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PART 1:  INTRODUCTION 

 

Properly designed pavements are crucial for the sustenance of highway systems in any 

country.  Until recently, pavements were designed and rehabilitated using primarily the 

American Association of State Highway and Transportation Officials (AASHTO) Guide 

for Design of Pavement Structures, last modified in 1993.  Commonly known as the 1993 

AASHTO Guide, it provides design procedures based on equations that are empirical in 

nature that were developed using AASHO Road Test data collected in the late 1950s.  In 

addition to being empirical, the 1993 AASHTO Guide extrapolates heavily for conditions 

(traffic, materials, climate, etc.) other than those at the AASHO Road Test site.   

In the late 1990s, the AASHTO Joint Task Force on Pavements along with the 

National Cooperative Highway Research Program (NCHRP) and the Federal Highway 

Administration (FHWA) mandated the development of mechanistic-empirical (M-E) 

based pavement design guidelines.  As a result, NCHRP Project 1-37A, Development of 

the 2002 Guide for Design of New and Rehabilitated Pavement Structures: Phase II was 

initiated in 1996 and the Mechanistic-Empirical Pavement Design Guide (MEPDG) was 

released in 2004 (AASHTO 2008).  The MEPDG contains distress prediction models that 

are derived mechanistically, empirically, or as a combination of these methods.   

Pavements are generally classified as flexible or rigid depending on the type of 

material used for the surface course.  Rigid pavements have a portland cement concrete 

(PCC) surface layer and are advantageous in terms of better structural load bearing 

capacity (Figure 1a).  Flexible pavements have an asphalt concrete (AC) surface course 

and provide a smooth riding surface, a reduction in tire-pavement noise, and an easily 

renewable wearing course (Figure 1b).  A third category of pavement consists of 

composite pavements that are usually designed and constructed as a combination of the 

above mentioned materials.  This includes, but is not limited to, PCC over PCC, AC over 

AC, and AC over PCC pavements.  They provide a combination of the advantageous 

characteristics of both flexible and rigid pavements.  Composite pavements are 

considered an extremely promising choice for providing strong, durable, safe, smooth, 

and quiet pavements that need minimal maintenance (Darter et al. 2008).  The PCC layer 

of a composite pavement is generally structurally sound and should not exhibit distress 

history.  The AC layer is provided primarily for non-structural benefits such as noise 

reduction or improved ride quality, but it can also act as an insulating layer in reducing 

the extremities of temperature in the PCC layer. 

For the purpose of this research, the term composite pavement is used solely for a 

newly constructed, structural PCC layer overlaid with a high quality AC surface layer as 

soon as the concrete cures (Figure 1c).  
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Figure 1 Structure of (a) rigid pavement, (b) flexible pavement, and (c) composite pavement 

(adopted from AASHTO 2008). 

 

The MEPDG contains distress prediction models corresponding to various 

distresses in a pavement, which can be used to predict the design life.  One such distress 

model for predicting PCC cracking in a composite pavement was adopted directly from 

the fatigue cracking model of a new jointed plain concrete pavement (JPCP).  JPCP is a 

class of rigid pavements that do not contain distributed steel to control random cracking 

and may or may not contain transverse joint load transfer devices (i.e., dowels) (AASHTO 

2008).   

The MEPDG cracking model for composite pavements computes the critical 

bending stresses in the PCC layer based on the assumption that the AC layer behavior is 

elastic and its modulus changes on a monthly basis.  However, this adaptation is an over-

simplification of the actual cracking process as it does not account for the key material 

property of composite pavements i.e. the viscoelastic behavior of asphalt and its high 

sensitivity to temperature and loading duration.  The major goal of this research is to 

address this limitation of the MEPDG cracking model in the PCC layer of a composite 

pavement.  

Furthermore, an additional challenge in developing modifications for the MEPDG 

is the need for computational efficiency.  The MEPDG calculates the stress in the PCC 

layer for every hour of the pavement design life (ex. each hour over 20 years).  In this 

regard, the MEPDG is comprehensive and, as a result, computationally demanding.  A 

secondary goal for this research is to develop a computationally efficient process to 

account for the cracking behavior in the PCC layer.  
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PART 2: BACKGROUND 

 

Components of Stress under Temperature Curling 

 

Rigid and composite pavements are subjected to bending stresses under temperature 

gradients and traffic loads.  A non-linear distribution of temperature through the depth of 

the PCC slab closely represents the temperature distribution in an in-situ pavement.  

During the daytime the slab is under a positive thermal gradient (i.e., the temperature at 

the top of the PCC layer is greater than the temperature at the bottom of the PCC layer), 

and during nighttime, the slab is under negative thermal gradient (i.e., the temperature at 

the bottom of the layer is greater than the temperature at the top of the layer).   

 Khazanovich (1994) demonstrated the existence of an additional stress attributed 

to the non-linear temperature distribution through a PCC layer that acts on single or 

multi-layered pavement systems so as to produce stresses that are self-equilibrating in 

nature.  Consider a slab on an elastic foundation subjected to an arbitrary temperature 

distribution.  The arbitrary temperature distribution may be linear or non-linear through 

the thickness of the slab but does not vary in the plane of the slab.  Also, the slab is free 

to contract or expand in the horizontal directions.  According to Thomlinson (1940) any 

arbitrary temperature distribution, T(z) can be divided into three components, namely: 

 

1. The constant-strain-causing temperature component, TC 

2. The linear-strain-causing temperature component, TL 

3. The nonlinear-strain-causing temperature component, TNL 

 

Since the arbitrary temperature distribution may vary along the depth of the slab, 

it must be noted that each of these three components may also vary along the depth of the 

slab.  The constant-strain-causing temperature component, TC, produces horizontal strains 

that are constant through the depth of the slab.  These strains do not produce stress when 

the slab is unrestrained in the horizontal directions.  Khazanovich (1994) defined the 

constant-strain-causing temperature component, TC as follows: 

 

    (1) 

 

where 

 z = distance to the point of interest from the neutral axis 

 T0 = reference temperature of the layer at which there are no temperature-related 

stresses or strains in the layer 

 l = total number of layers in the multi-layered system 

 E = Young’s modulus 

 α = coefficient of thermal expansion 

 T(z) = arbitrary temperature distribution 
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It implies from equation (1) that if the coefficient of thermal expansion is constant 

through the depth of the slab then the constant-strain-causing temperature component will 

also be constant. 

