version 1.5.13) based on the CUSUM 
methodology previously described. The Graphical User Interface (GUI) of the WIM Data Analyst is 
displayed in Figure 32. For each station the monitoring process can begin with a training sample 
corresponding to a period when the system is known to be in calibration. Then recursively new data sets 
(say, monthly data) can be used as test samples and CUSUM analysis can be done as discussed in case 
studies in section 2.3. If no significant shift is found, the testing sample may be appended to the training 
data set. This process can be continued until a significant shift is observed in a testing sample. Once the 
analysis signals a shift, WIM operator can apply suitable adjustment factor to the WIM data.  
 

3.1 Software Implementation Guidelines 

An implementation guideline is proposed to distinguish cases where inconsistencies in average daily 
GVWs such as mentioned above are found. As before, we begin our analysis with observations (learning 
sample) from period where system is known to be “in-control”. We perform an additional check to verify 
the stationarity of the data. (Stationarity is defined as a time series process whose parameters, such as the 
mean and variance, do not change over time and do not follow any trends. For example, white noise is 
stationary.)  Currently, a popular statistical test, Kwiatkowski–Phillips–Schmidt–Shin (KPSS) is used to 
test for stationary of the learning sample. Once the stationarity of the learning sample is confirmed, time 
series model parameter is estimated.  
 
The next step is to divide the test sample into two parts (test sample I and test sample II). The idea is to 
first perform CUSUM analysis on Test Sample I using the estimated model parameters from the learning 
sample. If the CUSUM analysis indicates the system has gone out of calibration, the estimated shift in 
WIM sensor is calculated. Then the estimated shift is used to update the mean level in the time series 
model. If the estimated shift correctly reflects the WIM sensor status then the predictions based on 
updated time series parameter would successfully capture the variation in the testing sample II. Failure to 
do so would indicate the influence on external factors other than WIM sensor on GVWs. At this point the 
WIM operator would be alerted. On the other hand, if correct predictions are made, the estimated shift can 
be used to update the WIM calibration.  The above description is presented in the flowchart as shown in 
Figure 33. 
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Figure 32: WIM data analyst main screen 

 

 
Figure 33: Implementation guideline for CUSUM based algorithm for WIM calibration 

 

3.2 WIM Data Analyst Tool 

A WIM data analysis software tool (called WIM Data Analyst) was developed using the Microsoft Visual 
Studio software development tool based on the Windows® .NET framework 4. An open source software 
(R.NET, https://rdotnet.codeplex.com/) was integrated to interface with R software (http://www.r-

https://rdotnet.codeplex.com/
http://www.r-project.org/
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project.org/), another open source software package for statistical analysis. The WIM data analysis tool 
consists of two key components, i.e., EM fitting and CUSUM analyses, as illustrated in Figure 34.  
 
The EM analysis takes MnDOT’s monthly WIM raw data (for example, 201501.040.CSV) file for each 
WIM station and estimates the mean and deviations of gross vehicle weight (GVW) of class 9 fully 
loaded trucks. Results of the EM analysis are stored in a file directory for CUSUM analysis. The CUSUM 
analysis takes inputs from the EM results and a calibration file based on MnDOT calibration to model a 
learning sample and estimates the residuals between the prediction and WIM observation. Output from 
the CUSUM analysis will indicate whether there is any sensor drift during the analysis period. 
 
 

 
Figure 34: Flowchart of the WIM data analysis software 

 
Figure 35 shows the user interface of the EM analysis. A user needs to first set a working directory where 
the R code, WIM data input and output files will be stored. After select a WIM station, lane #, year and 
month, the user can click the ‘Run EM Fitting’ button to perform EM analysis. Results of the EM analysis 
are stored in the working directory automatically.  
 

http://www.r-project.org/
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Figure 35: User interface of EM analysis 

Figure 36: User interface of CUSUM analysis 
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Figure 36 illustrates the user interface for CUSUM analysis. CUSUM analysis can only be performed 
when EM analysis results are available in the working directory. After selecting WIM station, lane #, 
starting and ending date, the user can click on the “CUSUM Analysis” button to perform CUSUM 
analysis. A GVW9 graph will pop up when the analysis is completed as shown in Figure 37. The blue line 
represents the average GVW of class 9 vehicles from WIM observations. The Magenta line represents the 
modeled learning data from a period when WIM is in calibration. The red line represents the predicted 
mean of GVW9 when sensor is in normal condition. Figure 38 displays the results from the CUSUM 
decision interval analysis. AS indicated, the CUSUM curve drifts upward exceeding the decision interval 
around 5/23/2011. The CUSUM analysis result indicates the WIM sensor shifted by 5.33 kips starting on 
5/9/2011 as displayed in the textbox in Figure 36 as highlighted.  

