MINNESOTA’S BEST PRACTICES FOR
Traffic Sign Maintenance/Management Handbook
Including Insight on How to Remove Unnecessary and Ineffective Signage

REPORT NO. 2010RIC10
VERSION 1.1
October 2010

Mn/DOT Research Services Section
MS 330, 395 John Ireland Blvd.
St. Paul, Minnesota 55155
Phone: 651-366-3780
Fax: 651-366-3789
E-mail: research.dot@state.mn.us

The University of Minnesota is an equal opportunity educator and employer.
Acknowledgements

Thanks to the following sponsors and participants for their valuable input in the production of this document.

TAP Members
- Lon Aune: Marshall County Engineer
- Mindy Carlson: MN LTAP
- David Fricke: MN Association of Townships
- Joe Gustafson: Washington County
- Jeanne Hansen: Mn/DOT
- Jeff Hilden: Jacobs Engineering Inc.
- Jeff Holstein: City of Brooklyn Park
- Cassandra Isackson: Mn/DOT
- Chuck Lenthe: City of Blaine (retired)
- Victor Lund: St. Louis County
- Clark Moe: Mn/DOT
- Tim Plath: City of Eagan
- Howard Preston: CH2M HILL
- Rich Sanders: Polk County Engineer
- Ken Schroepefer: Mn/DOT
- Kristi Sebastian: Dakota County
- Mark Vizecky: Mn/DOT

Funding Sponsors
- Minnesota Local Road Research Board (LRRB), Mn/DOT and University of Minnesota LTAP

Production
- Minnesota Local Road Research Board

Writing
- Howard Preston and Michael Barry, CH2M HILL

Graphic Design
- Chrissy Ehlers, CH2M HILL

Other Contributors (alphabetical order)
- 3M Inc., Cass County, City of Eagan, City of Faribault, Federal Highway Administration, League of Minnesota Cities, Minnesota Association of Townships

The contents of this handbook reflect the views of the authors who are responsible for the facts and accuracy of the data presented. The contents do not necessarily reflect the views or policies of the Local Road Research Board or the Minnesota Department of Transportation at the time of publication. This handbook does not constitute a standard, specification or regulation.
The information in this Best Practices guide is provided to assist agencies in their effort to better maintain the traffic signs on their system of roads and highways.
- This Best Practices Guide does **not** set requirements or mandates.
- This Best Practices Guide is **not** a best practice document for design or operations.
- This Best Practices Guide contains **no** warrants or standards and does **not** supersede other publications that do.
- This Best Practices Guide is a resource document and is intended to help transportation professionals develop a technically sound set of policies and practices to better maintain their system of traffic signs.
- This Best Practices Guide is **not** a standard and is neither intended to be, nor does it establish, a legal standard of care for users or professionals.
- This Best Practices Guide does not supersede publications such as the USDOT FHWA’s Manual on Uniform Traffic Control Devices (MUTCD); Association of American State Highway Transportation Officials’ (AASHTO) “Green Book” titled *A Policy on Geometric Design of Highways and Streets*; or other AASHTO and agency guidelines, manuals and policies.
Table of Contents

Acknowledgements .. i

Document Information and Disclaimer: ii

Part A – Background

- Minnesota Manual on Uniform Traffic Control Devices – Background A-1
- Minnesota Manual on Uniform Traffic Control Devices .. A-2 to A-3
- Specified Levels of Retroreflectivity ... A-4
- Retroreflective Sheeting Designations ... A-5
- Comparison of Reflective Sheeting Material .. A-6
- Retroreflectivity Compliance Dates .. A-7
- Consequences for Non-Compliance .. A-8

Part B – Maintenance Methods

- Maintenance Methods .. B-1
- Assessment Methods .. B-2 to B-3
- Management Methods ... B-4
- What Method is Best for Your Agency? .. B-5 to B-6

Part C – Financial Budgeting

- Financial Budgeting .. C-1
- Financial Budgeting – Townships .. C-2 to C-4
- Financial Budgeting – Cities under 5,000 Population ... C-5 to C-7
- Financial Budgeting – Cities over 5,000 Population ... C-8 to C-10
- Financial Budgeting – Counties .. C-11 to C-13
- Financial Budgeting – Summary .. C-14

Part D – Policy Development

- Policy Development ... D-1
- Example Policy Outline – Sign Maintenance ... D-2
- Model Sign Maintenance Policy .. D-3
- Example Policy Outline – Snow Plowing ... D-4
- Example Signing Policy – City of Eagan, MN ... D-5
- Example Signing Policy – Rural County .. D-6
- Case Study #1: Monnens vs. City of Orono ... D-7 to D-9

Part E – Implementation

- Process Chart – Implementation ... E-1
- Sign Inventory ... E-2
- Sign Inventory – Pencil & Paper ... E-3
- Sign Inventory – Software .. E-4
- Engineering Study Process ... E-5 to E-6
- Engineering Study / MNNUTCD Guidance .. E-7 to E-9
- Engineering Study / System Consideration Example - Rural Curves E-10 to E-11
- Engineering Study / System Consideration Example - Urban & Rural Low Volume E-12
- MNNUTCD Guidance ... E-13 to E-15
- Regulatory Sign Usage ... E-16 to E-18
- Warning Sign Usage ... E-19 to E-22
- Guide Sign Usage ... E-23 to E-25
- Low Volume Road Sign Usage .. E-26 to E-28
- Which Signs are Required by the 2005 MNNUTCD? ... E-29
- Case Study #2: Ireland vs. Lengsfeld and Carver County .. E-30 to E-32

Part F – Effectiveness of Traffic Signs

- How to Measure Effectiveness? .. F-1
- Effectiveness of Regulatory Signs – Speed Limit ... F-2
- Effectiveness of Regulatory Signs – STOP signs ... F-3
- Effectiveness of Warning Signs – Children at Play ... F-4
- Effectiveness of Warning Signs – Horizontal Alignment .. F-5
- Effectiveness of Warning Signs – Pedestrian Crossings ... F-6
- Effectiveness of Warning Signs .. F-7
- Effectiveness of Guide Signs .. F-8
- Sign Effectiveness Summary .. F-9
- Making the Case For Considering Sign Removal ... F-10
- Sign Removal – Which Signs Are Candidates? .. F-11 to F-12
- Potential Sign Removal Examples .. F-13 to F-16
- Sign Removal – Managing Risk .. F-17
- A Final Thought About Sign Removal .. F-18
- Case Study #3: City of South Lake Tahoe, CA vs. Markham F-19 to F-20
- Case Study #4: Pedrosa vs. City of Alhambra, CA ... F-21

Part G – Summary of Key Points

- Key Points .. G-1
- Answers to Quiz ... G-2

Appendix

- Example Signing Policy – Metro County ... AP-1
- Example Signing Policy – Cass County ... AP-2
- Sample Response to Request for SLOW CHILDREN Sign .. AP-3
- Why Won’t They Put Up “Children at play” Signs? .. AP-4
- Why Don’t They Put In More STOP SIGNS? ... AP-5
- When Will a Lower Speed Limit be Posted on My Street? .. AP-6
Part A - Background

Minnesota Manual on Uniform Traffic Control Devices – Background A-1
Minnesota Manual on Uniform Traffic Control Devices .. A-2 to A-3
Specified Levels of Retroreflectivity ... A-4
Retroreflective Sheeting Designations .. A-5

Comparison of Reflective Sheeting Material .. A-6
Retroreflectivity Compliance Dates .. A-7
Consequences for Non-Compliance ... A-8
23 Code of Federal Regulations (CFR), Part 655.603 adopts the MUTCD as the national standard for any street, highway or bicycle trail open to the public.

Section 15 of the Uniform Vehicle Code adopts the MUTCD as the standard of the conformance of signs, signals, markings and other devices intended to regulate, warn or guide traffic.

The Commissioner of Transportation has adopted the MNMUTCD for all public roadways [and private roadways open to the public] in Minnesota (Commissioner Order No. 88522 – May 5th, 2005).

MS 169.06 empowers the Commissioner and local road authorities to place and maintain traffic control devices on roadways within their jurisdiction, to regulate, warn, or guide traffic.

Yes, the MNMUTCD applies to your roads – it applies to all public roads and private roads open to the public in Minnesota.
AMENDED
UNIFORM TRAFFIC CONTROL DEVICES MANUAL
ORDER NO. 88522

WHEREAS, the United States of Department of Transportation, Federal Highway Administration (FHWA) has adopted and published a Manual on Uniform Traffic Control Devices (MUTCD) including Devices, dated November 10, 2003 (herein referred to as the Federal MUTCD) including Revision No. 1 (Change List, dated November, 2004), and List of Known Errors (dated September 21, 2004).

WHEREAS, this Federal MUTCD has been approved by the Federal Highway Administrator as the National Standard for all highways open to public travel in accordance with Title 23, U.S.C. Sections 109(d), 315 and 402, and 49 C.F.R. Section 1.48; and

WHEREAS, the Minnesota Department of Transportation has amended the Federal MUTCD by adding Appendices and revising or adding text and figures to make provisions for Minnesota Statutes and department procedures; and

NOW, THEREFORE, pursuant to authority vested in my office and as provided in Minnesota Statutes, Section 169.06, subd. 1 (2004). I do hereby adopt and prescribe the following as the 2005 Minnesota Manual on Uniform Traffic Control Devices (referred to as the “2005 MN MUTCD”):

II. Minnesota Department of Transportation Appendices:

A. APPENDIX A1 - Congressional Legislation
B. APPENDIX A2 - Phase-in Compliance Periods
C. APPENDIX A3 - Retroreflective Sheeting Identification Guidelines
D. APPENDIX B - Warrants, Standards, and Guidelines for traffic control devices used at Senior Citizen and Handicapped Pedestrian Crossings

III. State of Minnesota, Department of Transportation, additional sections, revisions, and corrections to the 2003 Federal MUTCD.

It is further ordered that the provisions of the 2005 MN MUTCD shall be implemented and applied to all traffic control devices installed on or after July 1, 2005 upon highways within this State except for those traffic control devices which conform to the 2001 edition of the MN MUTCD with its 2 revisions and are on order or under contract prior to July 1, 2005. All existing traffic control devices or installations not in conformance with standards in the 2005 MN MUTCD shall be changes to conform to the new standards herein when replacement occurs.

Dated at St. Paul, Minnesota, this 5th day of May, 2005.

Carol Molna
Lt. Governor/Commissioner

Source: MNMUTCD, May 2005
Old Guidelines

The MNMUTCD previously recommended that agencies should establish a process to provide and maintain reasonable nighttime sign visibility and legibility.

In addition to nighttime inspections, agencies may use the following methods:
- Scheduled sign replacement
- Inspection panels
- Measured sign retroreflectivity

There were no specified minimum levels of retroreflectivity.

New Requirements

In February 2008, language adopted in the MNMUTCD requires all agencies that maintain roadways open to public travel to adopt a sign maintenance program designed to maintain traffic sign retroreflectivity at specific levels.

All agencies responsible for maintaining traffic signs are required to comply with the new MNMUTCD requirements.

Public agencies or officials having jurisdiction shall use an assessment or management method that is designed to maintain sign retroreflectivity at or above the minimum levels in MNMUTCD Table 2A-3 (page A-4).

Reminder

In the MNMUTCD words have very specific meanings:

1. STANDARD - a statement of required practice and the verb SHALL is used.
2. GUIDANCE - a statement of recommended practice with deviations allowed based on engineering judgement. The verb SHOULD is used.
3. OPTION - a statement of practice that is permissive. The verb MAY is used.
Specified Levels of Retroreflectivity

Table 2A-3: Minimum Maintained Retroreflectivity Levels

<table>
<thead>
<tr>
<th>Sign Color</th>
<th>Beaded Sheeting</th>
<th>Prismatic Sheeting</th>
<th>Additional Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>White or Green</td>
<td>Wt: G=7</td>
<td>Ws: G=25</td>
<td>Overhead Ground-Mounted</td>
</tr>
<tr>
<td>Black or Yellow</td>
<td>Y": O"</td>
<td>Y: G=50</td>
<td></td>
</tr>
<tr>
<td>Black or Orange</td>
<td>C": G=75</td>
<td>C": G=75</td>
<td></td>
</tr>
<tr>
<td>Black or White</td>
<td>W=36, R=7</td>
<td>W=50</td>
<td></td>
</tr>
</tbody>
</table>

- The minimum retroreflectivity levels are in units of – Candelas / lux / meter² measured at an observation angle of 0.2° and an entrance angle of -4.0°.
- These minimum retroreflectivity levels apply to **ALL** signs, with the following exceptions:
 - Parking, Standing and Stopping signs (R7 and R8 series)
 - Walking/Hitchhiking/Crossing signs (R9 series, R10-1 through R10-4b)
 - Adopt-A-Highway signs
 - All signs with blue (motor services) or brown (recreational) backgrounds
 - Bikeway signs that are intended for exclusive use by bicyclists or pedestrians

Which meet retroreflectivity requirements?

Source: MnDOT, May 2005

GOT THAT?
Frequently Asked Questions about Sign Maintenance

- Can any type of sheeting material be used as long as it meets the minimum retroreflectivity levels?
 - Type I sheeting shall not be used for Warning, Guide or Work Zone signs. Type II and III should not be used on Overhead Guide signs. (Even brand new Type I, II, and III sheeting material is not bright enough to be used in these applications.)
 - Type I sheeting may be used for STOP signs and Black on White Regulatory signs.
 - Even though a particular type of sheeting may initially meet the minimum retroreflectivity levels when new, it might quickly degrade to below the specified threshold levels. The use of higher performance sheeting, even though it has a higher initial cost, usually provides a better life cycle cost.

- Is brighter always better for sign sheeting?
 - Usually. It is generally true that brighter signs are more conspicuous and legible. However, legibility is also a function of letter (or image) size—a good rule of thumb is 30 feet of legibility distance for each inch of letter height.

- When upgrading the sheeting material, do sign supports also need to be addressed?
 - Yes, all sign supports need to be crash worthy (see page E-13 for details)

<table>
<thead>
<tr>
<th>ASTM Type</th>
<th>Previous Designation</th>
<th>Typical Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Engineering Grade</td>
<td>Highway Signing, construction-zone devices and delineators</td>
</tr>
<tr>
<td>II</td>
<td>Super Engineering Grade</td>
<td>Highway Signing, construction-zone devices and delineators</td>
</tr>
<tr>
<td>III</td>
<td>High Intensity</td>
<td>Highway Signing, construction-zone devices and delineators</td>
</tr>
<tr>
<td>IV</td>
<td>High Intensity Prismatic</td>
<td>Highway Signing, construction-zone devices and delineators</td>
</tr>
<tr>
<td>V</td>
<td></td>
<td>Delineators</td>
</tr>
<tr>
<td>VI</td>
<td>Diamond Grade Flexibility Signs</td>
<td>Temporary roll-up signs, warning signs, traffic cone collars and post bands</td>
</tr>
<tr>
<td>VII</td>
<td>Long Distance Performance (LDP)</td>
<td>Highway Signing, construction-zone devices and delineators</td>
</tr>
<tr>
<td>VIII</td>
<td>MVP Prismatic</td>
<td>Highway Signing, construction-zone devices and delineators</td>
</tr>
<tr>
<td>IX</td>
<td>Visual Impact Performance (VIP)</td>
<td>Highway Signing, construction-zone devices and delineators</td>
</tr>
<tr>
<td>X</td>
<td>Crystal Grade</td>
<td>Highway Signing, construction-zone devices and delineators</td>
</tr>
<tr>
<td>XI</td>
<td>Diamond Grade (DG3)</td>
<td>Highway Signing, construction-zone devices and delineators</td>
</tr>
</tbody>
</table>
Comparison of Reflective Sheeting Material

Life Cycle Costs & Initial Retroreflectivity

<table>
<thead>
<tr>
<th>Sheeting Material (ASTM)</th>
<th>Type I Engineering Grade</th>
<th>Type IV High Intensity Prismatic</th>
<th>Type IX Diamond Grade VIP</th>
<th>Type XI Diamond Grade DG3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material Cost ($/SF)</td>
<td>$0.85</td>
<td>$1.65</td>
<td>$4.25</td>
<td>$3.98</td>
</tr>
<tr>
<td>Finished Sign Cost</td>
<td>$30</td>
<td>$35</td>
<td>$51</td>
<td>$50</td>
</tr>
<tr>
<td>Anticipated Life (years)</td>
<td>5 – 7</td>
<td>10-12</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>Life Cycle Cost</td>
<td>$130</td>
<td>$70</td>
<td>$119</td>
<td>$50</td>
</tr>
<tr>
<td>Initial Retroreflectivity (white)</td>
<td>70</td>
<td>300</td>
<td>380</td>
<td>580</td>
</tr>
</tbody>
</table>

Source: 3M Traffic Safety Systems Division, April 2010

Typical Installation Cost

<table>
<thead>
<tr>
<th></th>
<th>Stop (30x30)</th>
<th>Warning (36x36)</th>
<th>Regulatory (24x30)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$240</td>
<td>$240</td>
<td>$230</td>
</tr>
<tr>
<td></td>
<td>$250</td>
<td>$260</td>
<td>$240</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$280</td>
<td>$250</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$280</td>
<td>$250</td>
</tr>
</tbody>
</table>

Source: Mn/DOT

- A comparison of the types of reflective sheeting material suggests:
 - The low initial cost material would meet most of the minimum retroreflectivity levels but would be expected to degrade quickly below minimum levels.
 - The higher performance sheeting, initially more expensive, provides a much longer anticipated life, much higher levels of retroreflectivity and superior life cycle costs.