The linear-strain-causing temperature component, TL, produces horizontal strains 

that are linearly distributed along the depth of the slab.  Due to the linear distribution of 

strains, TL produces bending stresses that can be solved for by using any finite element 

(FE)-based method.  The temperature component, TL, is defined as follows: 

 

    (2) 

 

As before, equation (2) implies that if the coefficient of thermal expansion is 

constant through the depth of the slab then the linear-strain-causing temperature 

component will be linear through the depth of the slab.  The difference between the total 

temperature distribution and the reference temperature is equal to the sum of the 

differences of the individual temperature components and the reference temperature 

defined as follows: 

 

    (3) 

 

Knowing the constant and linear strain-causing temperature components, TL and 

TC, the nonlinear-strain-causing temperature component, TNL, can be written as: 

 

    (4) 

 

For slabs modeled using linear elastic material models, the corresponding stress at 

any depth z according to Hooke’s law is given as: 

 

     (5) 

 

where 

 μ = Poisson's ratio of the layer 

 

Appendix A provides the analytical solution for calculating the self-equilibrating, non-

linear stress, ζNL. 

Traffic loads are generally modeled as either concentrated or distributed pressure 

loads that cause bending stresses.  Therefore, the total stress at any point in the slab due 

to combined traffic loading and temperature curling is given as: 

 

     (6) 
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For computing the total stress at a critical location in the PCC layer, bending 

stresses due to traffic loads and linear-strain-causing temperature component TL should be 

added to the self-equilibrating stresses due to the non-linear-strain-causing temperature 

component TNL. The following section documents the procedure adopted by MEPDG to 

compute the bending stresses due to traffic loads and the linear-strain-causing 

temperature component. 

 

MEPDG Rapid Solutions for Predicting Critical PCC Bottom Surface Stresses 

 

The MEPDG identified 30 input parameters to evaluate the JPCP fatigue cracking 

model.  It states that ―… an attempt to run all combinations of all 30 input parameters 

would require analysis of more than 2x10
14

 cases if each parameter is allowed to have 

just 3 values‖ (AASHTO 2009).  For the analysis of a composite pavement, the 

independent number of input parameters will be even higher due to additional AC 

properties, and this will further increase the total number of cases to be analyzed. 

Therefore, a need was identified for developing rapid solutions for calculating PCC 

stresses in the MEPDG.  As a result, a method was developed to compute rigorous yet 

efficient solutions.  The method is based on the following concepts: 

 

1. Slab equivalency concept, and 

2. Development of artificial neural networks (NNs). 

 

Slab Equivalency Concept 

 

The concept of slab equivalency was adopted by the MEPDG to reduce the number of 

independent parameters affecting PCC stresses without introducing any additional error.  

According to this concept, a multi-layered pavement system could be simplified by using 

an equivalent transformed section in the form of a single layer slab (Ioannides et al. 

1992).  The solution of a multi-layered system could be developed from the solution for 

the equivalent single layer slab. 

The equivalent single layer slab must exhibit the same deflection profile as the 

multi-layered slab if the load and the foundation properties (k-value) are the same.  This 

concept employs three equivalency conditions namely, 1) equivalent thickness, 2) 

equivalent temperature gradient, and 3) equivalent slab.  The MEPDG documents 

application of this theory for the analysis of a JPCP with a base layer.  The following 

equations (11 to 19) demonstrate the equivalency concept for a bonded PCC-base 

composite system.  Similar equations are also provided in the MEPDG documentation for 

an unbonded PCC-base system. 

 

Equivalent Thickness 

Ioannides et al. (1992) presented an equivalent thickness solution for a multi-layered 

pavement system.  The transformation involved flexural stiffness D, with an assumption 

that the Poisson’s ratio of all the layers and that of the equivalent layer were equal, i.e. 
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     (7) 

 

if          (8) 

 

where: 

 D = flexural stiffness given as: 

 

     (9) 

 

 E = Young’s modulus 

 h = layer thickness 

 μ = Poisson’s ratio 

 

According to Khazanovich (1994) the governing equation of the transformation (equation 

7) can also be written in terms of moment in each plate M, as follows: 

 

       (10) 

 

For a fully bonded PCC-base system, the neutral axis of the bonded system, 

assuming the origin is at the top of the PCC layer, is given as follows: 

 

   (11)  

 

where: 

 

  x = location of the neutral axis from the top of PCC layer 

 

The thickness and modulus of the equivalent single layer slab can be established in terms 

of the thicknesses and moduli of the corresponding multi-layered slab by combining 

equations (7) to (11) as follows: 
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equal to a reasonable value.  The other parameter can then be expressed in terms of the 

assumed parameter and properties of the multi-layered slab system.  For example, the 

thickness of the equivalent single-layer slab that has the same modulus of elasticity and 

Poisson’s ratio as the PCC layer of the composite slab is given as: 

 

  (13) 

 

Equation (13) represents the equivalent thickness of the single-layer slab that can replace 

the multi-layered slab while maintaining the same deflection profile and modulus of 

subgrade reaction (k-value) under loading. 