 

 
Figure 37: CUSUM graph 
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Figure 38: CUSUM DI graph 

 
 

3.3 Verification Using Simulated Scenarios 

Consider the following simulated AR (1) process with T=150 observations. The mean of process went 
down by 5 units after time point, t=75, which is the initial shift in the WIM sensor. After time point 
t=130, the mean process again went up by 5 units. Figure 39 shows the plot of the simulated data. Our 
goal is to show how we can identify the inconsistency in the WIM sensor. 
 

 

 

      (3-1) 
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Figure 39: Simulated AR (1) process with change in mean level 

 
Consider the first 60 observations as the learning sample.  The using the traditional Maximum likelihood 
technique AR (1) model is estimated form the learning sample, and the estimated parameters are shown in 
Table 7. 
 

Table 7 Estimated parameters from the learning sample 
Model 

  

Estimate 0.4118 80.105 
Std. error 0.116 0.258 

 

1.416  
  
Then the next step is to split the testing samples into 30 days. Based on the estimated model from the 
learning sample predictions were made for the first 30 days of the testing sample. Figure 40 shows the 
predictions on the testing sample, from t=61 to t=90. As expected, the prediction results are consistent 
with the simulated outcomes. Further, CUSUM analysis verifies neither upward nor downward shift in 
WIM sensor for the first 30 days of the testing data. 
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Figure 40: Predictions on testing sample (t=61 to 90) 
 
Since no shift was found, the estimated mean (  parameter was kept unchanged and predictions were 
made for the next 30 days for the testing data. Figure 41 shows the predictions results, suggesting a 
change in the mean process.  

Figure 41: Predictions on testing sample (t=91 to 120) 
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CUSUM analysis, as shown in Figure 42, suggested sensor shifted by -3.79 units after t=93, which is 
consistent with the simulated sequence.                 
                 

 
Figure 42: CUSUM analysis on testing sample (t=91 to 120) 

 
After a nonzero shift in mean level was identified, the final mean level was updated as  
 

    (3-2) 
 

Using the updated mean level prediction was made for the remaining simulated data.      

         
Figure 43: Predictions on testing sample (t=93 to 150) 
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Figure 43 shows predictions based on the updated mean level was consistent with the simulated outcome 
till time index, t=130. Since the true mean level shifted back to 80 kips, the predictions based on the 
updated mean level fail to capture the variation in the simulated data after time index, t=130.  As 
expected, CUSUM analysis on the residuals identified the previously estimated sensor shift of -3.79 units 
as inconsistent. Through this simulated example we have shown how splitting the testing data in to 
chunks of 30 day period, we can verify consistency of WIM sensor shift. 
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CHAPTER 4   
WIM DATA ANALYST USER’S MANUAL 

A compiled HTML help document was created for the WIM Data Analyst software. The help document, 
WIM_Help.chm, is based on the Microsoft Compiled HTML online help format which consists of a 
collection of HTML pages, an index, and other navigation tools. As illustrated in Figure 44, the outline of 
the HTML help document is listed as follows. Structure of the help document is presented as follows. 
Documentation on the “Getting Started” and “Tutorial” sections are discussed in section 4.1 and 4.2. 
Please refer to the WIM_Help.chm file or click on the ‘Help’ file menu option form the WIM Data 
Analyst software tool for detail information. 
 