- The fairly narrow range of typical sign installation costs (sign blank + sheeting + posts + labor) suggests that agencies would pay a premium of between 5% to 15% for using higher performance sheeting.

- Additional installation cost information provided by a number of agencies indicates that quantity discounts could reduce the per sign cost by 20% to 30%.

Degradation Curves

Note: Use this with caution, it represents a best guess. Research is underway to develop more reliable information about how retroreflectivity degrades overtime.

Source: FHWA Sign Retroreflectivity Guidebook, September 2009
Retroreflectivity Compliance Dates

- **January 2008**: New retroreflectivity requirements become effective in Federal MUTCD
- **February 2008**: New requirements added to Minnesota MUTCD
- **January 2012**: Agencies must establish a traffic sign maintenance program
- **January 2015**: All agencies MUST comply with the new retroreflectivity requirements for most of their traffic signs. **ALL*** regulatory signs, **ALL*** warning signs and post mounted guide signs
- **January 2018**: All agencies MUST comply with the new retroreflectivity requirements for overhead guide signs and all street name signs

See Page A-4 for exceptions
Consequences for Non-Compliance

- There are no sign police in Minnesota to check to see if your agency is complying with MNMUTCD.

- However, the closer an agency’s practices are to being consistent with the guidance in the MNMUTCD, the better the agency will be from a risk-management standpoint.

- In Minnesota the standard of care against which traffic professionals are measured is—what would a reasonable person have done under a given set of circumstances. In most cases the better answer is to have followed the guidance in the MNMUTCD.

- The new retroreflectivity requirements apply to **ALL** signs – required, not required and even those unique signs that are not listed in the MNMUTCD.

For exceptions, see page A-4.
Part B – Maintenance Methods

Maintenance Methods .. B-1
Assessment Methods .. B-2 to B-3
Management Methods ... B-4
What Method is Best for Your Agency? ... B-5 to B-6
Maintenance Methods

- **Management**
 - Expected Sign Life
 - Blanket Replacement
 - Control Signs

- **Assessment**
 - Visual Nighttime Assessment
 - Measured Sign Retroreflectivity

How Do I Decide?

- **What Are The Choices?**
 - **Assessment Methods**
 - Visual Nighttime Assessment
 - Calibration Signs Procedure
 - Comparison Panels Procedure
 - Consistent Parameters Procedure
 - Measured Sign Retroreflectivity
 - **Management Methods**
 - Expected Sign Life
 - Blanket Replacement
 - Control Signs
 - **Combination or Other Methods**
 - Blanket Replacement & Expected Sign Life
 - Visual Nighttime Inspection & Control Signs
 - Other Methods documented in an Engineering Study

- **Combination or Other Methods**
 - Some examples include:
 - Blanket Replacement & Expected Sign Life
 - Visual Nighttime Inspection & Control Signs
 - Other Methods documented in an Engineering Study
Assessment Methods (1/2)

1. Visual Nighttime Assessment
This is an on-the-fly assessment of retroreflectivity made by trained inspectors during nighttime conditions. The inspection should be conducted at normal speed from the travel lane, using the low-beam headlights and at typical viewing distances (180 feet for street name blades, 300 feet for stop signs and up to 1,100 feet for symbol type warning signs based on a 30 feet per inch legibility distance). One or more of the following procedures should be used to support the visual nighttime inspections.

Calibration Signs Procedure
- An inspector views a calibration sign each time prior to conducting a nighttime field review. The calibration signs have known retroreflectivity levels at or above the specified minimums. The calibration signs are set up in a maintenance yard where the inspector can view the signs in a manner similar to nighttime field inspections. The inspector uses the visual appearance of the calibration sign to establish the evaluation threshold for that night’s inspection activities.

Comparison Panels Procedure
- This procedure involves assembling a set of comparison panels that represent retroreflectivity levels above the specified minimums. Inspectors then conduct a nighttime field review and when a marginal sign is found, a comparison panel is attached and the sign/panel combination is viewed. The signs found to be less bright than the panel would then be scheduled for replacement.

Consistent Parameters Procedure
- The nighttime inspections would be conducted under similar factors that were used in the research to develop the minimum retroreflectivity levels. These factors include:
 - Using a sport utility vehicle or pick-up truck to conduct the inspection.
 - Using a model year 2000 or newer vehicle for the inspection.
 - Using an inspector who is at least 60 years old with 20/20 vision (corrected).

1 Inspectors must be trained. Training courses are available through many Local Technical Assistance Programs (LTAP); check http://www.ltap.org
2. Measured Sign Retroreflectivity

- The retroreflectivity of every sign in your system is measured with a retroreflectometer (approximate purchase price of $10,000) and the results are compared to the threshold levels documented in Table 2A-3 of the MNMUTCD. Signs with actual retroreflectivity levels below the specified minimums would be scheduled for replacement.
Management Methods

1. Expected Sign Life

- When signs are installed, the installation date would be recorded so that the age of the sign is known. The age of the sign is compared to the expected sign life – based on the documented retroreflectivity degradation for a specific geographic area compared to the minimum levels. Signs older than the expected sign life would be scheduled for replacement.

2. Blanket Replacement

- All signs in an area/corridor would be replaced at specified intervals. The replacement interval would be based on the expected sign life or warranty period. This method eliminates the need to assess retroreflectivity or track the life of individual signs. If the warranty period is 12 years, replacing 1/12 of the signs each year would demonstrate compliance with the specified minimum retroreflectivity levels.

3. Control Signs

- Replacement of signs in your system would be based on the performance of a small sample of control signs. For convenience and safety, the small sample of signs (all of the basic colors, oriented in the most adverse direction) would be located in a maintenance yard and these signs would then be monitored to determine when they are at the end of their retroreflective life. All field signs, represented by the control sample would then be replaced just before the control samples reach the minimum specified levels. New signs would have to be added to the control sample every year.

Source: FHWA Sign Retroreflectivity Guidebook, September 2009
What Method is Best for Your Agency? (1/2)

Assessment Methods (Visual Assessment, Measured Sign Retroreflectivity)
- Requires training and lots of staff hours on the road. Your inspectors will have to view every one of your signs in the field (at 20 signs/hour, 10,000 signs [typical county] \(\approx 500 \) hours per year).
- May require the purchase of technology—a Reflectometer or reflective sheeting samples—and an investment of training your staff.
- The primary advantage of using one of the Assessment Methods is that your agency will get the most years of service from each sign in your inventory as is practically possible.

Management Methods (Expected Sign Life, Blanket Replacement, Control Signs)
- Reduces staff time in the field versus possibly replacing some signs before they meet the minimum thresholds.
- It has been suggested that if you are concerned about replacing signs with some life left in the sheeting material, you could go through the effort of measuring for retroreflectivity of salvaged signs after they are delivered to your maintenance yard for use as replacements for signs damaged by vandalism or knockdowns.

<table>
<thead>
<tr>
<th>Maintenance Methods</th>
<th>Types</th>
<th>Staff Hours</th>
<th>Technology</th>
<th>Service Life Lost From Each Sign</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assessment</td>
<td>Visual Nighttime Inspection</td>
<td>$$</td>
<td>$$</td>
<td>$</td>
</tr>
<tr>
<td></td>
<td>Measured Sign Retroreflectivity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Management</td>
<td>Expected Sign Life</td>
<td>$</td>
<td>$</td>
<td>$$</td>
</tr>
<tr>
<td></td>
<td>Blanket Replacement</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Control Signs</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
So which Method is Best?

No one can tell you which method is best. FHWA’s Sign Retroreflectivity Guidebook can provide some assistance, but you know the characteristics of your system and your organization better than anyone else. Think about three primary factors:

- **Inventory**
 - If the number of signs on your system is small (<500), conducting an annual inspection would be relatively easy.
 - If the number of signs on your system is large (>10,000), conducting an annual inspection could require 500 or more staff hours per year; so you should consider one of the management methods.

- **Staff**
 - If your professional staff is trained and has experience conducting nighttime inspections, it would be easy to continue.
 - If you don’t have trained staff, the choices would include adding staff and training them or using one of the management methods.

- **Technology**
 - If you already own or are willing to purchase a retroreflectometer ($10,000) or a kit with samples of sheeting material at the thresholds (the kit is currently under development - check Mn/DOT State Aid website for further information), the measurement method may be best.
 - If you are not willing to make these investments, the visual assessment or one of the management methods would be a better choice.

Make a decision, move forward, evaluate, and make changes if you have to.
Part C – Financial Budgeting

Financial Budgeting .. C-1
Financial Budgeting – Townships .. C-2 to C-4
Financial Budgeting – Cities under 5,000 Population .. C-5 to C-7

Financial Budgeting – Cities over 5,000 Population .. C-8 to C-10
Financial Budgeting – Counties .. C-11 to C-13
Financial Budgeting – Summary ... C-14
Financial Budgeting

OK, I get it – the new retroreflectivity requirements apply to my agency! How much is it going to cost to comply?

That depends…

- Number of signs in your inventory
- Selected replacement schedule and method
- Estimated annual cost to address vandalism and knockdowns
Financial Budgeting – Townships (1/3)

- A typical Township has approximately 30 miles of roadway with an average of 6 total traffic signs per mile (both directions).
- A recent Township signing pilot project\(^1\) documented an average cost for sign replacement to be $150 per sign.*
- The total cost to upgrade/replace regulatory and warning signs in a typical Township would be:

\[
\begin{align*}
30 \text{ miles} & \times 6 \text{ signs/mile} \times $150/\text{sign} = $27,000 \\
100\% \text{ of signs} & = $5,400 \\
75\% \text{ of signs} & = $4,050
\end{align*}
\]

- All** Regulatory, Warning and Ground Mounted Guide signs must meet retroreflectivity requirements by January 2015.
- The rest of your signs (Overhead Guide And Street Names) must meet the retroreflectivity requirements by January 2018.
- If you have to replace 100% of your signs the annual cost would be $5,400. But if you only had to replace 75% of your signs, the cost would be $4,050 per year.
- A strategy to consider in an effort to reduce your costs – reduce your inventory of signs.

\(^{1}\) Mn/DOT Township Sign Inventory and Replacement Pilot Program
* Replacement costs include sign blank, sheeting material, sign posts, and installation.
** See A-4 for exceptions
constant 2010 $
A typical Minnesota Township has 30 miles of roadway at a density of 6 total traffic signs per mile (both directions).

If the typical Township decided to replace their regulatory and warning signs and began in 2010, they would have to spend $5,400 per year over the 5 year period 2010 to 2015.

After the initial investment in upgrading your signs, you also need to consider Annual Maintenance and beginning the on-going replacement of signs to address maintaining minimum levels of retroreflectivity.

Annual maintenance consists of:
- Replacing sign faces that have been damaged by vandalism (paint balls and fire arms) and mother nature (tree sap, water damage, and the sun)
- Repairing knock downs
- A report prepared by North Carolina State University\(^1\) found that approximately 4% of signs along the rural secondary system sustained damage to sign faces that required replacement
 - In the typical Minnesota Township, this sign face damage results in annual costs of 30 miles per Township x 6 signs per mile x $150 per sign x 4% = $1,080 per year
 - No estimate of sign knockdowns has been determined, but a conservative estimate would be 1%. At this rate repairing knock downs would also cost approximately $270 per year

\(^1\) Harris, Road Sign Deterioration and Management, North Carolina State University, 2006
Constant 2010 $
If the typical Minnesota Township selects the blanket replacement method and planned to replace 1/12 of the signs each year (based on the 12 year warranty period for sheeting material) the annual cost would be: 30 miles per Township x 6 signs per mile x $150 per sign x 1/12 = $2,250 per year.

If you are interested in reducing your sign maintenance costs – consider reducing the number of signs in your inventory. (See Part D)
Financial Budgeting – Cities under 5,000 Population (1/3)

- A typical small city has approximately 50 miles of streets with an average of 25 regulatory and warning signs per mile plus 6 guide signs per mile (both directions).
- A typical cost for replacing the regulatory and warning signs is $200 per sign* and $250 per sign* for the guide (street name) signs.
- The total cost to upgrade/replace ALL of the signs in a typical small city would be:

 \[
 \text{Total Cost} = 50 \text{ miles} \times 25 \text{ signs/mile} \times $200/\text{sign} + 50 \text{ miles} \times 6 \text{ signs/mile} \times $250/\text{sign}
 \]

 \[
 = 25 \times 50 \times $200 + 6 \times 50 \times $250
 \]

 \[
 = 325,000 + 49,000 = 374,000
 \]

- Annual Replacement Cost

 - 100% of signs = $65,000
 - 75% of signs = $49,000

- All** Regulatory, Warning and Ground Mounted Guide signs must meet retroreflectivity requirements by January 2015.
- The rest of your signs (Overhead Guide and Street Names) must meet the retroreflectivity requirements by January 2018.
- If you have to replace 100% of your signs the annual cost would be as high as $65,000. But if you only have to replace 75% of your signs, the cost would be $49,000 per year.
- Consider reducing your inventory of signs.

* Replacement costs include sign blank, sheeting material, sign posts, and installation.
** See A-4 for exceptions
Constant 2010 $
Financial Budgeting – Cities under 5,000 Population (2/3)

- After the initial investment in upgrading your signs, you also need to consider Annual Maintenance and beginning the on-going replacement of signs to address maintaining minimum levels of retroreflectivity.

- Annual maintenance consists of:
 - Replacing sign faces that have been damaged by vandalism (paint balls, etc) and mother nature (tree sap, water damage, the sun)
 - Repairing knock downs
 - The North Carolina State University\(^1\) report found that approximately 4% of sign faces sustained damage that required replacement
 - In the typical small city this sign face damage results in annual costs of

 \[
 \text{50 miles x 25 (Reg. & Warning) signs per mile x $200 per sign x 4\%} = $10,000
 \]
 \[
 \text{50 miles x 6 (Guide) signs per mile x $250 per sign x 4\%} = $3,000
 \]
 \[
 \text{Total} = $13,000 \text{ per year}
 \]
 - No estimate of sign knockdowns has been determined, but a conservative estimate would be 1%. At this rate repairing knock downs would cost approximately $3,250 per year

1 Harris, Road Sign Deterioration and Management, North Carolina State University, 2006 Constant 2010 $
If the typical small city selects the blanket replacement method and planned to replace 1/12 of the signs each year, the annual cost would be approximately $27,100.

If you are interested in reducing your sign maintenance costs - consider reducing the number of signs in your inventory. (See Part D)

Initial Upgrade - 100% replacement over 5 year (Regular and Warning - $50,000/year) and 8 year (Guide - $9,400/year) period.

Total Annual Cost = $43,350/year

Blanket Replacement Cost = $27,100/year

Sign Face Vandalism Cost = $13,000/year

Sign Knock Down Cost = $3,250/year

*Constant 2010 $
A typical large city has approximately 200 miles of city streets with an average of 25 regulatory and warning signs per mile plus 6 guide signs per mile (both directions).

A typical cost for replacing the regulatory and warning signs is $200 per sign* and $250 per sign* for the guide (street name) signs.

The total cost to upgrade/replace ALL of the signs in a typical large city would be:

\[\text{Cost} = (25 \text{ signs/mile} \times 200 \text{ miles}) \times 200 \text{ signs/mile} \times 200 \text{ signs/mile} \times 6 \text{ signs/mile} \times 250 \text{ signs/mile} \times 250 \text{ signs/mile} \]

\[= 1,300,000 \]

All** Regulatory, Warning and Ground Mounted Guide signs must meet retroreflectivity requirements by January 2015.