 

Equivalent Linear Temperature Gradient 

Thomlinson (1940) introduced the concept of equivalent temperature gradient for a 

single-layer slab.  Khazanovich (1994) and Ioannides and Khazanovich (1998) later 

generalized the concept for a non-uniform, multi-layered slab. The MEPDG 

documentation states that ―if two slabs have the same plane-view geometry, flexural 

stiffness, self-weight, boundary conditions, and applied pressure, and rest on the same 

foundation, then these slabs have the same deflection and bending moment distributions 

if their through-the-thickness temperature distributions satisfy the following condition‖ 

(AASHTO 2009): 

 

  (14) 

 

where 

A and B = subscripts denoting the two slabs 

z = distance from the neutral axis 

T0 = temperature at which theses slabs are assumed to be flat 

α = coefficient of thermal expansion 

E = modulus of elasticity 

h = slab thickness 

 

Khazanovich (1994) also states that ―[A]s a corollary, two temperature 

distributions are equivalent only if their respective linear strain components are 

identical.‖  Therefore, equation (14) can be employed for replacing the curling analysis of 
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function of depth and can be expressed in terms of temperature distributions of the PCC 
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where: 

 ΔTL,eff = difference between the top and bottom surface temperatures of the 

equivalent slab 

 T(z) and To = temperature distributions and reference temperature respectively, 

 αPCC and αBase = coefficients of thermal expansion of the PCC and base layers, 

respectively 

 

Korenev’s Equivalent Slab 

Korenev and Chernigovskaya (1962) proposed an equivalency concept for circular slabs 

resting on a Winkler foundation and subjected to traffic loads and temperature curling.  

According to this concept, the stress distribution in a slab of known dimensions, 

properties, loading conditions, and temperature gradients is related to the stress 

distribution in another slab by equation (16), if the following are the same (Khazanovich 

et al. 2001): 

 

 Ratio of the slab characteristic dimension to the radius of relative stiffness (L/l), 

 The total applied load to the slab self-weight (P/Q), and  

 Korenev’s non-dimensional temperature gradient .  

 

       (16) 

 

where: 

 ζ, h, γ, and l = temperature stress, thickness, unit-weight, and radius of relative 

stiffness of a given slab, respectively 

 

MEPDG adopts the Korenev’s non-dimensional temperature gradient to combine 

many factors that affect curling stresses into one parameter (Khazanovich et al. 2001, 

AASHTO 2009).  It is defined as: 

 

      (17) 

 

where: 

 α, μ, l, γ, h = coefficient of thermal expansion, Poisson’s ratio, radius of relative 

stiffness, unit-weight, and thickness of the slab, respectively 

 k = modulus of subgrade reaction 

 ΔTL = linear temperature difference between the top and bottom surface of the 

slab 

 

Korenev’s slab equivalency concept was modified for the analysis of rectangular 

slabs.  It was found that if the following conditions are fulfilled, then the concept holds 

true for rectangular slab as well (AASHTO 2009): 
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      (18) 

where: 

 l = radius of relative stiffness 

 L = joint spacing 

  = Korenev’s nondimensional temperature gradient  

 AGG = aggregate interlock between the main lane and the shoulder 

 P = axle weight 

 γ = PCC slab unit weight 

 h = PCC thickness 

 s = distance between slab edge and outer wheel edge 

 

Khazanovich et al. (2001) states that if these conditions hold true for the top 

surface of continuously reinforced concrete pavements (CRCP), then Korenev’s slab 

equivalency concept can be applied to CRCP. 

In summary, the number of independent parameters affecting PCC stresses in a 

multi-layered system can be reduced by using an equivalent single layer slab and 

equivalent linear temperature gradient.  Once the stresses in the equivalent system are 

solved for, the stresses in the multi-layered system can be computed using Korenev’s 

equivalent slab method. 

 

MEPDG Neural Networks for Computing PCC Stresses 

 

The purpose of building and training artificial neural networks (NNs) is to essentially 

create an exhaustive database corresponding to a variety of combinations of design and 

loading parameters.  This database can then be referred quickly for an almost 

instantaneous prediction of responses.  Several NN models were proposed for predicting 

responses in airfield jointed concrete pavements (Haussmann et al. 1997; Ceylan et al. 

1998, 1999, 2000) that basically eliminated the need for using FE based programs such as 

ILLI-SLAB (Tabatabie and Barenberg 1980).  

MEPDG uses a modified MS-HARP neural network architecture (Banan and 

Hjelmstad 1994, Khazanovich and Roesler 1997) to further reduce the computational 

time while computing the PCC stresses.  An analysis of three loading scenarios, namely i) 

traffic loading only, ii) temperature loading only, and iii) combined traffic and 

temperature loading found that ―there is a certain interaction between traffic and 

temperature loadings such that stresses from traffic loading and temperature gradient 

cannot be simply superimposed‖ (AASHTO 2009).  In light of this observation, MEPDG 
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substituted the original multi-slab system by a combination of two simpler systems as 

follows: 

 A single slab (system A) 

 A two-slab system (system B) (i.e., single slab with shoulder) 

 

Schematics for the original system, system A, and system B are presented in 

Figure 2. 

 

 

Figure 2 Schematics for (a) original multi-layered system, (b) single slab system A, and (c) 

two-slab system B. 

 

Neural Network NNA for Temperature Curling and Traffic Stresses 

The length of single slab system A is equal to the transverse joint spacing of the original 

system, its width equals the truck lane width of the original system, and its thickness 

equals the slab thickness of the original system.  Two neural networks NNA1 and NNA2 

were trained each using a factorial of 14175 ISLAB2000 runs to compute stresses 

corresponding to temperature curling and single axle loading, and temperature curling 

and tandem axle loading, respectively.  Figure 3 presents the structural model for NNA1 

and NNA2. 

(a)

(c)

(b)
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Figure 3 Structural model for (a) NNA1 (corresponding to single axle load) and (b) NNA2 

(corresponding to tandem axle load). 

 

Neural networks NNA1 and NNA2 were trained to calculate the stresses in 

system A for three loading conditions, namely: 

 

 Stress due to axle loading, P only, , 

 Curling stress due to equivalent linear temperature loading only (expressed in terms 

of Korenev’s nondimensional temperature gradient ), , and 

 Stress due to combined axle and linear temperature loading, . 