 
Figure 44: Welcome page of the WIM data analyst software help document 

 
1. Welcome 
2. Introduction 
3. Getting Started 

- System Requirements 
- Installation Guide 
- Technical Support 

4. Tutorial 
- Set Working Directory 
- Menu Bar 
- EM Fitting 
- CUSUM Analysis 
- Stationarity Test 
- Plot GVW 
- Plot CUSUM 

5. Expectation Maximization (EM) 
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- Gross Vehicle Weight (GVW) 
- Mixture Model 

6. Cumulative Sum (CUSUM) Analysis 
- CUSUM Methodology 
- Decision Interval (DI) 

7. References 
8. FHWA Vehicle Classification Chart  
9. Known Issues 
10. Contacting Us 
11. Glossary 

 

4.1 Getting Started  

4.1.1 Systems Requirements  

1. Operating System (OS): Windows 7 or later 
2. Microsoft .NET framework 4.5 or later 
3. Please make sure your PC is connected to the Internet. 
4. Minimum hardware requirements – Intel® Xeon CPU @ 2.0 GHz with 8.0 GB memory 
5. Additional software needed – R Statistical software version 3.1.1 or later. R is a free software 

environment for statistical computing and graphics. 
6. This version of WIM Data Analysis was tested with a 64-bit Dell Precision T5600 computer 

which has dual Intel® Xeon E5-2609 2.4 GHz CPUs running on the Microsoft Windows 7 OS 
with service pack 1. The R statistics software version 3.1.1 was also installed.  

 

4.1.2 Installation Guide  

1. Download and install R statistics software version 3.1.1 or later from http://www.r-project.org/   
2. Unzip “Installation.zip” file then run WIM Data Analyst installation package (setup.exe) to install 

the software tool. If the “Publisher cannot be verified” warning message is displayed, click 
“Install” for software installation to continue. 

3. Follow the instructions on the screen to complete the installation. 
4. A shortcut icon will be added to your computer desktop when the installation is finished. 
5. After the software is successfully installed, run "WIM Data Analyst.exe" by clicking on the 

desktop shortcut icon to start the application.  
6. Unzip the “R_Src_Data.zip” to a working directory (for example, C:\R_Src_Data\) on your PC. 

The zip file contains several R script files (*.R) and a data folder for WIM data analysis. 
7. Please go to the tutorial section (section 4.2) or click “Help” from the file menu on the main 

screen of the WIM data analyst tool to learn more about the analyst tool. 
 

4.1.3 Technical Support  

Please contact Chen-Fu Liao at cliao@umn.edu for any technical problems with the WIM Data Analyst 
software. Please also report any errors or bugs to Chen-Fu at cliao@umn.edu.  
 

http://www.r-project.org/
http://www.r-project.org/
mailto:cliao@umn.edu
mailto:cliao@umn.edu
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4.2 Tutorial  

4.2.1 Set Working Directory 

After executing the application "WIM Data Analyst.exe", the main screen of the software tool will be 
displayed as shown in Figure 45. Click on the "Browse" button in the "Set Working Directory" group box 
to choose the working directory where the data analysis R scripts reside. Figure 46 illustrates an example 
of the working directory. The *.R files are used for EM and CUSUM analysis using R software package. 
The 'Data' folder contains data needed to process both EM & CUSUM analysis and store corresponding 
outputs for plotting the CUSUM results in Windows. 
 

 

 

 
 

Figure 45: Main screen of the WIM data analyst tool 
 

Figure 46: Illustration of a selected working directory 
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Important Note! 
Removing any files or modify the "Data" folder in the working directory will fail the WIM Data Analyst 
application or generate incorrect results! 
 

4.2.2 Menu Bar 

The file menu bar illustrated in Figure 47 is implemented for additional features in the future. At current 
release, only limited functions are implemented. 
 

 
Figure 47: File menu bar 

 
1. File 

• Exit - Exit the WIM Data Analyst tool. 
 
2. Edit 

• Calibration Log - Open WIM sensor calibration log file for editing. This calibration log file 
is used for CUSUM analysis. See Figure 48 displays an example of the calibration log 
table. The Reload, Save, and Close options under the file menu bar in the calibration table 
screen allows users to reload the log table, save the log file after editing, or close the table. 
The 'Edit' menu contains 'Add Record' and 'Delete Record' options. Use the 'Add Record' to 
add a new log record to the end of the table. To delete a record, select a row and choose 
'Delete Record' to delete the selected calibration record. Click on 'Help ' to get additional 
information. 
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Figure 48: Sample of WIM calibration log table 

 
3. Options 

• GVW9 EM Fitting - Open the EM fitting screen (as shown in Figure 49) to process the gross 
vehicle weight (GVW) of class 9 vehicles. 