The rest of your signs (Overhead Guide and Street Names) must meet the retroreflectivity requirements by January 2018.

If you have to replace 100% of your signs the annual cost would be as high as $260,000. But if you only had to replace 75% of your signs, the cost would be $195,000 per year.

Consider reducing your inventory of signs

* Replacement costs include sign blank, sheeting material, sign posts, and installation.
** See A-4 for exceptions

Constant 2010 $
Financial Budgeting – Cities over 5,000 Population (2/3)

After the initial investment in upgrading your signs, you also need to consider Annual Maintenance and beginning the ongoing replacement of signs to address maintaining minimum levels of retroreflectivity.

Annual maintenance consists of:
- Replacing sign faces that have been damaged by vandalism (paint balls, etc) and mother nature (tree sap, water damage, the sun)
- Repairing knock downs
- The North Carolina State University\(^1\) report found that approximately 4% of sign faces sustained damage that required replacement
 - In the typical large city this sign face damage results in annual costs of
 - 200 miles x 25 (Reg. & Warning) signs per mile x $200 per sign x 4% = $40,000
 - 200 miles x 6 (Guide) signs per mile x $250 per sign x 4% = $12,000
 - No estimate of sign knockdowns has been determined, but a conservative estimate would be 1%. At this rate repairing knock downs would also cost approximately $13,000 per year

\(^1\) Harris, Road Sign Deterioration and Management, North Carolina State University, 2006

Constant 2010 $
If the typical large city selects the blanket replacement method and planned to replace 1/12 of the signs each year, the annual cost would be approximately $108,000.

If you are interested in your sign maintenance costs – consider reducing the number of signs in your inventory.

Initial Upgrade - 100% replacement over 5 year (Reg. and Warning - $200,000/year) and 8 year (Guide - $380,000/year) period.

Total Annual Cost = $173,000/year

Blanket Replacement Cost = $108,000/year

Sign Face Vandalism Cost = $52,000/year

Sign Knock Down Cost = $13,000/year

*Constant 2010 $
Financial Budgeting – Counties (1/3)

- A typical county highway system consists of approximately 500 miles of rural roadways with an average of 20 traffic signs per mile (both directions).
- A typical sign replacement cost is $200 per sign*.
- The total cost to upgrade/replace signs in a typical County would be:

\[
500 \text{ miles} \times 20 \text{ signs/mile} \times $200/\text{sign} = $2,000,000
\]

\[
100\% \text{ of signs} = $400,000
\]

\[
75\% \text{ of signs} = $300,000
\]

- All** Regulatory, Warning and Ground Mounted Guide signs must meet retroreflectivity requirements by January 2015.
- The rest of your signs (Overhead Guide and Street Names) must meet the retroreflectivity requirements by January 2018. If you have to replace 100% of your signs, the annual cost would be $400,000 per year.
- But if you only have to replace 75% of your signs, the cost would be $300,000 per year.
- Another strategy to consider in an effort to reduce your costs - reduce your inventory of signs.

* Replacement costs include sign blank, sheeting material, sign posts, and installation.
** See A-4 for exceptions
Constant 2010 $
A typical Minnesota County has 500 miles of roadway and a sign density of 20 traffic signs per mile.

It was previously determined that if the typical county decided to replace all of their signs and began in 2010, they would have to spend $400,000 per year over the 5 year period 2010 to 2015.

However, after your initial investment you also need to consider annual maintenance and beginning the on-going replacement of signs to address maintaining minimum levels of retroreflectivity.

Annual maintenance consists of:
- Replacing sign faces that have been damaged by vandalism (paint balls & fire arms), or good old Mother Nature (tree sap & water damage).
- Repairing knock downs
- A report prepared by North Carolina State University¹ found that approximately 4% of signs along their rural secondary system sustained damage to sign faces that required replacement.
 - In the typical Minnesota County, this sign face damage results in annual costs of:
 - 500 Miles x 20 Signs/Mile x $200/Sign x 4% = $80,000/year
- Based on an inventory of signs replaced in Sibley County, it is estimated that approximately 1% of signs sustained damages from knockdowns.
 - In the typical Minnesota County, repairing sign knock downs results in annual costs of:
 - 500 Miles x 20 Signs/Mile x $200/Sign x 1% = $20,000/year

¹ Harris, Road Sign Deterioration and Management, North Carolina State University, 2006
Constant 2010 $
If the typical Minnesota County chose the blanket replacement method and planned to replace 1/12 of the signs each year (based on 12 year warranty period), the annual cost would be:
500 Miles x 20 Signs/Mile x $200/Sign x 1/12 = $167,000/year

If you are interested in reducing your sign maintenance costs – consider reducing the number of signs in your inventory (see Part D).

Initial Upgrade - 100% replacement over 5 year period ($400,000/year)

Total Annual Cost = $267,000

Sign Face Vandalism Cost = $80,000/year

Blanket Replacement Cost = $167,000/year

Sign Knock Down Cost = $20,000/year

*Constant 2010 $
Financial Budgeting – Summary

- You probably found these suggested levels of investments necessary to maintain your inventory of signs as shocking as we did.
- These levels are likely to be 10 to 20 times more than you have previously spent.
- Please don’t walk away from this issue and either do nothing or merely continue on with your previous levels of replacement – from a risk management perspective, the stakes are too high.
- The only part of the cost formula that you can control is the size of your inventory.
- It appears that the best way to reduce your sign maintenance costs is to reduce the size of your inventory and that will require removing some signs.
- It also appears that the best way to manage your risk when removing signs is to bring your actions under two umbrella’s of immunity (from liability)
 - Discretionary Immunity - policy driven
 - Official Immunity - exercise of engineering judgement
- Intrigued? Please continue…
Part D – Policy Development

Policy Development ... D-1
Example Policy Outline – Sign Maintenance ... D-2
Model Sign Maintenance Policy .. D-3
Example Policy Outline – Snow Plowing ... D-4
Example Signing Policy – City of Eagan, MN .. D-5
Example Signing Policy – Rural County ... D-6
Case Study #1: Monnens vs. City of Orono .. D-7 to D-9
Policy Development

- Guides maintenance and inspection efforts
- Provides direction/information to staff
- Establishes procedures
- Sets priorities
- Supports Statutory Discretionary Immunity

- The League of Minnesota cities encourages their members to develop and adopt a variety of policies relative to municipal maintenance activities.

- The League cites five specific benefits associated with policy development:
 1. Guiding allocation of resources
 2. Provide direction to staff
 3. Establish the procedures to be followed
 4. Sets priorities
 5. Supports establishing discretionary immunity

- The League has developed a number of model policies – check out: www.lmc.org

- One caution – work with your agency’s attorney when developing a policy.
Example Policy Outline – Sign Maintenance

- Introduction
- Adopted Maintenance Method
- Recurring Schedule
- Field Inventory
- Classification of Roads to be Included
- Sign Removal/Sign Retention
- Financial Considerations
- ...
- ...
- ...
- ...
- Deviation from Policy
- Review and Modification of Policy

STAY TUNED - The League of Minnesota Cities has recently undertaken a process to prepare a sample policy for sign maintenance.
Please check their website: www.lmc.org

The Minnesota Association of Townships is another resource for policy information.
Please check their website: www.mntownships.org
Model Sign Maintenance Policy

- Which sign maintenance method is adopted? (Blanket Replacement - replace 1/12 of signs/year)
- Which **Roads** are to be covered by the policy?
 - All
 - Low Volume
 - Roadway Classifications
 - Residential
 - Collector
 - Minor Arterial
 - Principal Arterial
- Which **Signs** are to be covered by the policy?
 - All
 - Regulatory
 - Warning
 - Guide
 - All signs must conform to MNUUTCD

- What is the **Objective** of the policy?
 - Document the maintenance method
 - Exclude certain types of signs from usage (Not Required, Not Effective, i.e. No warning signs on residential streets, speed limit signs only on collectors and arterials, no marked pedestrian crossings at uncontrolled intersections, etc.)

- What **Actions** are required to implement the policy?
 - Inventory
 - Sign Replacement
 - Sign Removal
 - Engineering Study
 - Notification of Decisions/Actions
 - Sign Sheeting Material
 - Establish Budget

The following pages provide examples of a snow plowing policy, signing policy for the City of Eagan and a signing policy for a rural county. Additional examples can be found in the appendix.
Example Policy Outline – Snow Plowing

Example Snowplow Policy Outline

- Introduction
- When will city start snow or ice control operations?
- How will snow be plowed?
- Snow Removal
- Priorities and schedule for which streets will be plowed
- Work schedule for snowplow operators
- Weather conditions
- Use of sand, salt, and other chemicals
- Sidewalks
- Deviation from Policy
- Review and modification of Policy

NOTE: The League of Minnesota Cities Snow Plowing Policy is included because a “best practice” sign maintenance policy has not been developed and because it provides an example of a policy generated through the League’s process.
Example Signing Policy – City of Eagan, MN

IV. SIGN MAINTENANCE

Sign Maintenance

A. Sign Installation: Signs will be installed and maintained to meet federal standards and local practices.

B. Minor Signing, Overall Responsibility: Eagan sign maintenance practices are established utilizing a combination of expected life cycle replacement of signs with calibration review and nighttime sign examinations.

C. City of Eagan has maintained a field sign inventory database in the form of a high management system (HMS) since 1993. The city is currently analyzing the database to determine the best approach to meet Federal Sign Retro-reflectivity Standards.

D. Sign Maintenance Responsibility: Maintain signs and street identification signs on all City of Eagan roadways (agency-specific name) highways, with the exception of:

- Signage on approaches to county highways are not installed or maintained by the City. Street names and stop signs along county highways, unless specifically agreed to by the City of Eagan.

E. Response to Incident Report for Sign Repair Needs: Sign maintenance staff will repair after receiving notice of a repair need to determine appropriate repairs.

F. Sign replacement consists of field inspections:

G. Miscellaneous Sign Practices:

H. Signs, Traffic Signals, Pavement Marking & Retro-reflectivity Policy

March, 2010

D-5

MINNESOTA’S BEST PRACTICES FOR TRAFFIC SIGN MAINTENANCE/MANAGEMENT HANDBOOK

OCTOBER 2010
Example Signing Policy – Rural County

The ________________ County Highway Department will complete a daytime inspection, twice a year, for traffic signs along the county roads, and complete E-911 daytime inspection once a year. In the process of “Maintaining Traffic Retroreflectivity” the County will use the Expected Sign life method and replace the traffic sign as follows:

<table>
<thead>
<tr>
<th>Material Grade</th>
<th>From Installation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering</td>
<td>8 Years</td>
</tr>
<tr>
<td>HI or HIP</td>
<td>10 Years (South Facing)</td>
</tr>
<tr>
<td></td>
<td>11 Years (East/West Facing)</td>
</tr>
<tr>
<td></td>
<td>12 Years (North Facing)</td>
</tr>
<tr>
<td>VIP or DG3</td>
<td>10 Years (South Facing)</td>
</tr>
<tr>
<td></td>
<td>11 Years (East/West Facing)</td>
</tr>
<tr>
<td></td>
<td>12 Years (North Facing)</td>
</tr>
<tr>
<td>E-911 Signing (HIP)</td>
<td>12 Years</td>
</tr>
<tr>
<td>E-911 Signing (DG3)</td>
<td>15 Years</td>
</tr>
</tbody>
</table>

Signs requested to be placed within the right of way, along the county roadway, must meet the requirement of the MNMUTCD and have the ________________ County Highway Engineer’s approval. (See Signing Request Policy)
In 2001, the City of Orono adopted a Community Management Plan that codified the City’s desire to maintain the natural, wooded private residential nature of the community and to provide that virtually all city streets be low volume, low speed roadways.

The Plan also identified general design (paved roads, narrow gravel shoulders, no curb and gutter and no traffic control devices that are NOT required by MNMUTCD) and maintenance practices (tree removal and trimming limited to sight line maintenance for motorists) intended to support the preservation of the natural, rural, residential character of the City.

In May 2001, Kristal Monnens was killed in a single vehicle crash that occurred along one of the local roads - North Arm Drive.
The vehicle in which Ms. Monnens was a passenger was drag racing and was estimated exceeding 60 mph. When the vehicle failed to negotiate a curve to the left, it veered off the roadway and collided with a tree.

The expert for the plaintiffs testified that Orono’s failure to place a curve warning sign was the primary cause of the crash and was evidence of the City’s negligence because the MNMUTCD required the use of the warning sign.

The City argued summary judgement - dismissal of the lawsuit based on three key facts.

- First, the City’s Community Management Plan specifies that in order to support the rural, residential nature of their local roads, traffic control devices that are NOT required will NOT be used.
- Second, none of the horizontal alignment series of warning signs are required (a SHALL condition) by the MNMUTCD - they are all optional signs that may be used based on engineering judgement.
- The City had consistently avoided the use of warning signs along their local roads.
Case Study #1: Monnens vs. City of Orono (3/3)

- Minnesota tort law provides for Discretionary Immunity where actions are found to be consistent with policies enacted by the highest decision making body of an organization (City Council, County Board, etc.) AND where there is evidence that the body considered social and economic issues.

- The Court issued the Summary Judgement – agreed that curve warning signs are **NOT** required and that the action (of not installing the curve warning sign) was consistent with the city’s ordinance and was in fact covered by Discretionary Immunity.

**LESSON LEARNED** ➔ The establishment of ordinances and/or policies that restrict the use of traffic control devices are a proven method for managing risk associated with actions that are consisted with the adopted ordinances.
Part E – Implementation

- Process Chart – Implementation.. E-1
- Sign Inventory .. E-2
- Sign Inventory – Pencil & Paper .. E-3
- Sign Inventory – Software ... E-4
- Engineering Study Process ... E-5 to E-6
- Engineering Study / MNMUTCD Guidance E-7 to E-9
- Engineering Study / System Consideration Example - Rural Curves........ E-10 to E-11
- Engineering Study / System Consideration Example - Urban & Rural Low Volume..... E-12
- MNMUTCD Guidance... E-13 to E-15
- Regulatory Sign Usage ... E-16 to E-18
- Warning Sign Usage .. E-19 to E-22
- Guide Sign Usage ... E-23 to E-25
- Low Volume Road Sign Usage... E-26 to E-28
- Which Signs are Required by the 2005 MNMUTCD?......................... E-29
- Case Study #2: Ireland vs. Lengsfeld and Carver County E-30 to E-32
Process Chart – Implementation

Sign Inventory

Engineering Study

Understand Basic Guidance in MNMUTCD

Understand Site Specific & System Characteristics

Understand Agency Policies & Procedures

Decide/Document

Implementation
Sign Inventory

- The first step in the Implementation process involves documenting the location, type, installation date, sheeting type, direction facing, sign post type, and condition of all the signs along your system – conduct a Sign Inventory.
 - There are 2 basic approaches:
 - Pencil & Paper
 - Commercially available software
- Both approaches require investing time and resources:
 - Time in the field collecting data
 - Time in the office analyzing data
- Which approach is best for your agency?
 - Probably depends on how many signs are in your system – if you only manage a small system with relatively few signs, it probably wouldn’t be worth the expense associated with buying software, attending training, and spending time in the field.
- These are examples of traffic sign inspection sheets that would be used to conduct the field inventory of sign location, type and condition.
- The inventory sheets can be linked with GIS to create system sign maps.
- Data can be entered directly into spreadsheets in the field or back at the office.
Sign Inventory – Software

- There are many sign management software options available
- Two free versions include:
 - Signs Plugin offered by Utah LTAP
 www.utahltap.org
 - Roadway Sign Inventory & Management system offered by North Dakota LTAP
 www.ndltap.org/library/software.php
Engineering Study Process (1/2)

The MUTCD defines an Engineering Study as:
- The comprehensive analysis and evaluation of available information.
- The application of Principles, Standards and Guidance and practices contained in this Manual.
- For the purpose of making a decision about the application, design, operation or installation of a traffic control device.

The MUTCD also defines the requirements for individuals that are assigned the task of conducting the Engineering Study as:
- An engineer or staff working under the supervision of an engineer.
- Having knowledge of the procedures, policies and criteria established by the engineer.