 

It should be noted that NNA1 and NNA2 account for neither the tire-footprint 

geometry nor the shoulder load transfer efficiency (LTE).  Also, the stress due to the 

linear temperature loading 
 
is equal to the curling component of the bending 

stress, i.e., when no axle load is present (AASHTO 2009). 

 

NNB for Traffic-only Stresses in the Equivalent Slab  

System B is a two-slab system that has a sufficiently large slab length to ignore slab size 

effects, its width equals the truck lane width of the original system, and its thickness 

equals the slab thickness of the original system.  NNs based on system B account for the 

tire-footprint geometry and the effect of shoulder support.  These NNs consider axle 

loading but not temperature curling.  The stresses in the system B were computed for two 

(2) conditions, namely: 

 

 No load transfer between the slabs in the system B , and 

 The LTE between the slabs in the system B is equal to shoulder LTE . 
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For single axle loading, all the wheels in the axle are used for computing the 

stress using neural network NNB1.  In case of tandem or tridem axle loading, an 

additional neural network NNB2 computes the stresses from the remaining wheels (four 

for a tandem axle and eight for a tridem).  The final stress is obtained by superimposing 

stresses from NNB1 and NNB2 for the given LTE (either 0 or LTEsh).   

Neural networks NNB1 and NNB2 were trained using a factorial of 24300 

ISLAB2000 runs and 910 ISLAB2000 runs, respectively.  Figure 4 presents the structural 

model for NNB1 and NNB2. 

 

 

Figure 4 Structural model for (a) NNB1 (corresponding to single axle single wheel load) and 

(b) NNB2 (corresponding to single wheel load). 

 

The total stress in the equivalent slab is then expressed as a combination of 

stresses from NNA and NNB as follows:   

 

  (19) 

 

Finally, the stress at the bottom of the PCC layer in the composite pavement is 

calculated as follows: 

 

     (20) 

 

      (21) 

 

where: 

  = total stress at the bottom of the PCC slab 

  = bending stress at the bottom of the PCC slab 
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 =  stress at the bottom of the PCC layer caused by the nonlinear strain 

component of the temperature distribution 

 

So far in this section a review of the MEPDG fatigue cracking model for JPCP 

was presented.  A comprehensive appraisal of the PCC surface stresses due to traffic and 

temperature loading was performed.  And finally, the method adopted by MEPDG to 

derive rapid solutions through the use of neural networks was discussed.   With this as the 

underlying theory, the focus of discussion now shifts to the adoption of the JPCP fatigue 

cracking model for composite pavements, presented below. 

 

Adoption of the Fatigue Cracking Model for Composite Pavements in MEPDG 

 

The adoption of the JPCP fatigue cracking model for composite pavements was evaluated 

by two criteria:  

 

1. Does the physical transformation of the multi-layered composite system to an 

equivalent system satisfy all the conditions of equivalency previously discussed? 

2. Does the stress-strain analysis under traffic loads and temperature curling change 

due to the inclusion of viscoelastic material properties of the AC layer? 

 

MEPDG adopts the transformed sections concept to convert the composite 

pavement to an equivalent single layer PCC slab placed directly on the same subgrade as 

the composite pavement.  A representation of the MEPDG composite pavement 

transformation is shown in Figure 5. 

 

 

Figure 5 Conversion of a composite pavement to an equivalent PCC structure. 

 

Equations for equivalent thickness (13) and equivalent linear temperature gradient 

(15) were employed such that the thicknesses, moduli, and temperature distributions of 

the AC and PCC layers were expressed in terms of the thickness, modulus, and the linear 

temperature gradient of the equivalent structure.  The following assumptions were made 

to define the equivalent structure (AASHTO 2009): 

 

1. The deflection basin of the equivalent structure is same as the original composite 

structure under the same conditions of traffic and temperature loading, and 

botPCCNL ,,
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2. The equivalent temperature gradient must induce the same magnitude of moments 

in the equivalent structure as that in the PCC slab of the original composite 

structure. 

 

In the case of JPCP, the material response of the constituent layers (PCC and 

base) is assumed to be elastic.  However, due to the introduction of AC layer, the material 

response for composite pavements is not purely elastic anymore.  Asphalt is a viscoelastic 

material with a load-deflection response dependent on both the elastic and the viscous 

components of the material property.  Asphalt undergoes creep or relaxation depending 

upon the loading criterion.  Under constant strain, the stress in asphalt dissipates with 

time.  However, the rate of dissipation, also referred to as stress relaxation, is dependent 

on the temperature at which the asphalt is kept.  At high temperatures, stress relaxation 

occurs quickly whereas at low temperatures, stress relaxation may take several hours or 

days (Nesnas and Nunn, 2004).  MEPDG simplifies the representation of asphalt through 

the use of a single time-temperature dependent dynamic modulus.   

It was identified under this research that the use of a single dynamic modulus may 

introduce certain limitations in the stress computation process and eventually fatigue 

cracking computations.  In order to better understand the limitations due to the use of a 

single dynamic modulus, a brief review of computation of AC dynamic modulus under 

MEPDG framework is presented next. 

 

Asphalt Characterization 

 

Viscoelastic Behavior of Asphalt Concrete 

 

Several researchers have demonstrated that the constitutive equation (relationship 

between stresses and strains) of asphalt is dependent on time (Saal et al. 1950, 1958; Van 

der Poel 1958; Sayegh 1967; Monismith et al. 1962, 1992; Marasteanu and Anderson 

2000).  The viscoelastic behavior of asphalt is represented by physical models such as the 

Maxwell model, the Kelvin-Voigt model, and their generalized forms that are 

combinations of elastic springs and viscous dashpots.  The Maxwell model is a 

combination of springs and dashpots in series while the Kelvin-Voigt model is a 

combination of springs and dashpots in parallel.  By themselves, the simple Maxwell or 

Kelvin-Voigt models do not represent the linear viscoelastic behavior of AC adequately.  

Therefore, more complex models consisting of a combination of several Maxwell and/or 

Kelvin-Voigt models provide greater flexibility in modeling the response of the 

viscoelastic material (Mase 1970). 