• CUSUM Analysis - Open the CUSUM analysis screen (as illustrated in Figure 50) to perform 
CUSUM analysis for a selected WIM site. 

4. Help – Display HTML online help document 
 

4.2.3 EM Fitting 

When click on the “GVW EM” button from the main screen, the EM fitting screen will be displayed as 
illustrated in Figure 49.  

1.  Place the monthly WIM raw data file (for example, 201412.040.csv) under the “working 
directory/Data/Raw WIM Data/” directory. 

2.  Select a WIM station from the station listbox. Select a single lane or all lanes for the EM 
processing in the lane listbox.  

3.  Choose a year and a month for GVW9 data analysis.  
4.  Select “Daily” or “Weekly” data aggregation. The “Weekly” aggregation option is for WIM 

stations with relatively low truck volumes in a day. 
5.  Click “Run EM Fitting” button to begin the EM data processing. 
6.  EM fitting results will be displayed in the bottom textbox.  
7.  Use “Clear Log” button to remove results displayed in the textbox. 
 



      

45 
 

 
Figure 49: EM fitting screen 

 

4.2.4 CUSUM Analysis 

When click on the “CUSUM Analysis” button from the main screen, the CUSUM analysis screen will be 
displayed as illustrated in Figure 50. 
 

1. Select a WIM station from the station listbox. Select a lane number from the lane listbox. 
2. Select a starting and an ending. When the “Use Calibration Date” checkbox is checked. The 

CUSUM analysis will use the calibration date from the calibration log file, assuming there is a 
record of calibration date between the selected starting and ending dates as illustrated in Figure 
51. 

3. When no calibration data is available between the starting and ending dates, uncheck the “Use 
Calibration Date” checkbox to enable the learning date selection option and manually choose a 
learning date for CUSUM analysis. Stationary GVW data between the starting and the learning 
dates are considered as learning period as illustrated in Figure 51. GVW data between the 
learning and the ending dates are used for testing. 

4. Select “Daily” or “Weekly” data analysis. The “Weekly” option is for WIM stations with 
relatively low truck volumes in a day. 

5. Click on “Plot GVW9” button to plot the GVW9 of the fully loaded trucks. A sample GVW9 plot 
is displayed in Figure 52. Right click inside the graph plotting area to display more options 
including copy, save image as, page setup, print, show point values, zoom, and set scale. 

6. Click on “Stationarity Test” button to test the stationarity of the average GVW9 of fully loaded 
trucks in the learning period. The output of a sample stationarity test is shown in Figure 53.  

7. Click on “CUSUM Analysis” to start the CUSUM analysis. A sample result from the CUSUM 
analysis is plotted in Figure 54. Right click inside the graph plotting area to display more options 
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including copy, save image as, page setup, print, show point values, zoom, and set scale. In 
addition, the CUSUM graph file menu has the following features to export the data, print the 
graph, or plot different graph.  
a. File 
 Export Data – Export the data of the display graph to a .csv file 
 Page Setup – Setup page for printing 
 Print – Print current graph 
 Close – Close the CUSUM graph window 

b. Graph 
 GVW – Display GVW plot 
 CUSUM – Display CUSUM plot 
 DI CUSUM – Display adjusting CUSUM with decision interval 

c. Help – Display help document 
8. Click on “Clear Log” button to remove results displayed in the textbox. 

 
Example 1  
Select WIM#29, Lane 1, Start Date=10/5/2010, End Data=6/8/2011, check “Use Calib. Date”, and select 
"Daily" option from the CUSUM analysis window. Click on "Plot GVW9" or "CUSUM Analysis" button 
to display the results shown in Figure 54. 
Example 2  
Select WIM#33, Lane 1, Start Date=1/20/2014, End Data=2/27/2015, uncheck “Use Calib. Date” then set 
Learn Data to 5/1/2014, and select "Daily" option from the CUSUM analysis window. Click on "Plot 
GVW9" or "CUSUM Analysis" button to display the results. 
 