These definitions clearly indicate:
- Trained professional staff should be making the decisions about the application and design of traffic control devices (as opposed to elected officials).
- The key steps in the study process include: understanding MNMUTCD basics, location/system characteristics, agency policies, and obtaining and evaluating information.
Engineering Study Process (2/2)

Understand Basic MNMUTCD Guidance:
- Objective’s of Traffic Control Devices
- Requirements to be Effective
- Engineering Study Process Usage
- Effectiveness

Understand:
- Specific Location Characteristics
- System Characteristics
- Agency Policies

Decide/Document:
- What is the Problem/Issue to be addressed?
 - Safety
 - Speed
 - Congestion
- Identify the applicable Guidelines
 - MNMUTCD
 - AASHTO
 - Mn/DOT
 - Local Agency
- Identify possible Alternatives
 - In virtually ALL cases there will be multiple choices
- Identify the evaluating Criteria
 - Effectiveness
 - Cost (first and ongoing maintenance)
 - Potential Impacts
 - Consistency
- Implementation
Engineering Study / MNMUTCD Guidance (1/3)

- **STANDARD**: The MNMUTCD describes the application of traffic control devices, but is not a legal requirement for their installation.

- The MNMUTCD provides Standards, Guidance, Options and Support for the design and application of traffic control devices. – It is **NOT** a substitute for engineering judgement.

- The MNMUTCD previously recommended that agencies **should** establish a process to provide and maintain reasonable nighttime sign visibility and legibility.
 1. **STANDARD** - a statement of required practice and the verb **SHALL** is used.
 2. **GUIDANCE** - a statement of recommended practice with deviations allowed based on engineering judgement. The verb **SHOULD** is used.
 3. **OPTION** - a statement of practice that is permissive. The verb **MAY** is used.
Purpose of Traffic Control Devices:
- Notify road users of regulations
- Provide warning and guidance needed for safe, uniform and efficient operation
- Any message not related to traffic control is prohibited

Basic Requirements of Effective Traffic Control Devices:
- Fulfill a need
- Command attention
- Convey a clear, simple message
- Command respect
- Give adequate time to respond
Use only where a need is indicated by engineering judgement or studies.

- REGULATORY signs give notice of traffic laws or regulations.
- WARNING signs give notice of situations that are not self-evident
- GUIDE signs provide information as to highway routes, directions, destinations, distances, services and points of interest.
- Signs are ordinarily not needed to confirm rules of the road.
On **Rural** roads a typical system consideration involves the use of curve warning signs. These signs are not required and a recent Mn/DOT research project\(^1\) found that about 80% of the curves in the sample selected for analysis had these signs in place. However, the usage was found to be inconsistent—some curves in each of the radius categories (0-500 feet, 500-1,000 feet, etc.) did not have the advance warning signs. It doesn’t appear that any particular set of criteria or strategy was used to identify at-risk curves.

The Mn/DOT report also noted that the curve warning signs appeared to have only a small effect on crashes and then only on curves in a fairly narrow range of radii. The advance warning signs between approximately 1,000 and 1,800 feet and chevrons at very short radius curves (be careful—very small sample size) appear to be effective.

The information in Mn/DOT’s report combined with the results from a Texas Transportation Institute Report\(^2\) suggest a possible new approach to systematically deploying warning signs at horizontal curves. Both reports indicate that the crash risk at curves is a function of radius—long radius curves have crash rates similar to the system average for rural roads, but as the radius decreases the crash rate increases.

1. Pitale, J., Shankwitz, C., Preston, H., Barry, M. Benefit/Cost Analysis of In-Vehicle Technologies and Infrastructure Modifications as a Means to Prevent Crashes Along Curves and Shoulders, Mn/DOT, December 2009
2. Texas Transportation Institute (FHWA/TX-07/0-5439-1)
A sample system curve warning policy could include:
- Curves > 2,000 foot radius (low crash risk/at system average crash rate) ➔ No advance warning signs
- Curves between 1,500 and 2,000 foot radii (moderate crash risk/2 x system crash rate) ➔ Advance warning sign
- Curves < 1,500 foot radius (high crash risk/5 x system average crash rate & 90% of fatal road departure crashes) ➔ Advance warning signs and Chevrons

To support ANY system wide approach to consistently sign curves, an inventory of your curves is required including estimating either the radius or degree of curvature (Radius = 5729.6/Degree of Curve).

It is NOT necessary to have a precise measurement of the radius of every curve - the curve research in Minnesota estimated curve radii using measurements from aerial photography. Other methods could include using as-built plans, county maps, information for a county surveyor or the measuring feature on Google Earth.
On urban and rural low volume roads, a typical system consideration involves the use of STOP signs, particularly at low volume residential intersections.

A casual drive around the Minneapolis/St. Paul metropolitan area reveals that STOP signs are regularly used at low volume intersections where there is rarely a need to actually stop.

This overuse of STOP signs is likely contributing to the fact that only around 20% of the people actually stop.

Studies of low volume intersections by Texas Transportation Institute¹ and Iowa State University² found that increasing levels of intersection control at these low volume locations does NOT improve safety.

The MNMUTCD also advises against using STOP signs for speed control–because there is no proof of effectiveness.

It appears that the bottom line relative to the use of STOP signs at low volume intersections is:

- STOP signs are not required
- STOP signs are not a safety device
- STOP signs have been deployed at many locations where we do not mean stop and as a result only about 20% of drivers actually stop

All of this suggests developing a systemwide STOP sign policy that:

- Limits the deployment to locations where your judgement indicates that there is a need to stop (residential streets intersecting with collectors, collectors with minor arterials, etc.).
- Prohibits the deployment (or calls for the removal of existing STOP signs) at locations where there is no need to stop (low volume residential intersections).

The research clearly indicates that at low volume intersections, there are NO safety benefits associated with increasing the level of intersection control; uncontrolled intersections have the lowest frequency of crashes and the highest function of intersections with no crashes.

If your agency is uncomfortable with the notion of uncontrolled intersections, consider the use of YIELD signs—compared to STOP signs they have a lower crash frequency, a higher fraction of intersections without crashes and would be more consistent with actual driver behavior.

² Guidelines for Removal of Traffic Control Devices in Rural Areas, Center for Transportation Research and Education and Iowa State University, October 2005.
The MNMUTCD identifies suggested sign mounting heights and lateral offsets.

These are suggestions - but, be careful! Some experts have been known to say that these are standards that must be followed.

Ground-mounted sign supports shall be breakaway, yielding, or shielded with a longitudinal barrier or crash cushion if within the clear zone.

Do you know how your signs measure up?
The MNMUTCD also includes examples for locations for signs at intersections.
MNMUTCD Guidance (3/3)

<table>
<thead>
<tr>
<th>Condition A: Speed Reduction and Lane Changing in Heavy Traffic (feet)</th>
<th>Minimum Advance Placement Distance¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condition B: Deceleration to the listed advisory speed (MPH) for the condition</td>
<td></td>
</tr>
<tr>
<td>0² (feet)</td>
<td>10³ (feet)</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>20</td>
<td>225</td>
</tr>
<tr>
<td>25</td>
<td>325</td>
</tr>
<tr>
<td>30</td>
<td>450</td>
</tr>
<tr>
<td>35</td>
<td>550</td>
</tr>
<tr>
<td>40</td>
<td>650</td>
</tr>
<tr>
<td>45</td>
<td>775</td>
</tr>
<tr>
<td>50</td>
<td>875</td>
</tr>
<tr>
<td>55</td>
<td>975</td>
</tr>
<tr>
<td>60</td>
<td>1125</td>
</tr>
<tr>
<td>65</td>
<td>1200</td>
</tr>
<tr>
<td>70</td>
<td>1275</td>
</tr>
<tr>
<td>75</td>
<td>1375</td>
</tr>
</tbody>
</table>

Notes:

1. The distances are adjusted for a sign legibility distance of 175 ft, which is the appropriate legibility distance for a 5 inch Series D word legile. The distances may be adjusted by deducting another 100 feet if alignment symbol signs are used. Adjustments may also be made for grades, limited sign distance, or pavement condition.

2. Typical conditions are locations where the road user might use extra time to adjust speed and change lanes in heavy traffic because of a complex driving situation. A typical sign is Right Lane Ends. The distances are based on the 2001 AASHTO Policy, Exhibit 3-3, Decision Sight Distance, Avoidance Maneuver E, providing the driver a PIEV Maneuver time of 14.0 to 14.5 seconds minus the sign legibility distances of 175 feet.

3. Typical condition is the warning of a potential Stop situation. Typical signs are Stop Ahead, Yield Ahead, Signal Ahead and intersection Warning signs. The distances are based on the 2001 AASHTO Policy, Equation 3-2, providing the driver a PIEV time of 2.5 seconds, a deceleration rate of 8.1 ft/second² minus the sign legibility distance of 175 ft.

4. Typical conditions are where the road user must decelerate to the advised speed to maneuver through the warned condition. Typical signs are Turn, Curve, Reverse Turn, or Reverse Curve combined with an Advisory Speed sign. The distances are based on the 2001 AASHTO Policy, Equation 3-2, providing the driver a PIEV time of 2.5 seconds a deceleration rate of 8.1 ft/second² minus the sign legibility distance of 175 ft.

5. No suggested minimum distances are provided for these speeds, as placement location is dependent on site conditions and other signing to provide an adequate advance warning for the driver.

Source: MNMUTCD, May 2005

- This table provides Guidelines for the advance placement of Warning Signs.

- For example:
 - If you are on a 65 mph rural expressway and want to place a curve warning sign in advance of a 50 mph curve - the suggested distance is 300 feet.
 - If you are on a 55 mph rural two-lane and want to place a STOP AHEAD sign - the suggested distance is 450 feet.
Regulatory Sign Usage (1/3)

- These are examples of Regulatory signs described in the MNMUTCD.
- Regulatory signs notify drivers of the rules of the road.

<table>
<thead>
<tr>
<th>Sign Number</th>
<th>Sign Picture</th>
<th>Sign Colors</th>
<th>Sign Size Metric (millimeters)</th>
<th>Sign Size English (inches)</th>
<th>Use</th>
<th>Manual Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1-1</td>
<td></td>
<td>White on Red</td>
<td>450 x 450</td>
<td>18 x 18</td>
<td>B</td>
<td>2B.4,5,6,7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>600 x 600</td>
<td></td>
<td>24 x 24</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>750 x 750</td>
<td></td>
<td>30 x 30</td>
<td>M</td>
<td>5B.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>900 x 900</td>
<td></td>
<td>36 x 36</td>
<td>CR</td>
<td>8B.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1200 x 1200</td>
<td></td>
<td>48 x 48</td>
<td>E</td>
<td>9B.3</td>
</tr>
<tr>
<td>R1-2</td>
<td></td>
<td>White on Red</td>
<td>450</td>
<td>18</td>
<td>B</td>
<td>2B.8,9,10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>750</td>
<td></td>
<td>30</td>
<td>M</td>
<td>5B.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>900</td>
<td></td>
<td>36</td>
<td>CR</td>
<td>8B.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1200</td>
<td></td>
<td>48</td>
<td>E</td>
<td>9B.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1500</td>
<td></td>
<td>60</td>
<td>F</td>
<td>10C.4</td>
</tr>
<tr>
<td>R1-2a</td>
<td></td>
<td>Black on White</td>
<td>450 x 450</td>
<td>24 x 18</td>
<td>CR</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>600 x 450</td>
<td></td>
<td>36 x 30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>900 x 750</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1200 x 900</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R1-3</td>
<td></td>
<td>White on Red</td>
<td>300 x 150</td>
<td>12 x 6</td>
<td>CR</td>
<td>2B.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>600 x 300</td>
<td></td>
<td>24 x 12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R1-4</td>
<td></td>
<td>White on Red</td>
<td>450 x 150</td>
<td>18 x 6</td>
<td>CR</td>
<td>2B.4</td>
</tr>
<tr>
<td>R1-6b</td>
<td></td>
<td>Black on White and Fluorescent Yellow-Green</td>
<td>300 x 900</td>
<td>12 x 36 (post mounted)</td>
<td>CR</td>
<td>2B.12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>300 x 1120</td>
<td></td>
<td>12 x 44 (without mounting flange)</td>
<td></td>
<td>7B.9</td>
</tr>
<tr>
<td>R1-X1</td>
<td></td>
<td>Black on White</td>
<td>600 x 750</td>
<td>24 x 30</td>
<td>CR</td>
<td>2B.45</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2B.56</td>
</tr>
<tr>
<td>R1-X2</td>
<td></td>
<td>Black on White</td>
<td>600 x 450</td>
<td>24 x 18</td>
<td>CR</td>
<td>2B.4.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>750 x 600</td>
<td></td>
<td>30 x 12</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>900 x 900</td>
<td></td>
<td>36 x 18</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>R2-1</td>
<td></td>
<td>Black on White</td>
<td>600 x 750</td>
<td>24 x 30</td>
<td>CR</td>
<td>2B.11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>900 x 1200</td>
<td></td>
<td>36 x 48</td>
<td>E</td>
<td>5B.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1200 x 1500</td>
<td></td>
<td>48 x 60</td>
<td>F</td>
<td>7B.11</td>
</tr>
</tbody>
</table>
Regulatory Sign Usage (2/3)

- This is a more comprehensive list of the Regulatory signs found in Part 2B of the MnMUTCD.
- An all too frequent response to the question – why did your agency install a particular sign is – the MnMUTCD required the installation.

Part 2B - Regulatory Signs

- Road/Bridge/ Sidewalk Closed
- Pedestrian Crossing
- Speed Limits
- Pass With Care
- Do Not Enter
- All Way (Stop) Plaque
- Slow Traffic Keep Right
- Divided Highway
- Turn Prohibition
- Intersection Lane Control
- STOP & Yield
- State Law Signs
- Two-Way Left Turn Lane
- Wrong Way
- Speed Reduction
- Right/Left Turn Lane
- Weight Limits
- Cross Traffic Does Not Stop
- No Parking
- Begin/End One-Way
- Advance Intersection Lane Control
- End Speed Zone
- Keep Right
- Stop For Peds In Crosswalk
- Keep Off Median
- One Way
- Do Not Pass
- Traffic Signal (Clarifications)

Let’s determine which Regulatory signs are in fact required.
Understand the difference in the levels of guidance provided in the MNMUTCD.

In the category – Regulatory Signs – the only signs that are required are:

- Speed Limits (if in an established speed zone)
- ONE WAY / DO NOT ENTER
- Turn Prohibitions
- ALL-WAY STOP supplementary plaque

All other Regulatory signs may be used based on your agencies policies, system considerations, and the results of an engineer (or their designated representative) exercising their judgement.

This is not an error – STOP signs are NOT required. The MNMUTCD states that STOP signs SHOULD be used based on the results of an engineering study and that one of the suggested applications should be at a street entering a “through highway.” Minnesota Statute §169.30 says that the through highway is generally the approach with the highest traffic flow. Minnesota Statute §169.30 also says that normally it is desirable to erect STOP signs at all public entrances to highways.

<table>
<thead>
<tr>
<th>STANDARD (Shall)</th>
<th>GUIDANCE (Should)</th>
<th>OPTION (May)</th>
<th>SUPPORT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed Limits</td>
<td>Stop</td>
<td>Yield</td>
<td>No Parking</td>
</tr>
<tr>
<td>One Way Do Not Enter</td>
<td>Road/Bridge/Sidewalk Closed</td>
<td>Slower Traffic Keep Right</td>
<td>End Speed Zone</td>
</tr>
<tr>
<td>Turn Prohibition</td>
<td>Pass With Care</td>
<td>Wrong Way</td>
<td></td>
</tr>
<tr>
<td>All Way (Stop)</td>
<td>Intersection Lane Control</td>
<td>Cross Traffic Does Not Stop</td>
<td></td>
</tr>
<tr>
<td>Supplementary Plaque</td>
<td>Two-Way Left Turn Lane</td>
<td>Advance Intersection Lane Control</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Right/Left Turn Lane</td>
<td>Stop For Peds In Cross Walk</td>
<td></td>
</tr>
<tr>
<td>State Law Signs</td>
<td>Do Not Pass</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speed Reduction</td>
<td>Keep Off Median</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Traffic Signal</td>
<td>Pedestrian Crossing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Clarifications)</td>
<td>Weight Limits</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Begin/End One-Way</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Divided Highway</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Keep Right</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
These are examples of warning signs described in the MnMUTCD.

Warning signs are to provide drivers with notice of conditions that are not readily apparent.