If a material is modeled using several Kevin-Voigt models connected in series the 

creep compliance of that material has the form of a Prony series which will be defined in 

Part 3.  The Prony series coefficients are generally used as input parameters in finite 

element based programs such as ABAQUS (ABAQUS 1997), ANSYS (ANSYS 2004), and 

NIKE3D (Maker et al. 1995).  The Prony series has been used by many researchers to 

characterize AC behavior (Soussou et al. 1970; Daniel 1998; Park et al. 1999, 2001; Di 

Bendetto et al. 2004, 2007; Elseifi et al. 2006; Zofka 2007, Wang 2007, Zofka et al. 2008, 
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Marasteanu et al. 2009).  For example, Di Bendetto et al. (2004) proposed a 15-element 

generalized Kevin-Voigt model using a Prony series to represent the creep compliance of 

asphalt.  The high number of Kevin-Voigt elements was adopted to cover the entire range 

of AC behavior under various temperatures and loading frequencies. 

The viscoelastic behavior of AC is highly sensitive to the temperature and the rate 

of loading of the AC material.  With an increase in temperature, the stiffness of the AC 

layer reduces.  Similar behavior is observed when the AC layer is subjected to low 

frequency loads (i.e. long loading rates).  The stiffness of the AC layer increases with a 

decrease in temperature or when subjected to high frequency loads.  The stiffness of the 

AC layer, under a certain loading frequency, can be ―shifted‖ to replicate the stiffness 

under another frequency by ―shifting‖ the temperature of the analysis.  This behavior of 

asphalt concrete is termed as the time-temperature superposition.  The effect of 

temperature and loading frequency is most commonly represented by asphalt master 

curves that are based on the time-temperature superposition principles (Bahia et al. 1992, 

Christensen and Anderson 1992, Gordon and Shaw 1994, Marasteanu and Anderson 

1999, Rowe 2001, Pellinen and Witczak 2002, Ping and Xiao 2007).   

 

Characterization of Asphalt in the MEPDG 

 

The MEPDG characterizes the viscoelastic behavior of the AC layer using a load 

duration-dependent dynamic modulus.  The dynamic modulus of asphalt is computed 

using a master curve of sigmoidal shape, at a reference temperature of 70°F, as shown by 

the following equations (Pellinen and Witczak 2002): 

 

      (22) 

 

where: 

  EAC = dynamic modulus of asphalt 

  δ, α, β, and γ = parameters based on the volumetric property of the asphalt mix  

  tr = reduced time, which accounts for the effects of temperature and the rate of 

loading given as:  

  

      (23) 

 

where: 

  t = actual loading time 

  c = 1.255882 

  η and ηTR = viscosities at temperature T and reference temperature TR, respectively 

 

The MEPDG utilizes Odemark’s method of equivalent thickness (MET) to 

calculate the actual loading time t.  According to this method, any layer of a pavement 

system can be transformed into an equivalent layer.  The transformation is valid as long 

as both the layers (original and equivalent) have the same flexural stiffness. Maintaining 

the flexural stiffness ensures that the transformation does not influence the stresses and 
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strains below the transformed layer.   

 

Figure 6 (a) Effective length and (b) effective depth for single axle in a conventional flexible 

pavement. 

 

Using Odemark’s MET, both the AC and base layers are transformed into 

equivalent subgrade layers, i.e., the moduli of the transformed AC and the transformed 

base layers are equal to the subgrade modulus (Figure 6).  For simplicity, the stress 

distribution for a typical subgrade soil is assumed to be at 45° (AASHTO 2009).  The 

effective depth (Zeff), effective length (Leff), and loading time (t) at the mid-depth of the 

transformed layer are given as: 

 

      (24) 

 

         (25) 

 

        (26) 

 

where: 

 n = layer to be transformed 

 h = thickness of a layer 

 E = modulus of the layer  

 ESG = modulus of the subgrade layer 

 ac = radius of contact area 

 Vs = speed of the vehicle 

 

Equations (23) to (26) demonstrate that the asphalt behavior is dependent on the 

duration of the loads.  A traffic load is nearly instantaneous; the duration at highway 

speeds ranges between 0.01 sec. to 0.05 sec.  Under traffic loads asphalt behaves 

practically as an elastic material as it does not undergo relaxation.  On the other hand, the 

temperature gradient functions like a long-term load, which is applied over the duration 
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of few hours.  The long-term load response could be termed as quasi-elastic as the 

modulus increases to the asymptotes of the long-term asphalt modulus.  From Figure 7 it 

can be inferred that the instantaneous modulus of asphalt is significantly different than 

the long-term modulus. 

 

 

Figure 7 Stress-strain responses under different load durations (adopted from Chen 2000). 

 

MEPDG considers only one value of the AC modulus (the dynamic modulus), so 

the distress computation process due to traffic loads and temperature gradients is over-

simplified.  There is a need to re-evaluate the characterization of AC layer to account for 

stress computation under a combination of traffic loads and temperature gradients. 

 

Limitations of the Structural Modeling of Composite Pavements in the MEPDG 

 

As stated before, the adopted fatigue cracking model seems reasonable in its approach 

towards computing the stress in the PCC layer of a composite pavement.  However, an 

analysis of the AC modulus confirms that there are limitations that need to be considered 

in this study.  These limitations are addressed in the following sections. 

 

Use of a Single Dynamic Modulus of Asphalt 

 

The viscoelastic behavior of AC is dependent on the duration of the loads.  As described 

in the preceding section, asphalt behaves practically as an elastic material under 

instantaneous traffic loads, whereas, under temperature gradients, the long-term load 

response of AC is quasi-elastic.  The instantaneous modulus of asphalt is significantly 

different than the long-term modulus.  Therefore, a single dynamic modulus is not 

representative of the combination of traffic load and temperature curling that causes 

cracking in the PCC layer of a composite pavement. 