 
Figure 50: CUSUM analysis screen 
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Figure 51: Illustration of selecting dates, learning and testing periods 
 

Figure 52: Sample GVW9 plot 
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Figure 53: Sample stationarity test results 
 

Figure 54: Sample results from a CUSUM analysis 
 

Figure 55 illustrates the weekly GVW plot of class 9 trucks from Jan. 1, 2014 to Feb. 1, 2015. The 
average GVW of class 9 vehicles increased abruptly around 2/5/2015 and stayed around 135-140 kips till 
10/6/2014.  
 



      

49 
 

 

 
 
 

Figure 55: Weekly GVW9 plot of WIM 34 
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CHAPTER 5  
SUMMARY AND CONCLUSION 

A Weigh-In-Motion (WIM) system tends to go out of calibration from time to time and as a result 
generates biased and inaccurate measurements. Several external factors such as vehicle speed, weather, 
pavement conditions, etc. can be attributed to such anomaly. To overcome this problem, a statistical 
quality-control technique is warranted that would provide the WIM operator with some guidelines 
whenever the system tends to go out of calibration. 
 
Implementation guidelines for WIM calibration were developed to detect shifts in WIM sensor and 
suggest proper recommendation for WIM sensor adjustments. A mixture modeling technique using 
Expectation Maximization (EM) algorithm was developed to divide the vehicle class 9 Gross Vehicle 
Weight (GVW) into three normally distributed components, unloaded, partially loaded, and fully loaded 
trucks. The well-known Statistical Process Control (SPC) technique, CUSUM was proposed to identify 
and estimate shifts in the WIM sensor. However, the presence of serial correlation in the data tends to 
make the CUSUM ineffective by producing uncomfortable levels of false alarms.  
 
To overcome such limitations, an auto-regressive model was developed based on a training sample, when 
the system was known to be in-calibration. Using the estimated model, predictions were made for test 
samples and a CUSUM analysis was performed on the test residuals. Any shift in WIM sensor would be 
reflected on CUSUM plots. Here, the underlying assumption is that any out-of control CUSUM behavior 
is solely attributed to a plausible shift in WIM sensor. However, several case studies suggested this might 
not be true. Additional unknown factors besides WIM sensors are found to influence WIM measurements. 
A revised implementation plan is proposed to distinguish such scenarios.  
 
A data analysis software tool, WIM Data Analyst, was developed using the Microsoft Visual Studio 
package based on the .NET framework. An open source software, R.NET (https://rdotnet.codeplex.com/), 
was integrated into the Microsoft .NET framework to interface with the R software (http://www.r-
project.org/), another open source software package for statistical analysis. The WIM data analyst tool 
consists of two key components, i.e., EM Fitting and CUSUM analyses, and a HTML online help 
document. 
 
The EM analysis takes a monthly WIM raw data (CSV) file of each WIM station from MnDOT and 
estimates the mean and deviations of GVW of class 9 fully loaded trucks. Results of the EM analyses are 
stored in a file directory for CUSUM analysis. The CUSUM analysis takes inputs from the EM results 
and a calibration file based on MnDOT calibration logs to model a learning sample and estimates the 
residuals between the prediction and WIM observation. Output from the CUSUM analysis will indicate 
whether there is any sensor drift during the analysis period. 
 
 
 
 
 

https://rdotnet.codeplex.com/
http://www.r-project.org/
http://www.r-project.org/
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APPENDIX A 
WIM Data Analysis (Non-Stationary Scenarios)
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A.1 Station# 26, Lane # 3 - Period: From 01/21/2011 to 06/31/2011 
 

 
                      Figure A1. Linear trend in WIM measurements from no-change period 

 
A.2 Station# 32, Lane # 4 - Period: From 10/19/2012 to 06/24/2013 

 
                            Figure A2. Linear trend in WIM measurements from no-change period 
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A.3 Station# 26, Lane # 4 - Period: From 01/21/2011 to 06/01/2011 

 
Figure A3. Linear trend in WIM measurements from no-change period 
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