<table>
<thead>
<tr>
<th>Sign Number</th>
<th>Sign Picture</th>
<th>Sign Colors</th>
<th>Sign Size (meters)</th>
<th>Use</th>
<th>Manual Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>W9-1</td>
<td>Black on Yellow</td>
<td>600 x 600</td>
<td>24 x 24</td>
<td>M</td>
<td>2C.33</td>
</tr>
<tr>
<td>W9-2 (R or L)</td>
<td>Black on Yellow</td>
<td>750 x 750</td>
<td>30 x 30</td>
<td>CR</td>
<td>5F.46</td>
</tr>
<tr>
<td>W10-1</td>
<td>Black on Yellow</td>
<td>450 x 450</td>
<td>18 x 18</td>
<td>B</td>
<td>5F.3</td>
</tr>
<tr>
<td>W10-1a</td>
<td>Black on Yellow</td>
<td>600 x 300</td>
<td>24 x 12</td>
<td>CR</td>
<td>8B.5</td>
</tr>
<tr>
<td>W10-2 (R or L)</td>
<td>Black on Yellow</td>
<td>450 x 450</td>
<td>18 x 18</td>
<td>B</td>
<td>5F.3</td>
</tr>
<tr>
<td>W10-3 (R or L)</td>
<td>Black on Yellow</td>
<td>600 x 450</td>
<td>24 x 24</td>
<td>M</td>
<td>8B.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sign Number</th>
<th>Sign Picture</th>
<th>Sign Colors</th>
<th>Sign Size (meters)</th>
<th>Use</th>
<th>Manual Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>W10-4</td>
<td>Black on Yellow</td>
<td>600 x 600</td>
<td>24 x 24</td>
<td>M</td>
<td>5F.3</td>
</tr>
<tr>
<td>W10-5</td>
<td>Black on Yellow</td>
<td>750 x 750</td>
<td>30 x 30</td>
<td>CR</td>
<td>8B.4</td>
</tr>
<tr>
<td>W10-6</td>
<td>Black on Yellow</td>
<td>900 x 900</td>
<td>36 x 36</td>
<td>E</td>
<td>10C.15</td>
</tr>
<tr>
<td>W10-7</td>
<td>Black on Yellow</td>
<td>1200 x 1200</td>
<td>48 x 48</td>
<td>O</td>
<td>10C.15</td>
</tr>
<tr>
<td>W10-8</td>
<td>Black on Yellow</td>
<td>600 x 600</td>
<td>24 x 24</td>
<td>M</td>
<td>5F.3</td>
</tr>
<tr>
<td>W10-9</td>
<td>Black on Yellow</td>
<td>750 x 750</td>
<td>30 x 30</td>
<td>M</td>
<td>8B.4</td>
</tr>
<tr>
<td>W10-11</td>
<td>Black on Yellow</td>
<td>900 x 900</td>
<td>36 x 36</td>
<td>M</td>
<td>10C.15</td>
</tr>
<tr>
<td>W10-12</td>
<td>Black on Yellow</td>
<td>1200 x 1200</td>
<td>48 x 48</td>
<td>M</td>
<td>10C.15</td>
</tr>
</tbody>
</table>
Warning Sign Usage (2/4)

- This is a more comprehensive list of Warning Signs found in Part 2C of the MNMUTCD.

Part 2C - Warning Signs

- Hill
- Pavement Ends
- Dead End/No Outlet
- Horizontal Alignment
- Speed Bump/Hump
- Road/Bridge Narrows
- Next XX Miles Distance Plaque
- One Direction Large Arrow Divided Highway
- Slippery When Wet
- Chevron Alignment
- Prepare To Stop
- Advisory Speed Plaque
- Lane Ends
- Bump/Dip
- Railroad Crossing
- Two Direction Large Arrow
- No Passing Pennant
- Soft Shoulder
- Two-Way Traffic
- Advance Traffic Control (Limited Sight Distance)
- Added Lane
- Intersection Warning
- Cross Traffic Does Not Stop
- Playground
- Merge
- Advance Traffic Control (General Application)
- Low Clearance (Less Than 12 In. Above Legal Max. Height)
- Crossings (Pedestrians, Bicycles, Snowmobilers, etc.)

Which Warning Signs are required?
In the category – Warning Signs – the only signs that are required are:

- Railroad Crossing
- Low Clearance
- Advance Traffic Control (if sight distance to the device is limited or impaired)
- No Train Horn

All other Warning signs may be used based on your agencies policies, system considerations and the results of an engineer (or their designated representative) exercising their judgement.

<table>
<thead>
<tr>
<th>STANDARD (Shall)</th>
<th>GUIDANCE (Should)</th>
<th>OPTION (May)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Railroad Crossing</td>
<td>Hill</td>
<td>No Passing Pennant</td>
</tr>
<tr>
<td>Low Clearance (Less Than 12 In.</td>
<td>Road/Bridge Narrows</td>
<td>Horizontal Alignment</td>
</tr>
<tr>
<td>Above Legal Max. Height)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advance Traffic Control</td>
<td>Divided Highway</td>
<td>Next XX Miles Distance Plaque</td>
</tr>
<tr>
<td>(Limited Sight Distance)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No Train Horn</td>
<td>Bump/Dip</td>
<td>Advisory Speed Plaque</td>
</tr>
<tr>
<td>Pavement Ends</td>
<td>One Direction Large Arrow</td>
<td></td>
</tr>
<tr>
<td>Speed Bump/Hump</td>
<td>Chevron Alignment</td>
<td></td>
</tr>
<tr>
<td>Soft Shoulder</td>
<td>Dead End/No Outlet</td>
<td></td>
</tr>
<tr>
<td>Added Lane</td>
<td>Slippery When Wet</td>
<td></td>
</tr>
<tr>
<td>Lane Ends</td>
<td>Prepare To Stop</td>
<td></td>
</tr>
<tr>
<td>Two Direction Large Arrow</td>
<td>Crossings(Pedestrians, Bicycles,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Snowmobilers, Etc)</td>
<td></td>
</tr>
<tr>
<td>Two-Way Traffic</td>
<td>Merge</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cross Traffic Does Not Stop</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Playground</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Intersection Warning</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Advance Traffic Control</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(General Application)</td>
<td></td>
</tr>
</tbody>
</table>
Warning Sign Usage (4/4)

- Railroad Crossing Warning signs are required by the MNMUTCD.
- Various signs and guidelines have been established for various types of railroad crossings. A few scenarios include:
 - Parallel road is over 100 feet from crossing,
 - Parallel road is within 100 feet of crossing and intersecting road traffic must stop
 - Low ground clearance, and
 - Restricted storage distance when intersecting road must stop.
- For more information on Warning sign usage, refer to the Mn/DOT Office of Freight and Commercial Vehicle Operations website:
 - http://www.dot.state.mn.us/ofrw/railroads.html
Guide Sign Usage (1/3)

- These are examples of Guide signs described in the MNMUTCD.
- Guide signs identify and confirm the marked routes on State and local highway systems.

<table>
<thead>
<tr>
<th>Sign Number</th>
<th>Sign Picture</th>
<th>Sign Colors</th>
<th>Sign Size (millimeters)</th>
<th>Sign Size (inches)</th>
<th>Use</th>
<th>Manual Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1-1</td>
<td>94</td>
<td>White on Red and Blue</td>
<td>450 x 450</td>
<td>18 x 18</td>
<td>M</td>
<td>2D.11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>450 x 450</td>
<td>18 x 18</td>
<td>M</td>
<td>2E.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>550 x 450</td>
<td>22.5 x 18</td>
<td>CR</td>
<td>2E.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>600 x 600</td>
<td>24 x 24</td>
<td>CR</td>
<td>2E.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>750 x 600</td>
<td>30 x 24</td>
<td>CR</td>
<td>2E.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>900 x 900</td>
<td>36 x 36</td>
<td>E, F</td>
<td>2E.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1125 x 900</td>
<td>45 x 36</td>
<td>E, F</td>
<td>2E.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1200 x 1200</td>
<td>48 x 48</td>
<td>O</td>
<td>2E.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1500 x 1200</td>
<td>60 x 48</td>
<td>O</td>
<td>2E.25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sign Number</th>
<th>Sign Picture</th>
<th>Sign Colors</th>
<th>Sign Size (millimeters)</th>
<th>Sign Size (inches)</th>
<th>Use</th>
<th>Manual Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1-2</td>
<td>94</td>
<td>White on Green</td>
<td>450 x 450</td>
<td>18 x 18</td>
<td>M</td>
<td>2D.11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>450 x 450</td>
<td>18 x 18</td>
<td>M</td>
<td>2E.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>550 x 450</td>
<td>22.5 x 18</td>
<td>CR</td>
<td>2E.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>600 x 600</td>
<td>24 x 24</td>
<td>CR</td>
<td>2E.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>750 x 600</td>
<td>30 x 24</td>
<td>CR</td>
<td>2E.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>900 x 900</td>
<td>36 x 36</td>
<td>E, F</td>
<td>2E.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1125 x 900</td>
<td>45 x 36</td>
<td>E, F</td>
<td>2E.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1200 x 1200</td>
<td>48 x 48</td>
<td>O</td>
<td>2E.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1500 x 1200</td>
<td>60 x 48</td>
<td>O</td>
<td>2E.25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sign Number</th>
<th>Sign Picture</th>
<th>Sign Colors</th>
<th>Sign Size (millimeters)</th>
<th>Sign Size (inches)</th>
<th>Use</th>
<th>Manual Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1-4</td>
<td>61</td>
<td>White on Black</td>
<td>450 x 450</td>
<td>18 x 18</td>
<td>M</td>
<td>2D.11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>450 x 450</td>
<td>18 x 18</td>
<td>M</td>
<td>2E.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>550 x 450</td>
<td>22.5 x 18</td>
<td>M</td>
<td>2E.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>600 x 600</td>
<td>24 x 24</td>
<td>CR</td>
<td>2E.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>750 x 600</td>
<td>30 x 24</td>
<td>CR</td>
<td>2E.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>900 x 900</td>
<td>36 x 36</td>
<td>E, F</td>
<td>2E.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1125 x 900</td>
<td>45 x 36</td>
<td>E, F</td>
<td>2E.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1200 x 1200</td>
<td>48 x 48</td>
<td>O</td>
<td>2E.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1500 x 1200</td>
<td>60 x 48</td>
<td>O</td>
<td>2E.25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sign Number</th>
<th>Sign Picture</th>
<th>Sign Colors</th>
<th>Sign Size (millimeters)</th>
<th>Sign Size (inches)</th>
<th>Use</th>
<th>Manual Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1-5a</td>
<td>40</td>
<td>White and Gold on Blue</td>
<td>600 x 600</td>
<td>24 x 24</td>
<td>CR</td>
<td>2E.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>900 x 900</td>
<td>36 x 36</td>
<td>E, F</td>
<td>2E.25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sign Number</th>
<th>Sign Picture</th>
<th>Sign Colors</th>
<th>Sign Size (millimeters)</th>
<th>Sign Size (inches)</th>
<th>Use</th>
<th>Manual Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1-5b</td>
<td>40</td>
<td>White and Gold on Blue</td>
<td>450 x 450</td>
<td>18 x 18</td>
<td>M</td>
<td>2D.11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>550 x 450</td>
<td>22.5 x 18</td>
<td>M</td>
<td>2E.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>600 x 600</td>
<td>24 x 24</td>
<td>CR</td>
<td>2E.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>750 x 600</td>
<td>30 x 24</td>
<td>CR</td>
<td>2E.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>900 x 900</td>
<td>36 x 36</td>
<td>E, F</td>
<td>2E.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1125 x 900</td>
<td>45 x 36</td>
<td>E, F</td>
<td>2E.25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sign Number</th>
<th>Sign Picture</th>
<th>Sign Colors</th>
<th>Sign Size (millimeters)</th>
<th>Sign Size (inches)</th>
<th>Use</th>
<th>Manual Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1-6</td>
<td>44</td>
<td>White and Yellow on Blue</td>
<td>450 x 450</td>
<td>18 x 18</td>
<td>M</td>
<td>2D.11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>600 x 600</td>
<td>24 x 24</td>
<td>CR</td>
<td>2E.25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sign Number</th>
<th>Sign Picture</th>
<th>Sign Colors</th>
<th>Sign Size (millimeters)</th>
<th>Sign Size (inches)</th>
<th>Use</th>
<th>Manual Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1-4A</td>
<td>61</td>
<td>Black on White</td>
<td>450 x 450</td>
<td>18 x 18</td>
<td>M</td>
<td>2D.11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>450 x 450</td>
<td>18 x 18</td>
<td>M</td>
<td>2E.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>550 x 450</td>
<td>22.5 x 18</td>
<td>M</td>
<td>2E.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>600 x 600</td>
<td>24 x 24</td>
<td>CR</td>
<td>2E.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>750 x 600</td>
<td>30 x 24</td>
<td>CR</td>
<td>2E.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>900 x 900</td>
<td>36 x 36</td>
<td>E, F</td>
<td>2E.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1125 x 900</td>
<td>45 x 36</td>
<td>E, F</td>
<td>2E.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1200 x 1200</td>
<td>48 x 48</td>
<td>O</td>
<td>2E.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1500 x 1200</td>
<td>60 x 48</td>
<td>O</td>
<td>2E.25</td>
</tr>
</tbody>
</table>
This is a more comprehensive list of Guide Signs found in Part 2E of the MNMUTCD.

Part 2E - Guide Signs
- Confirming Assemblies
- Street Names
- County Name Marker
- City Name Marker
- Junction Assembly (Jct US 63)
- Route Numbers (On All Numbered Highways)
- Destination and Distance
- Reference Location (Mile Markers)
- Advance Route Turn Assembly

Which Guide signs are required?
In the category – Guide Signs – the only signs that are required are:

- Route Numbers (on all numbered highways)
- Junction Assembly (i.e., Jct US 63)
- Advance Route Turn Assembly

<table>
<thead>
<tr>
<th>STANDARD (Shall)</th>
<th>GUIDANCE (Should)</th>
<th>OPTION (May)</th>
<th>SUPPORT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Route Numbers (On All Numbered Highways)</td>
<td>Street Names</td>
<td>Reference Location (Mile Markers)</td>
<td>Destination and Distance</td>
</tr>
<tr>
<td>Junction Assembly (Jct US 63)</td>
<td></td>
<td>City Name Marker</td>
<td>Confirming Assemblies</td>
</tr>
<tr>
<td>Advance Route Turn Assembly</td>
<td></td>
<td></td>
<td>County Name Marker</td>
</tr>
</tbody>
</table>
Low Volume Road Sign Usage (1/3)

- For the first time in the 2000 MUTCD, FHWA acknowledged that the typical driver on most low volume roads is different – most likely local residents that need less information about traffic regulations, unexpected conditions or guidance to destinations, thus allowing for the use of fewer signs.
- If your agency has jurisdiction over “Low Volume Roads”, there are even fewer usage requirements.
 - No Regulatory or Guide signs are required – a variety may be used based on engineering judgement
 - Four types of Warning signs are required – Advanced Traffic Control (i.e., STOP AHEAD if sight distance is limited), Vertical Clearance, Railroad Crossing signs and MINIMUM MAINTENANCE ROADS.

- Low Volume Roads are defined in Minnesota Statute § 160.095 as:
 - Having fewer than 400 vehicles per day
 - Not being on a designated State system
 - Outside of built up areas of cities or towns
 - Roads may be paved or unpaved

<table>
<thead>
<tr>
<th></th>
<th>STANDARD (Shall)</th>
<th>GUIDANCE (Should)</th>
<th>OPTION (May)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regulatory Signs</td>
<td>STOP YIELD Traffic Movement Traffic Prohibition</td>
<td>STOP YIELD Traffic Movement Traffic Prohibition</td>
<td>Speed Limit No Parking</td>
</tr>
<tr>
<td>Warning Signs</td>
<td>STOP Ahead (Limited Sight Distance) YIELD Ahead (Limited Sight Distance) Vertical Clearance Rail Grade Crossing Rail Advance Warning No Train Horn MINIMUM MAINTENANCE ROAD</td>
<td>ONE LANE BRIDGE Crossings (vehicles)</td>
<td>Horizontal Alignment Intersections Narrow Bridge Hill PAVEMENT ENDS Crossings (Pedestrians) Advisory Speed Plate DEAD END/NO OUTLET</td>
</tr>
<tr>
<td>Guide Signs</td>
<td></td>
<td></td>
<td>Destinations</td>
</tr>
</tbody>
</table>
Low Volume Road Sign Usage (2/3)

- Minimum Maintenance roads provide two benefits to Townships:
 - These roads may be maintained at a lower level than other township roads.
 - The township, its officers and employees have protection from liability on issues related these roads.

- These benefits only apply to Minimum Maintenance roads that were properly established and have the necessary signs.

- For a township to designate a road as being Minimum Maintenance, the township board must find the road to be used “only occasionally or intermittently for passenger or commercial travel.”