 

Assumption that the AC Modulus Changes on a Monthly Basis 

 

The fatigue cracking model for composite pavements is based on the assumption that the 
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AC modulus changes on a monthly basis.  Pavements experience changes in temperature, 

and correspondingly, stresses, throughout a 24-hour cycle.  Since AC is highly sensitive 

to temperature, its modulus should also change depending on the magnitude of the 

temperature change.  However, as the modulus of asphalt is assumed to change on a 

monthly basis, the computed stresses in the PCC layer do not reflect the actual stresses 

due to the changes in the stiffness of the AC throughout the month.  In order to improve 

the accuracy of predicted PCC stresses and corresponding fatigue cracking, it is of utmost 

importance to address the limitations identified in this section.



PART 3:  FINITE ELEMENT ANALYSIS OF COMPOSITE PAVEMENT 

INCORPORATING A VISCOELASTIC LAYER 

 

In this section, a finite element (FE)-based model of a multi-layered composite pavement 

structure is presented.  The asphalt concrete (AC) layer is considered to be viscoelastic 

while all other constructed layers (primarily portland cement concrete [PCC] and base) 

are elastic.  The developed FE model is a generalization of ISLAB2000 (Khazanovich et 

al. 2000), a widely used computer program for the analysis of rigid pavements.  The 

rationale for selecting ISLAB2000 was based on the fact that the Mechanistic Empirical 

Pavement Design Guide (MEPDG) uses the ISLAB2000 framework for structural 

modeling of concrete pavements and asphalt overlays, and the results of this study could 

be incorporated into the next versions of the MEPDG. 

This section details representation of the AC viscoelastic material, formulation of 

a FE slab-on-grade model incorporating viscoelastic layers, validation of the FE model 

using simple examples, and documentation on the sensitivity of the FE model to internal 

parameters. 

 

Viscoelastic Material Representation of Asphalt Concrete 

 

The stress or strain at a given time in a viscoelastic material depends on the history of the 

stress or strain at all times preceding the time of interest.  The constitutive equation for 

linear viscoelastic materials is described by Boltzman’s superposition principle.  

According to this principle, the strain (or stress) in a viscoelastic material is the sum or 

superposition of all strains (or stresses) acting on the material at different times as shown 

in Figure 8 (Osswald and Menges, 2003). 

 

Figure 8 Schematic representation of Boltzman’s superposition principle (adopted from 

UMN Online Lecture 2011). 
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The strain at any time t can be expressed mathematically as: 

 

   (27) 

 

where: 

 ε(t) = strain at time t  

 ζi = applied stress at time ηi 

J(t) = creep compliance of the material defined as the strain under unit stress at 

any time t, written as follows: 

 

       (28) 

 

Equation (27) can also be written in the Volterra integral equation form as: 

 

     (29) 

 

It can be deduced from equation (29) that the creep compliance function 

characterizes the viscoelastic behavior.  Under constant stress, the strain time history can 

be measured in a laboratory creep test.  One of the ways to determine the creep 

compliance function is by fitting the laboratory measured strain data into a functional 

form.  Several researchers have used linear or non-linear optimization techniques to 

minimize the least square error between a linear or non-linear model, used to fit the creep 

compliance function, and the measured test data (Schapery 1974, Johnson and Quigley 

1992, Hill 1993, Chen 2000).   

Of the many available functional forms, a commonly adopted method uses the 

Prony series [i.e. ] to represent the creep compliance.  The advantage of using 

the Prony series is two-fold.  First, the Prony series has a very simple physical 

interpretation in the form of a physical model composed of springs and dashpots.  

Second, the viscoelastic constitutive equation can be expressed in differential form 

instead of the integral form given by equation (29).  The differential form of the 

viscoelastic constitutive equation can be effectively incorporated into numerical 

techniques and finite element algorithms (Zienkiewicz and Taylor 1967, Lesieutre and 

Govindswamy 1996, Johnson et al. 1997, Johnson 1999, Chen 2000).   
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Consider the creep compliance function J(t) in the Prony series form given as: 

 

       (30) 

 

where: 

 N = number of terms in the Prony series 

 α0, αi, and λi = coefficients defining the Prony series 

 t = time 

 

Assume that the material is stress-free for time t < 0.  Integration of equation (29) 

by parts leads to the following relationship: 

 

      (31) 

 

         (32) 

 

where: 

 E0 = instantaneous modulus of the material 

 J(0) = creep compliance at time t = 0 

 

If the Prony series coefficients α0, αi, and λi are expressed as follows: 

 

   

       (33) 

 

where: 

  Ei = spring stiffness for term i 

  ηi = dashpot viscosity for term i 

  λi = relaxation time for term i 

 

the Prony series has a simple physical interpretation in the form of a model consisting of 

an elastic spring connected in series with a generalized Kelvin-Voigt model as shown in 

Figure 9. 

 

 

Figure 9 Schematic of generalized N-term Kelvin-Voigt model. 
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The creep compliance function of this model can be written based on equations 

(30) and (33) as follows (Ferry 1970): 

 

      (34) 

 

Another advantage of defining the creep compliance function in terms of the 

Prony series is that it allows for replacing the integral stress-strain relationship (equation 

(31)) by a differential relationship where the total strain at any time t is given as: 

 

     (35) 

 

where: 

 ε
el
 = elastic component of strain 

 ε
cr

 = creep component of strain 

 

Substituting equation (34) in equation (31) gives the total strain at any time t as: 

 

     (36) 

 

By differentiating the creep component of the total strain given by the integral 

equation (36) for any i-th term of the Prony series with respect to time t: 

 

     (37) 

 

Substituting the i-th creep strain term from equation (36) into equation (37): 

 

     (38) 

 

For a very small interval of time, assuming that the elastic stress ζ(t) does not 

change within the time interval, the increment of creep strain during the time interval can 

be approximated by generalizing equation (38) for all terms of the Prony series as 

follows: 

 

     (39) 
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where: 

 Δεcr
(t) = increment of creep strain 

 Δt = increment of time 

 

The total strain at the end of any time interval Δt is the sum of the strain at the 

start of the time interval and the increment of creep strain during the time interval, given 

as: 

 

      (40) 

 

where: 

  tj = the start of the time increment 

  tj+1 = the end of the time increment 

At the initial time t1 (i.e. j = 0), the creep strain  and equation (35) 

become the elastic stress-strain relationship.  The increment of creep strain at any time t 

is dependent on the applied stress during that time interval, the creep strain at the start of 

the time interval in the individual Kelvin-Voigt elements, the spring stiffness and dashpot 

viscosity of the Kelvin-Voigt elements, and the time interval Δtj.  This implies that the 

differential formulation of the creep compliance function does not require storage of the 

entire strain history. 

