Whitetopping Assessment Project
- Preliminary Findings
August 18th, 2015
Tom Burnham, Tim Andersen
Agenda

- Reason for study
- Study tasks and timeline
- Literature search results
- Project database
- Preliminary Findings
- Associated research
Acknowledgements

• Chago Heurta – Student worker
• American Engineering Testing
• MnDOT, Q3, and County Traffic Control Forces
• MnDOT Concrete Office
• Tim Andersen - Technical Liaison
Reason for Study

December 18, 2014 –
MnDOT Operations Division Managers meeting:
A plan to deploy more whitetopping projects across the state was discussed and approved.

Goal: 20 projects over the next 4 years
Statewide Whitetopping Performance Assessment Study

- Review performance in Minnesota
- Identify best practices for design, construction, and maintenance
- Develop performance curves for MnDOT Pavement Management System

- Associated new study on improved project selection just getting underway
Study Tasks and Timeline

- Task 1 - Literature search and project database (Aug 2015)
- Task 2 - Field condition survey – Part 1 [AET] (Sep 2015)
- Task 3 - Data Analysis – Part 1 (Dec 2015)
- Task 4 - Interim Report (Mar 2016)
- Task 5 - Field condition survey - Part 2 (Sep 2016)
- Task 6 - Data Analysis – Part 2 (Dec 2016)
- Task 7 - Draft final report (Jan 2017)
- Task 8 - Final report (May 2017)
Literature Search Results

• 27 references related to thin or ultrathin whitetopping
 • Tennessee, Georgia, Florida, Iowa, New Jersey, Missouri, Minnesota, Brazil
 – 2004: NCHRP Synthesis 338 (national study)
 – 2005-2014: Whitetopping performance reports
 • CPTech Center - 2014
 • Illinois – 2014
 • Louisiana – 2014
Literature Search Results

• Common observations
 – Difficult to get comprehensive performance information
 • Local projects not routinely measured
 • “Snapshot” survey at time of study
 • Most projects very young
 • Many “experimental” sections (pushing limits)
 • Main metric: % panels cracked
 • Virtually no ride quality data reported

 – Project selection is important
 • Majorities of distresses caused by permanent deformation of underlying asphalt
• Common observations (con’t)
 – Distresses linked more to traffic than environment
 • Longitudinal and transverse joint faulting (magnitude rarely reported)
 – Hypothesized mechanism proposed in NCHRP Synthesis 338
 • Reflective cracking not major issue (winters too mild?)
 • Some reports of “shifting” panels
 • Little mentioned on benefit of sealing joints
 • Illinois likes fiber-reinforced concrete for overlays

 – Limited reports on repairs to whitetoppings
 • Timing and performance not reported
Literature Search Results

• Common observations (con’t)
 – Performance curves
 • Crack development with time
 • Correlation with performance index (PCI) and traffic
 • Louisiana reported on 13 year-old projects
 • MnROAD data available
Literature Search Results

• Conclusions
 – Most performance reports based on young sections
 – Thinner whitetoppings designed for no more than 20 years of service
 – Thicker (5”+) overlays show very good performance after 10 years
 • Based primarily on % cracked panels
 • Ride quality not reported
 – Joint faulting commonly reported for larger panels and heavy truck traffic
 – Overall few negative comments in reports
Literature Search Results

• Conclusions

Developing performance curves will be challenging due to lack of older projects in Minnesota

(MnROAD data will help!)
Assessment Project Database

• 26 projects identified in Minnesota
 – Does not include MnROAD or other MnDOT test sections

• Logistics
 – 5 MnDOT projects
 • TH30 (1993)
 • TH212 (2009)
 • I-35 (2009)
 • TH56 (2010)
 • TH24 (2014)

 – 21 County projects (oldest built in 2009)
Assessment Project Database

• Logistics (con’t)
 – 19 projects with smaller panel lengths (6’ most common)
 – 3 projects with 10-’12’ panel lengths
 – 4 projects with 15’ panel lengths (all with doweled joints)
 – PCC thickness ranges from 4” to 8”
 – Remaining asphalt thickness from 3” to 14”
 – 9 projects with unsealed joints
 – No major projects with structural fibers(?)
 • MnROAD Cells 160-162 (2013)
Initial Visits and Data Collection (Task 2 Sneak Peek)

- Data collected on 21 projects
 - GPR for thickness variation (AET)
 - TH24 MnDOT GPR in 2014 [Core samples in future]
 - Profiled for IRI (AET)
 - Initial visual distress survey (MnDOT)
 - 3 core samples
 - Assess bond quality
 - GPR thickness calibration
 - HMA assessment (future)
Preliminary Observations

• Most projects are good to very good condition
 – Still “young”
 – Some longitudinal cracking
 – A few buckled panels (McLeod County)

• Little transverse reflective cracking
 – I-35 cracks remain tight
Preliminary Observations

• Faulted transverse joints in projects with heavy truck volumes/loads
 – Attempts to match overlay joints to underlying HMA cracks seems to lead to early faulting
 • Full-depth vertical movement
 – With smaller joint spacings, not all joints appear to deploy
 – Noticeable faulting on TH22 Olmsted County project
 • 4 years old, 12 ‘x12’ panels, undoweled joints
 • Very heavy truck volumes
 • No cracked panels

• Little to no maintenance on most projects
Preliminary Observations

TH22 Olmsted County, Age=4 yrs
Preliminary Observations

TH30 Amboy – 22 years old
Preliminary Observations

CSAH 46 Freeborn County, Age=6 yrs

3 dowels in OWP only
Preliminary Observations

I-35 North Branch, Age= 6 yrs
MnROAD Observations

• Whitetopping (2013)
 – Cell 162, 4” Macro fiber-reinforced
MnROAD Observations

- Whitetopping (1997)
 - Cell 96, No cracked panels, joint deterioration (too many fibers)
MnROAD Observations

- Whitetopping (2008)
 - Cells 114-914, undoweled 6’ x 6’ panels faulting (12’ effective)
Faulting Mechanism

• NCHRP 338 (Rasmussen and Rozycki), 2004
 – Hypothesis for joint faulting = permanent deformation of HMA

• Current TPF 5-269 UBOL design pooled fund
 (Vandenbossche), 2014
 – Observed permanent deformation in HMA interlayers in lab
Associated Research

• New Imetrum Video Gauge Equipment
 – Measures movement of high-resolution camera pixels
 – Will use to *characterize movement of concrete overlay panels*
 • Whitetoppings
 • Unbonded concrete overlays
Associated Research

• Video Gauge “Targets”
Associated Research

- Video Gauge Equipment
Questions and Discussion