- Roads with homes should not be considered due to concerns about access by school buses, postal carriers and emergency responders.
Low Volume Road Sign Usage (3/3)

- We have established that most township roads likely meet the definition of Low Volume Roads, as a result very few signs (four types of Warning signs) are considered required.
- We’ve also established that the average annual sign maintenance cost for a typical township would be approximately $3,600 to $5,400 per year.
- If townships are unable to establish this level of funding in their annual budget, consideration should be given to conducting a sign inventory and study then removing signs that are not required.
- The Federal Highway Administration has suggested that sign reductions in the range of 25% should be easily achieved without any adverse effect on safety.
- The idea of sign reduction has been discussed with a number of township officials and many have been skeptical. A common response involves perceived concerns about safety – the signs were installed to address safety, if they are taken down there will be an adverse effect. In reality, the general safety effect of most signs is not well documented (See Part F) and in particular the effect on low volume township roads has never been studied. However, the graph of fatal crashes on township roads in Minnesota indicates that the long-term trend line is flat – even after the last major township signing initiative in the mid 1980’s.
 - This suggests that replacing signs on low volume township roads that are primarily used by local drivers does not appear to be associated with improved safety.
Which Signs are Required by the 2005 MNMUTCD?

Regulatory

- Speed Limits **IF** a speed zone (other than a statutory limit) has been established.
- ONE-WAY & **DO NOT ENTER** where applicable.
- The ALL-WAY STOP plaque at All-Way Stops.
- Prohibition signs where applicable

Warning

- Rail Road Advance Warning and No Train Horn **IF** (if quiet zone established)
- Clearance **IF** clearance is less than 14′-6″ (12″ above the statutory minimum clearance height)
- Advance Traffic Control **IF** there is limited sight distance.
- Minimum Maintenance

Guide

- Route Numbers on ALL numbered highways
- Junction Assembly
- Advance Route Turn Assembly

Note: The determination as to which signs in the MUTCD are required is based on the 2005 version. Subsequent editions may result in additions to or deletions from the list.

- If you have Low Volume roads, only the Warning signs listed above are required.
- Bottom Line – out of the hundreds of signs contained in the MNMUTCD – 13 types of signs are actually required.
- This suggests that if you decide to put up a sign – most of the time that action will be based on exercising your judgement and NOT on the requirements in the MNMUTCD.
Case Study #2: Ireland vs. Lengsfeld and Carver County (1/3)

Background:
- Design
- Crash History
- Issues

Lessons Learned:
- Importance of Documentation
- Application of Doctrine of Official Immunity Applied to Traffic Engineering
Case Study #2: Ireland vs. Lengsfeld and Carver County (2/3)

Background
- 55 MPH Speed Limit
- Curve Warning Sign in Place
- Stop Ahead Sign in Place
- Rumble Strips in Place/Partially Filled
- Crash Occurred in the Middle of a Clear, Bright Summer Day

Crash History
- 2 Crashes per Year
- Crash Rate = 0.5 Crashes/Million Entering Vehicles
- Statewide Average = 0.6 Crashes/Million Entering Vehicles
- Critical Rate = 1.3 Crashes/Million Entering Vehicles

Issues
- No Speed Advisory on Curve Warning Sign
- No Distance Plaque on Stop Sign Ahead Sign
- Stop Ahead Sign at 750 Feet instead of 450 feet
- Maintenance of Rumble Strips
Case Study #2: Ireland vs. Lengsfeld and Carver County (3/3)

Legal Process:
1. Criminal Trial
2. Civil Case
 - County’s Motion for Summary Judgement (Denied)
 - County’s Appeal (Reversed District Courts Decision)
 - Plaintiffs Appeal to State Supreme Court (Refused to Hear the Case - Appeals Court Decision Stands)

Court of Appeals Decision (CX-96-19)
1. Reversed District Court Decision
 - Affirmed the sign placement was discretionary
 - Acknowledged MNMUTCD’s express deference to the judgement of engineers in installing traffic control devices
 - Affirmed that rumble strip maintenance is discretionary
 - Extended the Doctrine of Official Immunity to the decision making of a traffic engineer
 - In the future, plaintiffs will have to demonstrate that the government employee engaged in willful or malicious acts

Lessons Learned ➔ Written documentation of decisions regarding the placement of traffic signs (including a clear understanding of the guidance, facts that caused you to vary from the guidance and your ultimate decision) is a proven method for managing risk associated with actions that may not be entirely consistent with the MNMUTCD. No one expects you to document every decision you make – you will need to exercise your judgement to decide which of your decisions are potentially controversial enough to make the added investment of your time worth the effort.
Part F – Effectiveness of Traffic Signs

How to Measure Effectiveness? ... F-1
Effectiveness of Regulatory Signs – Speed Limit F-2
Effectiveness of Regulatory Signs – STOP signs F-3
Effectiveness of Warning Signs – Children at Play F-4
Effectiveness of Warning Signs – Horizontal Alignment F-5
Effectiveness of Warning Signs – Pedestrian Crossings F-6
Effectiveness of Guide Signs ... F-7

What’s wrong with these pictures?
(See page G-2 for answer.)

Sign Effectiveness Summary .. F-9
Making the Case For Considering Sign Removal.............................. F-10
Sign Removal – Which Signs Are Candidates? F-11 to F-12
Potential Sign Removal Examples ... F-13 to F-16
Sign Removal – Managing Risk ... F-17
A Final Thought About Sign Removal .. F-18
Case Study #3: City of South Lake Tahoe, CA vs. Markham F-19 to F-20
Case Study #4: Pedrosa vs. City of Alhambra, CA F-21
How to Measure Effectiveness?

- In order to determine the effectiveness of signs – you have to ask what is the Performance Measure?
- The most commonly cited measure is **crashes**, but that is a very difficult piece of information to work with because only a very few signs are related to safety and there are too few crashes at most locations to produce statistically reliable results.
- It appears that a second (and possibly better) measure of effectiveness would be **driver behavior**. Did the sign change behavior in the desired way? Was the response consistent among drivers?
Effectiveness of Regulatory Signs – Speed Limit

Drivers select a speed they perceive as safe based on their reaction to actual conditions, presence of pedestrians, road width, parked vehicles, etc.) along a roadway.

- Speed limit signs have never proven to change driver behavior.
- Drivers only comply with speed limits (and the signs) if the posted limits are consistent with a driver’s perception of the road environment and their selection of a safe speed, that is approximated by the 85th percentile speed.

- Lower speed limits are frequently requested in order to improve safety. There is one very substantial problem with this theory – it is NOT consistent with actual crash data. Analysis of a sample of urban, conventional roads found that crash rates decreased with increased speed limits.

<table>
<thead>
<tr>
<th>Study Location</th>
<th>Before</th>
<th>After</th>
<th>Sign Change +/- mph</th>
<th>85% Before</th>
<th>85% After</th>
<th>Change mph</th>
</tr>
</thead>
<tbody>
<tr>
<td>TH. 65</td>
<td>SPEED LIMIT 40</td>
<td>SPEED LIMIT 30</td>
<td>-10</td>
<td>34</td>
<td>34</td>
<td>0</td>
</tr>
<tr>
<td>TH. 65</td>
<td>SPEED LIMIT 50</td>
<td>SPEED LIMIT 40</td>
<td>-10</td>
<td>44</td>
<td>45</td>
<td>1</td>
</tr>
<tr>
<td>Anoka CSAH 1</td>
<td>SPEED LIMIT 45</td>
<td>SPEED LIMIT 40</td>
<td>-5</td>
<td>48</td>
<td>50</td>
<td>2</td>
</tr>
<tr>
<td>Anoka CSAH 24</td>
<td>SPEED LIMIT 40</td>
<td>SPEED LIMIT 45</td>
<td>15</td>
<td>49</td>
<td>50</td>
<td>1</td>
</tr>
<tr>
<td>Anoka CR 51</td>
<td>SPEED LIMIT 40</td>
<td>SPEED LIMIT 45</td>
<td>5</td>
<td>45</td>
<td>46</td>
<td>1</td>
</tr>
<tr>
<td>Henn. CSAH 4</td>
<td>SPEED LIMIT 50</td>
<td>SPEED LIMIT 40</td>
<td>-10</td>
<td>52</td>
<td>51</td>
<td>1</td>
</tr>
<tr>
<td>Nobles Ave.</td>
<td>SPEED LIMIT 30</td>
<td>SPEED LIMIT 35</td>
<td>5</td>
<td>37</td>
<td>40</td>
<td>3</td>
</tr>
<tr>
<td>62nd Ave. N</td>
<td>SPEED LIMIT 35</td>
<td>SPEED LIMIT 30</td>
<td>-5</td>
<td>37</td>
<td>37</td>
<td>0</td>
</tr>
<tr>
<td>Miss. St.</td>
<td>SPEED LIMIT 30</td>
<td>SPEED LIMIT 35</td>
<td>5</td>
<td>39</td>
<td>40</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Speed Limit on Urban Conventional Roads (UC) (Includes 2, 4, and 6 Lane Roads)</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>45</th>
<th>50</th>
<th>55</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crash Rate (Crashes per Million Vehicle Miles)</td>
<td>6.96</td>
<td>3.94</td>
<td>4.30</td>
<td>3.37</td>
<td>2.38</td>
<td>2.32</td>
</tr>
</tbody>
</table>

Source: Unpublished Mn/DOT Data

Effectiveness of Regulatory Signs – STOP signs

A comprehensive study of a sample of low volume rural intersections with STOP, YIELD and NO CONTROL found that the number of crashes was **NOT** related to the degree of control.¹

Summary of Significant Data¹

<table>
<thead>
<tr>
<th>Control Type</th>
<th>Stop</th>
<th>Yields</th>
<th>No Control</th>
<th>Statistical Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of intersections</td>
<td>48</td>
<td>48</td>
<td>44</td>
<td>—</td>
</tr>
<tr>
<td>Average Volume (vph)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Major Roadway</td>
<td>2,530</td>
<td>2,380</td>
<td>3,800</td>
<td>—</td>
</tr>
<tr>
<td>Minor Roadway</td>
<td>200</td>
<td>190</td>
<td>120</td>
<td>—</td>
</tr>
<tr>
<td>Average Crashes/Int</td>
<td>0.44</td>
<td>0.42</td>
<td>0.32</td>
<td>—</td>
</tr>
<tr>
<td>Intersections w/NO Crashes</td>
<td>69%</td>
<td>83%</td>
<td>95%</td>
<td>Significant</td>
</tr>
<tr>
<td>Driver Behavior</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voluntary Stops</td>
<td>19%</td>
<td>8%</td>
<td>9%</td>
<td>Not Significant</td>
</tr>
<tr>
<td>Slow Entries (<=5mph)</td>
<td>65%</td>
<td>79%</td>
<td>80%</td>
<td>Not Significant</td>
</tr>
<tr>
<td>Fast Entries (>5mph)</td>
<td>16%</td>
<td>13%</td>
<td>11%</td>
<td>Not Significant</td>
</tr>
</tbody>
</table>

Summary of Previous Research on Driver Behavior at STOP Signs¹

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Stops</td>
<td>47%</td>
<td>45%</td>
<td>38%</td>
<td>20%</td>
<td>17%</td>
<td>22%</td>
<td>12%</td>
</tr>
<tr>
<td>Partial Violation (Rolling Stop)</td>
<td>42%</td>
<td>34%</td>
<td>42%</td>
<td>69%</td>
<td>69%</td>
<td>48%</td>
<td>60%</td>
</tr>
<tr>
<td>Full Violation (No Stop)</td>
<td>11%</td>
<td>21%</td>
<td>20%</td>
<td>11%</td>
<td>14%</td>
<td>30%</td>
<td>28%</td>
</tr>
</tbody>
</table>

¹ Stockton, Brackett and Mounce, “STOP, YIELD and NO CONTROL at Intersections, Report No. FHWA/RD-81/084, 1981

Increasing levels of control at low volume intersections did **NOT** reduce the number of crashes.

The fraction of intersections with **NO** crashes is inversely related to the level of control – 95% of the intersections with No Control had no crashes compared to 69% for STOP controlled intersections.

STOP signs have proven to have only a marginal effect on driver behavior at the low volume intersections, where the need to stop (based on interacting with conflicting vehicles) may not be obvious. Fewer than 20% of vehicles voluntarily stopped at STOP signs (vs. 9% at No Control intersections) and the fraction of Fast Entries at STOP controlled intersections was 45% higher than at intersections with No Control.

A recent study of intersections in Iowa² found that at low volumes (less than 150 entering vehicles per day), there was no statistically significant difference between the safety performance of a STOP controlled versus an uncontrolled intersection.
Effectiveness of Warning Signs – Children at Play

- A research synthesis prepared for the Wisconsin Department of Transportation\(^1\) found that there is no evidence that special warning signs of this sort either change driver behavior (reduce travel speeds) or improve safety (reduce crash frequency).
- The synthesis supplements the research with common sense observations that such signs:
 - Do not give clear and enforceable guidance to drivers.
 - Provide a false sense of security to parents and children that may increase risk
 - Give the false impression that areas without signs do not have children
 - Represent an unnecessary cost that then propagates as additional signs are requested.
 - Violates the principle that signage should be based on engineering, not political, judgement.
- The Minnesota Department of Transportation and the Local Road Research Board are currently conducting a research project to determine the effects on driver behavior associated with placing a playground warning sign along a 30 mph city street in Bloomington. Preliminary results of Before vs. After speed study found this sign had no effect on the maximum, mean or 85th percentile speed.\(^2\)
- Traffic control devices are intended to change driver behavior and improve safety – these special warning signs have been found to do neither.

\(^1\) Wisconsin Department of Transportation. “Effectiveness of Children at Play” Warning Signs, Transportation Synthesis Report, 2007

\(^2\) Unpublished Mn/DOT document dated July 1, 2010, Office of Research Services, Investigation 890
Effectiveness of Warning Signs – Horizontal Alignment

- The most frequently used Horizontal Alignment Warning signs include the Advanced Curve Warning and the Speed Advisory.
- FHWA’s Desktop Reference for Crash Reduction\(^1\) indicates that the standard Advance Curve Warning signs have been found to reduce road departure crashes by about 20 to 30% and the use of enhanced delineation (Chevrons) reduced crashes by 20 – 50%.
- A study of a sample of approximately 200 curves in Minnesota\(^2\) found the crash reduction associated in the Advanced Curve Warning was limited to curves with radii between 1,000 and 1,800 feet.
- The analysis of over 1,300 curves along highways in five counties in Minnesota (part of the Mn/DOT sponsored project to prepare safety plans for all counties) found that 80% of severe crashes occurred in curves with radii between 500 and 1,500 feet. This same analysis also found that longer radius curves present a much lower total crash risk and very short radius curves a much lower severe crash risk. This kind of information can be used to prioritized curves across a system and aid in the development of a systemwide approach to deploy horizontal alignment signs.
- A recent study\(^3\) of the effect of enhanced delineation – Chevrons – in Connecticut and Washington found crash reductions in the range of 20-30% and a benefit/cost ratio of 8:1.

2 Pitale, Shankewitz, Preston and Barry; Benefit:Cost Analysis of In-Vehicle Technologies and Infrastructure Modifications to Prevent Crashes along Curves and Shoulders, MnDOT Research Report 2008-XX, June, 2009
Effectiveness of Warning Signs – Pedestrian Crossings

- One of the most commonly requested strategies to address pedestrian safety is the installation of a marked crosswalk accompanied by pedestrian crossing warning signs.
- However, the results of two recent studies indicate that marked crosswalks (with pedestrian crossing warning signs) are NOT safety devices when used at uncontrolled intersections.
- A cross-sectional study of 2,000 intersections in 30 cities across the U.S. found that marked crosswalks at uncontrolled intersections resulted in higher pedestrian crash rates\(^1\) (then at unmarked/ signaled crosswalks) and this effect is greatest for multi-lane arterials with traffic volumes over 15,000 vehicles per day.\(^2\)
- A Before vs. After study at over 500 intersections in San Diego and Los Angeles found a 70% reduction in pedestrian crashes following the removal of marked crosswalks at uncontrolled intersections.\(^3\)

1. Crash rate is the frequency of crashes divided by the number of pedestrians crossing at a particular location.
3. ITE (Institute of Transportation Engineers) Journal, September 2000
Effectiveness of Warning Signs

- A search of the safety research literature found NO documentation of crash reductions associated with any other Warning signs.

- It appears the use of warning signs is more out of fear of litigation as opposed to the strategic application of a traffic control device to solve a specific problem at a specific location.