Analogous to the elastic constitutive equation (Timoshenko 1970), the three-

dimensional viscoelastic relationship between stresses ζmn and strains εmn can be written 

as: 

 

      (41) 

 

where: 

 m, n, and k = spatial dimensions x, y, and z, respectively 

 μ = Poisson’s ratio 

 δmn = Kronecker delta function given as follows: 

 

       (42) 

 

  is a creep compliance operator defined as follows: 

 

     (43) 

 

The increment of creep strain at the end of the time interval Δt for a three-

dimensional analysis can be written by combining equations (39) and (41) as follows: 
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  (44) 

 

The following section describes a finite element model based on the viscoelastic 

constitutive equation presented herein. 

 

Development of Finite Element Model for the Analysis of Viscoelastic Slab-on-

Grade 

 

The finite element method is an efficient tool for computing the unknown variables (such 

as displacements or forces) for an engineering problem (Cook et al. 1974, Reddy 1984).  

Several FE codes developed specifically for pavement analysis (such as ILLI-SLAB 

[Tabatabie and Barenberg 1980], WESLIQID [Chou 1981], KENSLAB [Huang 1993]) 

are based on plate theory for modeling pavement layers.  The plate theory is traditionally 

adopted for modeling of concrete layers because the horizontal dimensions of a pavement 

slab are considerably greater than its thickness, and the high stiffness of PCC makes 

bending the main mode of deformation.  This justifies the use of medium-thick plates to 

model pavement layers. 

The Kirchhoff-Love plate theory is an extension of the Euler-Bernoulli beam 

theory for bending of isotropic and homogenous medium-thick plates.  The fundamental 

assumptions of the plate theory are summarized as follows (Timoshenko and Woinowsky-

Krieger 1959): 

 

1. The deflection of the mid-surface of the plate is small in comparison to the 

thickness of the plate. 

2. Straight lines initially normal to the mid-surface remain straight and normal to 

that surface after bending. 

3. No mid-surface straining or in-plane straining, stretching, or contracting occurs 

due to bending. 

4. The component of stress normal to the mid-surface is negligible. 

 

In this section, the formulation of a FE model for a slab-on-grade is presented.  A 

viscoelastic plate is placed on a Winkler foundation that could be elastic or viscoelastic.  

The plate is subjected to traffic loads (in form of a uniformly distributed load over the tire 

footprint area) and thermal loads (in form of an arbitrary temperature profile varying 

through the thickness of the plate).  The viscoelastic problem is converted into a series of 

elastic problems such that fictitious loads act on the plate depending on the stress history 

in the viscoelastic plate.  Although readily available in literature (Zienkiewicz and Taylor 

1967, Cook et al. 1974, Ugural and Fenster 2003), part of the formulation includes a 

solution for elastic plates subjected to thermal loads, provided for the sake of 

completeness. 
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Formulation of the Finite Element Model 

 

A four-node rectangular plate element ijkl, as shown in Figure 10, was selected to 

represent the elements of the pavement layer.  The coordinate system adopted to develop 

the formulation is also marked in Figure 10.  The element has three degrees of freedom at 

each node. 

 

Figure 10 Finite element ijkl. 

 

From the assumptions of medium-thick plate theory, it is deduced that the vertical 

shear strains γxz and γyz and the normal strain εz due to vertical loading may be neglected.  

Thus, the remaining strains at any given point in the plate can be written in terms of 

displacements as: 

 

        (45) 

 

where: 

  u, v, and w = deflections in the x, y, and z directions, respectively 

  ε and γ = normal and shear strains, respectively 

 

Since only slab bending is considered, the horizontal deflections can be written in 

terms of the slopes at the mid-surface given as: 

 

         (46) 

 

where: 

  z = distance from the neutral axis of the plate 
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The strains for an element in the plate can be re-written in matrix form by 

combining equations (45) and (46) as follows: 

 

 
       (47) 

 

     (48) 

 

where: 

  subscript e = an individual element in the plate 

  κ = curvatures of the element 

 

Further, if the plate is elastic, the stress-strain relationship is given by Hooke’s 

law as follows: 

 

    (49a) 

 

    (49b) 

 

     (49c) 

 

where: 

  E = Young’s modulus 

  μ = Poisson’s ratio 

  ε0 and γ0 = normal and shear components of initial strains, respectively 

  ζ and η = normal and shear stresses, respectively 

 

The stresses produce bending and twisting moments that can be represented using 

the following relationships: 

 

       (50) 

 

Combining equations (48), (49), and (50) leads to the following relationship 

between the moments in the element and curvatures: 

 

      (51) 
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     (52) 

 

where: 

  [D] = plate flexural stiffness matrix 

  κ0 = initial curvatures due to inelastic strains 

  h = plate thickness 

 

The displacement of a node i can be defined using equation (46) as: 

 

    (53) 

 

where: 

  θy and θx = slopes about the x-axis and y-axis, respectively 

 

Therefore, the displacement of the four-node element ijkl can be written as: 

 

  (54) 

 

A fourth-order polynomial is commonly used to represent the displacement 

function in the following form (Zienkiewicz and Taylor 1967, Khazanovich 1994, 

Khazanovich et al. 2000): 

 

  
(55) 

 

The curvatures of the plate element are related to the displacements by the 

following equations: 

 