- The most comprehensive study\(^1\) of a Deer Crossing warning signs found these signs did NOT either change driver behavior (reduce vehicle speeds) or reduce deer-vehicle crashes and concluded that in order to increase effectiveness, research should focus on developing a dynamic system that would provide accurate real time information.

- There appears to be a consensus among traffic engineers that static signs that warn of infrequent conditions or general possibilities – deer crossings, pavements that are slippery only when wet, rocks that may have fallen, low volume intersections and driveways with limited sight distances – are routinely ignored by drivers. This suggests that these signs would fail the effectiveness test because drivers do not choose to change their behavior based on information they determine to be either regularly wrong or of no value.

Effectiveness of Guide Signs

- The MNMUTCD suggests the use of Guide Signs – Junction, Advance Junction and Street Name to support navigation and way-finding.

- A recent study of the safety effectiveness of advanced street name signs at signalized intersections found a minimal and statistically insignificant effect on crashes.¹

- A preliminary evaluation of one rural expressway corridor in Minnesota found that upgrading the Advance Junction and street name signs from conventional to a freeway style sign resulted in a 30% reduction of right angle crashes. (Note: this is an interesting conclusion, moves the crash data in a desired direction, but is not statistically significant. The sample size is too small.)²

- Many Minnesota counties have decided to participate in the program to provide a complete set of street name signs to improve way-finding for emergency response. There is a general consensus that these signs are a high priority and an important component of an overall effort to reduce emergency response time.

¹ Safety Evaluation of Advance Street Name Signs, Federal Highway Administration, FHWA-HRT-09-030.
Sign Effectiveness Summary

<table>
<thead>
<tr>
<th>Regulatory</th>
<th>Signs that ARE proven to be effective</th>
<th>Signs that have not been tested for effectiveness</th>
<th>Signs that appear to be ineffective</th>
<th>Signs that are proven ineffective</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LEFT LANE MUST TURN LEFT</td>
<td>SPEED LIMIT 50</td>
<td>STOP</td>
<td>E Main St</td>
</tr>
<tr>
<td>Warning</td>
<td>LEFT LANE MUST TURN LEFT</td>
<td>SLOWER TRAFFIC KEEP RIGHT</td>
<td>CAUTION</td>
<td>E Main St</td>
</tr>
<tr>
<td>Guide</td>
<td></td>
<td></td>
<td>ROAD VEHICLES</td>
<td></td>
</tr>
</tbody>
</table>

OK, which signs have been proven effective at either reducing crashes or changing driver behavior?

- A search of the traffic safety literature found that the only types of signs that have been proven effective are the Horizontal Alignment Series (but only in a fairly narrow range of curve radii).
- Research published by NCHRP found that pedestrian warning signs in combination with marked crosswalks at uncontrolled intersections in fact resulted in greater numbers of pedestrian crashes.
- Guide Signs have been found to only have a minimal effect on intersection crashes but are assumed to improve way finding and navigation.
- Bottom line – if your decision to install a sign is based on an expectation of effectiveness – either reducing crashes or changing driver behavior – the literature in support is virtually non-existent.
- It appears that most signs fall into a category of hope - hope they do some good and an expectation that at least they don’t do any harm.
Making the Case For Considering Sign Removal

- When evaluating your inventory of signs and deciding which signs should be retained versus which would be candidates for removal, consider the following issues:
 - What is the problem you are attempting to resolve and has the particular sign ever been effective at either changing driver behavior or reducing crashes?
 - What is the cost of maintaining your inventory? Can you afford this?
 - Is the use of a particular sign consistent with the guidance in the MNMUTCD? For example, the MNMUTCD discourages the use of stop signs for speed control because they aren’t effective.
 - Think systematically – is the usage of a type of sign consistent along all of your roads?

- If the answer to these questions are negative – not effective, can’t afford to maintain the system and inconsistent – then you should give very careful consideration to removing some signs in your inventory.
Speed Limit signs are only effective if the limit is near the 85th percentile speed. Speed Limit signs that merely state the statutory limit are not necessary.

STOP and YIELD signs at low volume intersections are not safety devices, uncontrolled intersections have a lower expected crash frequency.

Turn prohibitions relying solely on signage have only proven to be effective in the presence of law enforcement – you need to ask, how often will officers be present?

The use of turn lane signs are linked to helping law enforcement get convictions and snow plow drivers clearing turn lanes. Ask law enforcement how much time they devote to going after passing on the shoulder? Would a delineator be sufficient to assist the plow drivers?

Statements of the obvious are a waste of money if there is little or no enforcement of the law.

Research suggests that typical drivers do NOT understand the concept of “CROSS TRAFFIC”. To traffic engineers “Cross Traffic” means traffic approaching from the right and left but some drivers thought that this referred to vehicles coming towards them (Crossing the highway) from the opposing minor leg approach to the intersection.
Sign Removal – Which Signs Are Candidates? (2/2)

- Static signs that warn drivers of hazardous conditions they rarely encounter quickly lose credibility and become part of the background noise that drivers tune out.

- Mn/DOT is removing DEER CROSSING Warning signs because they have not proven to be effective at reducing deer/vehicle collisions. (They also determined that the signs had proven ineffective at training the deer where to cross the highways.)

- Advance curve warning signs were found to be effective in only a fairly narrow range of curve radii – curves with radii between 1,000 feet and 1,800 feet. There was no safety effect in larger radius curves and in shorter radius curves it was found that a combination of Advance Curve Warning PLUS Chevrons was required to produce a crash reduction. Try to achieve consistency across your system. If you have curve warning signs in advance of long radius curves, those could be candidates for removal based on system wide considerations.

- A number of studies have found that marked pedestrian crosswalks and their advance warning signs are NOT safety devices when used at uncontrolled locations. Pedestrian crash rates are actually higher at marked locations.

- There is no evidence that special warning signs of this type either change driver behavior (reduce travel speed) or improve safety.
If you can’t think of any opportunities in your system to remove signs, consider these examples:

- The Children at Play sign isn’t required (it isn’t even listed in the MNNMUTCD) and recent studies couldn’t find any history of either crash reduction or changed driver behavior. In other words, this sign has never been observed to have a positive effect and may even contribute to making the situation worse – giving the parents a false sense of security that the sign is somehow protecting their children.

- The Keep Right and Left Turn Lane signs in this photo are along a 30mph, multi-lane city street that has continuous street lighting. These signs aren’t required. The Left Turn Lane sign is merely telling drivers what they should already know – they are in a turn only lane. The Keep Right sign might provide guidance at night (the median noses are entirely visible in daylight), however, all of the intersections have street lights. When asked why all these signs were installed, the response was – they are in the MNNMNTCD (absolutely true) and State Aid would pay for them. But the local agency has to pay for ALL future costs forever.

- On the approach to this STOP sign located along a 30 mph city street, an Intersection Ahead and a STOP AHEAD sign are provided to help drivers comply with a STOP sign that is entirely visible along a road that is travelled primarily by residents that live in the area. The Intersection Ahead warning sign is not required and has never been proven effective at either reducing crashes or changing driver behavior. The STOP AHEAD sign would be required – if there was any sight restriction on the approach, which isn’t the case.
Potential Sign Removal Examples (2/4)

- These signs were obstructed by tree limbs – if they are not important enough to trim the vegetation, they could be candidates for removal.

- A 30 mph Speed Limit sign was installed along this narrow, winding residential street. The sign merely restates the statutory residential speed limit and was likely installed to placate residents. However it has been proven that speed limit signs have virtually no effect on driving behavior unless the limit is consistent with the driver’s perceptions of the road or there is a significant presence of law enforcement. (This city does **NOT** have a police force).

- STOP signs have been routinely installed at hundreds of low-volume residential intersections where there is no compelling reason to stop. Also, there is no proof that these signs have ever accomplished anything other than wasting fuel. STOP signs could be removed if an engineering study determined that to do so did not result in an unusual level of hazard (or if an agency is uncomfortable with right-of-way at the intersection being based on drivers exercising the rule of the right, the STOP signs could be replaced with YIELD signs).
Potential Sign Removal Examples (3/4)

- Limited sight distance signs have never been proven effective at either reducing crashes or changing driver behavior. These signs do not convey a clear, simple message and doesn’t provide the driver with any guidance relative to an intended action.

- If you have any of these signs (or are ever considering installation), a better idea would involve adopting ordinances that prohibit land owners from planting trees or shrubs that impair visual sight lines at street or driveway intersections and that allow city crews to enter private property to trim landscaping in cases where there is a danger to the public.

- These examples were provided by Faribault and Eagan.

 - Faribault

 Information from City Code of Ordinances, Appendix B - Unified Development Regulations

 Sight distance triangle. A triangular shaped portion of land established at street or driveway intersections in which nothing is erected, placed, planted, or allowed to grow in such a manner as to limit or obstruct the sight distance of motorists entering or leaving an intersection. Such triangle shall be defined beginning at the intersection of the projected curb lines of two (2) intersecting streets or at the intersection of projected curb lines where a driveway intersects a street, measured twenty-five (25) feet along each curb line and connected by a diagonal line.

 Fences. (2) Any fence extending into a front building setback area, a corner side building setback area, or within a required sight distance triangle shall not exceed three (3) feet in height, except as provided under [Subsection] (3) below.

 Signs. (F) *Safety obstructions.* No sign in the city shall be placed or installed that obstructs access to fire escapes or required windows, doors, exits, or standpipes. Additional, no sign shall be placed within the twenty-five (25) foot sight distance triangle required at all intersections including driveways and alleys.
Potential Sign Removal Examples (4/4)

Eagan

Information from City Code of Ordinances, Appendix B - Unified Development Regulations

D.4. Trees, shrubbery, and other plant material shall not be planted or maintained on public or private property in such a manner as to obscure or impede the visual sight lines required to ensure the safe and efficient circulation of vehicles and pedestrians on streets, intersections, trails, and sidewalks. Trees, shrubbery or other plant material shall not be planted as to block the visibility of any regulatory warning, or street identification sign or block the illumination of streetlights. The city shall have the authority to determine the minimal amount of required setback and clear zones in such circumstances. Property owners in violation of said requirements shall be given written notice, which notice shall be given by mail to their last known address, to remove, relocate, or trim all related plant materials in compliance with the directives given therein. If any owner or occupant fails to assume the responsibility of these requirements, the city may proceed to order the work done in accordance with subsections D.5. and D.6 of this subdivision.

E. Any tree, shrub or landscaping within a street right-of-way, which is in violation of this section, shall be trimmed or removed, as the city shall require, as to ensure elimination of any threat to public safety due to sight line or physical obstruction. The city shall have the authority to remove or trim any tree, shrub or landscaping, without first notifying the property owner, in the case where imminent public danger exists if removal or trimming is not immediately completed. It shall be the property owner’s responsibility to trim, or remove when necessary, any shrub or landscaping within the street right-of-way which is in violation of this subdivision. It shall be the responsibility of the city to trim and the responsibility of the property owner to remove when trimming is not a feasible option, any tree in violation of this subdivision. The city may perform the work that is the responsibility of the property owner when the property owner has failed to do so. The city may charge the property owner the cost incurred by the city in performing any work required under this paragraph pursuant to subdivision 5 herein.
Sign Removal – Managing Risk

Why Consider Removing Signs
- Maintenance Costs
- Problem → Solution Link
- Effectiveness/Ineffectiveness
- System Considerations
- Safety-Crosswalks, Unnecessary STOP signs, Children at Play – these types of signs could actually increase the number of crashes.

Process to Follow – Manage Risk
- Bring your decisions under an umbrella of immunity.
- Discretionary Immunity is generated by actions consistent with adopted policies and ordinances.
- Official Immunity is generated by exercising your engineering judgement as part of an engineering study and then documenting your actions.

DISCRETIONARY
- Have the highest decision making body (City Council, County Commission, Township Board) adopt a policy or pass a resolution – specifying types of signs that will be installed and those that will not (candidates for removal)
- Document the outcome of your actions relative to installing/replacing signs vs. removing signs, consistent with the direction provided by your decision making body.

OFFICIAL
- Conduct an engineering study.
- Document the applicable guidelines in the MNMUTCD.
- Document the conditions in the field.
- Document your decision.
A Final Thought About Sign Removal

- If you decide to include sign removal as an integral part of your comprehensive sign maintenance/management program and intend to remove a variety of signs along your roads/streets - consider two public information/outreach actions.
- First, prepare a short public notice that could be run in your official paper, be distributed with newsletters or utility bills, posted on your website, etc.
- Second, if the sign removal involves intersection control (STOP or YIELD) consider the temporary placement (four weeks would be a typical duration) of Traffic Control Change Advance Warning Signs on a TYPE III barricade or a temporary support (supplement with flags to draw attention to the sign).
Key Issue: STOP Sign Removal

Key Facts:

- The STOP sign for NB traffic on Eloise Avenue was knocked down early in the day, but no one notified the City.
- Driver #1 was traveling EB on Third Street and was familiar with the intersection knowing that EB/WB traffic had the right-of-way.
- Driver #2 was traveling NB on Eloise Avenue and was not familiar with the intersection, didn’t see the STOP sign that was down, and drove into the intersection hitting driver #1.
- The City was sued by both drivers for not maintaining the STOP sign – the lack of maintenance was alleged to have caused the crash.
- There have been a number of similar cases where a STOP sign had been knocked down and the roadway agency failed to re-erect the sign in a reasonable time and a crash resulted. In these cases the key issue was NOTICE – the agency was aware of the situation and simply failed to act in a timely fashion.

In this case, the City asserted that there was a very important difference → a STOP sign was NOT required and due to the very low traffic volumes the operation of the intersection without 2-way STOP control would not present a hazard.

The California legal code contains a statutory exception where an agency has immunity from liability for injuries caused by not erecting a sign. However, once a sign is erected, there is no immunity for failure to maintain the sign.

The California Appellate Court granted Summary Judgement and found:
- The City had NO duty to provide the sign and could NOT be held liable if no sign had ever existed. Therefore, the City cannot become liable if the sign is removed, whatever the reason for the removal (including knocked down by another motorist). To conclude otherwise would require the court to accept the proposition that once the STOP sign was in place, it could never be removed and that motorists, particularly those on Third Street, could forever after rely on its presence. This reasoning, which is implicit in the Plaintiff’s arguments, finds no support in Statute or State law.

Lesson Learned → An agency can remove a STOP sign(s) as long as the resulting intersection control does not present a hazard.

Case Study #4: Pedrosa vs. City of Alhambra, CA

Key Issue: Political Installation of STOP sign

Background:
- On September 15, 1982 a Rear End crash occurred at a mid-block STOP sign located on Hellman Avenue, just east of the Long Beach Freeway.
- The City of Alhambra, CA City Council debated installing STOP signs at the mid-block location in an effort to slow down students from Cal State, located just west of the freeway, when entering their City.
- During the City Council debate, the City Traffic Engineer sent a memo to the Council advising against installing the STOP signs as a result of a concern that the mid-block STOPs would actually increase crashes.
- The City Council decided to install the STOP signs – their desire to respond to residents complaints about students speeding through the neighborhood was more compelling than the concern for crashes.
- Following the crash, the driver of the lead vehicle sued the City and the driver of the following vehicle.
- A Pasadena Superior Court jury found the driver of the following car and the City negligent and awarded the lead driver $810,000.

Lesson Learned ➔ There can be real consequences for agencies that choose to disregard the advice of their professional staff.
Part G – Summary of Key Points

What’s wrong with this picture? (See page G-2 for answer.)

Key Points.. G-1
Answers to Quiz... G-2
Key Points

- The MNMUTCD is a compilation of guidelines regarding the design and installation of signs, markings and signals. However, unlike other design guides, the MNMUTCD carries with it a higher level of authority because it has been adopted by the State for use on **ALL** roads in the State.

- **BUT** – do not fall into the trap of saying that the MNMUTCD made you install a particular device. The authors clearly intended all of the guidance to be filtered through **YOUR** judgment and specifically states that the MNMUTCD is **NOT** a legal requirement for the installation of anything.

- The rules regarding an agency’s approach to sign maintenance have fundamentally changed. It was always a good idea to keep your signs in good shape – now it is required!

- The regulations require agencies to select a maintenance method and to engage in a program to keep levels of retroreflectivity above specified minimum levels.

- Your agency is now “On the Clock”. You have until January 2012 to evaluate, discuss and then declare what maintenance method your agency will use. You have until January 2015 to bring your Regulatory, Warning, and Ground Mounted Guide signs up to the minimum level and until January 2018 to get your Overhead Guide and Street Name signs above the minimums. Think about getting your agency to start on this effort **Tomorrow**!

- You are encouraged to work with your elected officials to develop a policy to guide your sign maintenance program. The policy would establish direction for your staff and support statutory discretionary immunity.

- Your agency will need to develop an implementation process – create one of your own or modify the approach identified in this guide. _But_ make sure to include exercising engineering judgment and to create some kind of **written record** regarding signs to remain and signs to be removed – this supports establishing official immunity for your agencies actions.

See page A-4 for exceptions
Answers to Quiz

Part A Divider
In both photos the STOP AHEAD signs are clearly not needed – the STOP signs are completely visible. The use of these STOP AHEAD signs was likely based on a blanket practice of installing these warning signs at every intersection. Getting back to a location specific decision process would represent an opportunity to reduce an agency’s inventory of signs by supporting the removal at intersections with adequate sight distance.

Part B Divider
This speed limit sign merely states the statutory speed limit for urban streets. It is entirely obvious that the area is residential. The road is narrow and curvilinear. The sign fulfills no real purpose and could be considered for removal.

Part C Divider
The STOP and YIELD signs in the photo are at the intersection of two, low-volume residential streets. These signs are not required and research shows that the use of these signs in low-volume conditions are not safety devices. These signs could be candidates for removal at this particular location and across the system.

Part D Divider
The chevron in this photo is on a city street and is approximately 100 feet from a STOP sign at a multi-lane urban arterial. The horizontal alignment series of warning signs has proven to be effective at reducing road departure crashes, but never at curves with a 60 foot radius. It appears that the chevron is being used to supplement the STOP sign, a use for which it was never intended. It appears that this sign at this location is a candidate for removal.

Part E Divider
The static Deer Crossing Warning sign has been found to be ineffective at reducing vehicle/deer crashes. As a result, a number of agencies (including Mn/DOT) have identified these signs as candidates for removal (not replacing them when knocked down or removed as part of corridor-based upgrades).

Part F Divider
Watch for Children and Slow Children signs have never been proven effective at either reducing crashes or changing driver behavior. As a result, their usage does NOT result in any real improvement for either the children or drivers and could actually make matters worse by giving parents a false sense of security based on the hope that a sign can somehow replace their own responsibility to supervise their children. These types of warning signs should be considered for removal because agencies cannot afford to install signs that are ineffective.

Part G Divider
This static Intersection Warning sign has never been proven effective at improving safety. In this case, the intersection has very low volumes and drivers almost certainly live in the area, knowing that there is an intersection ahead. The low volume at the intersection suggests that the probability of a crash is low and this sign has no history of reducing crashes – it should be considered a candidate for removal.

Appendix Divider
STOP and YIELD signs at low volume intersections are not safety devices, nor should they be used for traffic calming purposes. STOP signs have a marginal effect on driver behavior at low volume intersections with fewer than 20% of vehicle voluntarily stopping.
Appendix

Example Signing Policy – Metro County ... AP-1
Example Signing Policy – Cass County ... AP-2
Sample Response to Request for SLOW CHILDREN Sign AP-3

Why Won’t They Put Up “CHILDREN AT PLAY” Signs? AP-4
Why Don’t They Put In More STOP SIGNS? ... AP-5
When Will a Lower Speed Limit be Posted on My Street? AP-6

What’s wrong with this picture?
(See page G-2 for answer.)
Example Signing Policy – Metro County

Sign Maintenance Policies and Procedures - Sample Document
Adopted by (____ County) Board Date – Resolution _____

Purpose
The purpose of the Traffic Operations Plan and Procedures is to establish and maintain uniform (minimum and maximum) sign maintenance standards, operations and procedures throughout the county.

1. Procedure
 a. Traffic Sign Maintenance Supervisor or Designated Staff Member shall review and update the Traffic Signage Policy and Procedures as needed.
 b. The Traffic Sign Maintenance Supervisor or Designated Staff Member shall update the Traffic Sign Maintenance Plan as needed.
 c. The Traffic Sign Maintenance Supervisor or Designated Staff Member shall review and update the Traffic Sign Maintenance Plan as needed.
 d. The Traffic Sign Maintenance Supervisor or Designated Staff Member shall review and update the Traffic Sign Maintenance Plan as needed.

2. General Policies
 a. The Traffic Sign Maintenance Supervisor or Designated Staff Member shall review and update the Traffic Sign Maintenance Plan as needed.
 b. The Traffic Sign Maintenance Supervisor or Designated Staff Member shall review and update the Traffic Sign Maintenance Plan as needed.
 c. The Traffic Sign Maintenance Supervisor or Designated Staff Member shall review and update the Traffic Sign Maintenance Plan as needed.
 d. The Traffic Sign Maintenance Supervisor or Designated Staff Member shall review and update the Traffic Sign Maintenance Plan as needed.

Sign Maintenance Policies and Procedures - Sample Document for use by Public Agencies (Sample from County) Page 2 of 3

1. Procedure
 a. The Traffic Sign Maintenance Supervisor or Designated Staff Member shall review and update the Traffic Sign Maintenance Plan as needed.
 b. The Traffic Sign Maintenance Supervisor or Designated Staff Member shall review and update the Traffic Sign Maintenance Plan as needed.
 c. The Traffic Sign Maintenance Supervisor or Designated Staff Member shall review and update the Traffic Sign Maintenance Plan as needed.
 d. The Traffic Sign Maintenance Supervisor or Designated Staff Member shall review and update the Traffic Sign Maintenance Plan as needed.

2. General Policies
 a. The Traffic Sign Maintenance Supervisor or Designated Staff Member shall review and update the Traffic Sign Maintenance Plan as needed.
 b. The Traffic Sign Maintenance Supervisor or Designated Staff Member shall review and update the Traffic Sign Maintenance Plan as needed.
 c. The Traffic Sign Maintenance Supervisor or Designated Staff Member shall review and update the Traffic Sign Maintenance Plan as needed.
 d. The Traffic Sign Maintenance Supervisor or Designated Staff Member shall review and update the Traffic Sign Maintenance Plan as needed.

Sign Maintenance Policies and Procedures - Sample Document for use by Public Agencies (Sample from County) Page 3 of 3

1. Procedure
 a. The Traffic Sign Maintenance Supervisor or Designated Staff Member shall review and update the Traffic Sign Maintenance Plan as needed.
 b. The Traffic Sign Maintenance Supervisor or Designated Staff Member shall review and update the Traffic Sign Maintenance Plan as needed.
 c. The Traffic Sign Maintenance Supervisor or Designated Staff Member shall review and update the Traffic Sign Maintenance Plan as needed.
 d. The Traffic Sign Maintenance Supervisor or Designated Staff Member shall review and update the Traffic Sign Maintenance Plan as needed.

2. General Policies
 a. The Traffic Sign Maintenance Supervisor or Designated Staff Member shall review and update the Traffic Sign Maintenance Plan as needed.
 b. The Traffic Sign Maintenance Supervisor or Designated Staff Member shall review and update the Traffic Sign Maintenance Plan as needed.
 c. The Traffic Sign Maintenance Supervisor or Designated Staff Member shall review and update the Traffic Sign Maintenance Plan as needed.
 d. The Traffic Sign Maintenance Supervisor or Designated Staff Member shall review and update the Traffic Sign Maintenance Plan as needed.

* October 2010
Example Signing Policy – Cass County

Cass County Highway Department
Guidance Policy
Roadway Signage & Striping

Introduction
The Cass County Highway Department believes it is in the best interest of the residents of the county to assume basic responsibility for installation and maintenance of roadway signage and pavement markings on county roadways. Roadway safety and pavement markings are essential for the safe and orderly flow of traffic, the protection of the traveling public. The Cass County Highway Department will provide such services in a safe and cost-effective manner, keeping in mind safety, traffic, professional and environmental concerns.

Striping
The Cass County Highway Department is committed to providing and maintaining roadway markings and striping on all paved county roadways. Due to the volume of paved roadways (approximately 420 miles in 2003) and budget constraints, it is not financially feasible for the Department to re-stripe all of the roadways on an annual basis. As such, the effects of traffic volume and maintenance activities on the striping performance were reviewed. Following this review, the Department determined that striping needed to maintain an adequate striping for different traffic modes. The re-striping schedules are as follows:

1) All highways with traffic counts of 1,000 vehicles per day or greater will be re-striped annually (every year)
2) All highways with traffic counts of less than 1,000 vehicles per day will be re-striped biannually (every other year)
3) All highways with traffic counts of less than 500 vehicles per day will be re-striped every five (5) years.

To obtain the most effective performance of the striping and to allow sufficient time for the striping to cure, it is the Department's policy that all re-striping operations that are part of the striping program be completed by June 30th of each year.

Sign Maintenance Policy

1) Inventory Management Procedures

1.1. Assigning Maintenance Schedule: A plan that is economical and practical for the traffic control should be established. The Department should also conduct periodic reviews of existing policies and procedures on the use of inventories, the rotation of inventory, and the re-stripe schedule at least once a year.

1.2. Timing: The timing of the inventory and the rotation of inventory should be scheduled at least once each year. The timing of the inventory and the rotation of inventory should be scheduled at least once each year.

2) Traffic Sign Panel Inventory: The Cass County Highway Department maintains a field inventory of all signs and markers on the roadways of all County roadways. This record of information includes all signs and markers on the roadways of all County roadways. The information includes the type, size, condition, location, date of installation, and date of last maintenance.

3) Removal or Damaged Signs: It is the responsibility of the Cass County Highway Department to remove all damaged signs, replace any damaged signs, and recommend the replacement of any damaged signs. The Cass County Highway Department should determine the replacement of any damaged signs. The Cass County Highway Department should determine the replacement of any damaged signs.

4) Sign Maintenance

4.1. Routine Maintenance: Routine maintenance involves the cleaning and repair of all signs and markers on the roadways of all County roadways. The routine maintenance involves the cleaning and repair of all signs and markers on the roadways of all County roadways.

4.2. Inspection and Repair: Inspection and repair involves the cleaning and repair of all signs and markers on the roadways of all County roadways. The inspection and repair involves the cleaning and repair of all signs and markers on the roadways of all County roadways.

5) Removal of Old Signs: The Cass County Highway Department removes old signs, damaged signs, and signs that are no longer needed. The Cass County Highway Department removes old signs, damaged signs, and signs that are no longer needed.

6) Sign Replacement: The Cass County Highway Department replaces old signs, damaged signs, and signs that are no longer needed. The Cass County Highway Department replaces old signs, damaged signs, and signs that are no longer needed.

Source: http://www.co.cass.mn.us/highway/pdfs/signing_policy.pdf
Sample Response to Request for SLOW CHILDREN Sign

Public Works Director,

I am a property manager for a town home association. I am not sure if you are the person I should talk to on this. At the town home board meeting last evening there was a request by several homeowners for four slow/children at play areas in the association (two on each side strategically placed). They have had several close calls with children and have one deaf child in the neighborhood. What is proper procedure to move forward with this?

Best Regards,
Concerned Resident

Concerned Resident:

The City doesn’t install (and has long removed all existing) SLOW CHILDREN-type signs from public streets like Windy Lane South. Some homeowners associations have installed them on their private streets (like Windy Lane North, where they have the responsibility for ownership/maintenance), but the City has no role in the process.

There never has been any factual information or research that indicated that those type of signs had any measurable impact on drivers. The Federal and State Sign manuals that we rely on for guidance stopped including them as an approved sign quite some time ago, and our Public Safety Committee in the mid-1990’s recommended to our City Council that we remove them from public streets. Besides being ineffective, there was a growing concern that residents, parents, etc. were assuming that the signs were somehow making the street a safe place for children to play.

Similarly, the Manuals do not provide for signs like DEAF CHILD, AUTISTIC CHILD, BLIND CHILD, etc. so the City doesn’t install those either. While seemingly well-intentioned, they seem to be relevant only to the people who know of the conditions anyway and there is no research or data that suggests that motorists change their behavior around such signs. Please let me know if you have any questions or require further information.

Public Works Director
Why Won’t They Put Up “CHILDREN AT PLAY” Signs?

An often heard neighborhood request concerns the posting of generalized warning signs with the “SLOW-CHILDREN AT PLAY” or other similar messages. Parental concern for the safety of children in the street near home, and a misplaced but wide-spread public faith in traffic signs to provide protection often prompt these requests.

Although some other states have posted such signs widely in residential areas, no factual evidence has been presented to document their success in reducing pedestrian accidents, operating speeds or legal liability. Studies have shown that many types of signs attempting to warn of normal conditions in residential areas have failed to achieve the desired safety benefits. If signs encourage parents and children to believe they have an added degree of protection, which the signs do not and ‘cannot provide, a great disservice results.

Because of these serious considerations, Minnesota law does not recognize, and Federal Standards discourage, use of “Children at Play” signs. Specific warnings for schools, playgrounds, parks and other recreational facilities are available for use where clearly justified.

Children should not be encouraged to play within the street travelways. The sign has long been rejected since it is a direct and open suggestion that this behavior is acceptable.
Why Don’t They Put In More STOP SIGNS?

A stop sign is one of our most valuable and effective control devices when used at the right place and under the right conditions. It is intended to help drivers and pedestrians at an intersection decide who has the right-of-way.

One common misuse of stop signs is to arbitrarily interrupt through traffic, either by causing it to stop, or by causing such an inconvenience as to force the traffic to use other routes. Where stop signs are installed as “nuisances” of “speed breakers,” there is a high incidence of intentional violation. In those locations where vehicles do not stop, the speed reduction is effective only in the immediate vicinity of the stop sign, and frequently speeds are actually higher between intersections. For these reasons, it should not be used as a speed control device.

A school crossing may look dangerous for children to use, causing parents to demand a stop sign to halt traffic. Now a vehicle which had been a problem for 3 seconds while approaching and passing the intersection becomes a problem for a much longer period. A situation of indecision is created as to when to cross as a pedestrian or when to start as a motorist. Normal gaps in traffic through which crossings could be made safely no longer exist. An intersection which previously was not busy now looks like a major intersection. It really isn’t – it just looks like it. It doesn’t even look safer and it usually isn’t.

Most drivers are reasonable and prudent with no intention of maliciously violating traffic regulations; however, when an unreasonable restriction is imposed, it may result in flagrant violations. In such cases, the stop sign can create a false sense of security in a pedestrian and an attitude of contempt in a motorist. These two attitudes can and often do conflict with tragic results.

Well-developed, nationally recognized guidelines help to indicate when such controls become necessary. These guidelines take into consideration, among other things, the probability of vehicles arriving at an intersection at the same time, the length of time traffic must wait to enter, and the availability of safe crossing opportunities.
When Will a Lower Speed Limit be Posted on My Street?

A common belief is that posting a speed limit will influence drivers to drive at that speed. The facts indicate otherwise. Research conducted in many parts of this country over a span of several decades has shown that drivers are influenced more by the appearance of the highway itself and the prevailing traffic conditions than by the posted speed limit.

Minnesota’s Basic Speed Law requires that:

“No person shall drive a vehicle on a highway at a speed greater than is reasonable and prudent under the conditions and having regard to the actual and potential hazards then existing. In every event speed shall be so restricted as may be necessary to avoid colliding with any person, vehicle or other conveyance on or entering the highway in compliance with legal requirements and the duty of all persons to use due care.”

In Minnesota, the maximum speed limit in an urban district is 30 miles per hour unless otherwise posted. An urban district is defined as the territory contiguous to and including any street which is built up with structures devoted to business, industry, or dwelling houses situated at intervals of less than 100 feet for a distance of a quarter of a mile or more. Outside urban districts, the maximum speed limit for any passenger vehicle is currently 55 miles per hour. These speeds are not always posted but all Minnesota motorists are required to know these basic 30 and 55 mile per hour speed laws.

Under Minnesota law, intermediate speed limits (except school speed limits) between 30 and 55 miles per hour may be established on any road, including county highways and city streets, only by the State Commissioner of Transportation. The commissioner must establish the speed limit upon the basis of an engineering and traffic investigation. This investigation includes an analysis of roadway conditions, accident reports, and the prevailing speed of prudent drivers. If speed limit signs are posted for a lower limit than is needed to safely meet these conditions, many drivers will simply ignore the signs. At the same time, other drivers will stay within the posted limits. This generally increases the conflicts between faster and slower drivers, reduces the gaps in traffic through which crossings could be made safely and increases the difficulty for pedestrians to judge the speed of approaching vehicles. Studies have shown that where uniformity of speed is not maintained, accidents generally increase.