       (56) 

 

where: 

  [B] = strain-displacement matrix (Zienkiewicz and Taylor 1967) 

 

The equation of equilibrium for nodal forces can be written by minimizing the 

total potential energy for all the elements of the system as follows: 

 

   (57a) 
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or, writing equation (57a) in terms of a single plate element, we have: 

 

  (57b) 

 

where: 

   = material property matrix given as: 

 

      (58) 

 

 The left hand side of equation (57b) represents the product of stiffness and 

deflection of the plate element.  The stiffness of the plate element is defined in terms of 

the element stiffness matrix given as: 

 

     (59) 

 

where: 

  [k]e = element stiffness matrix 

  V and A = volume and the area of the element, respectively 

 

The right hand side of equation (57b) represents the force acting on the plate 

element due to external loads and initial strains.  The first term {F}e is the element force 

vector due to external loads and self weight of the plate, and the second term is the 

element force vector due to inelastic curvatures, given as: 

 

     (60) 

 

The deflections at all the nodes in the plate are computed using equation (57a). 

After the deflections in the plate are determined, the total strain in the element is 

calculated using equations (47) and (56) as shown in equation (61).  Further, the stress in 

the element is computed in terms of elastic strains as shown in equation (62).   

 

      (61) 

 

     (62) 

 

The stresses at any node of the plate are obtained by averaging the stresses from 

the adjoining nodes when two or more elements share a common node.  It should be 

noted that the initial strains ε0 could be equal to the thermal strains and/or viscoelastic 
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creep strains as discussed next. 

 

Thermal Loading 

 

Consider a temperature distribution T(z) throughout the plate thickness that is a linear 

function of depth and can be expressed as follows: 

 

       (63) 

 

where: 

  h = thickness of the plate 

 z = distance from the neutral axis of the plate 

 ΔT = difference of the temperatures between the top and bottom of the plate 

 

The inelastic curvatures due to the temperature variation in the plate are given as: 

 

   (64) 

 

where: 

  α = coefficient of thermal expansion 

 

If the slab is free to expand or contract, then the force due to inelastic curvatures 

 can be written using equation (60) as follows:   

 

    (65) 

 

Since the temperature gradient ΔT does not vary along the horizontal direction of 

the slab, equation (65) can be simplified as: 

 

    (66) 

 

 

Viscoelastic Analysis  

 

Unlike thermal strains, which do not vary along the horizontal direction of the plate 

element, the creep strains are a function of the spatial coordinates of the plate element.  

Therefore, for a three-dimensional analysis, the increment of creep strains given by 
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equation (44) is rewritten for the i-th Kelvin-Voigt element as follows: 

 

   (67a) 

 

   (67b) 

 

      (67c) 

 

where: 

   and  = normal creep strains in the x and y directions, respectively 

 = shear creep strain 

   and  = normal stresses in the x and y directions, respectively 

   = shear stress 

 

At any time tj+1, consider a gradient of creep strain in the plate such that the creep 

strains at any depth z are a linear function of depth.  Analogous to equation (64), the 

inelastic curvatures due to creep strains at any time tj+1 can be written as: 

 

      (68) 

 

where: 

   = inelastic curvatures due to creep strains at the end of the time interval 

   = creep strain at the bottom of the plate element at the end of the time 

interval 

   = creep strain at the top of the plate element at the end of the time 

interval 

 

Due to the presence of inelastic curvatures at any time tj+1, it can be said that 

fictitious forces, accounting for the viscoelastic creep strains, act on the plate element at 

any time tj+1.  Using equation (60), the ―creep‖ force is written as follows: 
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   (69) 

 

where: 

  , , and  = normal and shear components of the inelastic curvatures due 

to creep strains in the x-direction, y-direction, and xy plane, respectively, at any 

time tj+1 

 

Since the inelastic curvatures due to creep strains are a function of the spatial 

coordinates of the plate element, approximating functions are used to represent the 

curvatures at any point in the plate in terms of nodal inelastic curvatures.  The following 

functions were adopted: 

 

      (70a) 

 

      (70b) 

 

       (70c) 

 

      (70d) 

 

where: 

  N1, N2, N3, and N4 = approximating functions for inelastic curvatures due to creep 

strains at nodes i, j, k, and l, respectively of the element shown in Figure 10 

 

The fictitious creep force given in equation (69) can be re-written using equation 

(70) as follows: 

 

     (71) 

 

where: 

   = matrix containing the normal and shear components of the inelastic 

curvature due to creep strains at nodes i, j, k, and l of the plate element, i.e. 
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      (72) 

 

  and, {N} is the vector containing approximating functions, as follows: 

 

      (73) 

 

 

FE Formulation of the Winkler Foundation  

 

The FE model developed under this research provides a generalization of the current 

framework for the commercial package ISLAB2000 (Khazanovich et al. 2000).  

ISLAB2000 incorporates many subgrade models (such as Winkler [1861], Pasternak 

[1954], and Kerr-Vlasov [1964]) that provide the foundation support for the slab.  Among 

them, the Winkler foundation is the simplest foundation model, which is defined using a 

proportionality constant between the applied pressure and plate deflection at any point.  

ISLAB2000 utilizes two idealizations for the Winkler foundation: the spring formulation 

and the energy-consistent Winkler formulation (Khazanovich et al. 2000).  The energy 

consistent Winkler formulation permits the use of a coarser mesh and significantly less 

computational resources than would be required by the spring foundation to achieve the 

same level of accuracy.  This was an important feature of the past when memory 

requirements and computational time were significant considerations in the slab-on-grade 

analysis.  Recent advances in computer technology have made these factors less 

important.  While the energy-consistent Winkler formulation is more efficient, the spring 

formulation permits a simpler implementation of the analysis of separation of the slab 

from the foundation in the case of curling or void analysis.  If the mesh size is sufficiently 

fine, then there is no significant difference between the results from spring and energy-

consistent formulations of the Winkler foundation in ISLAB2000.   

Under this research, the spring formulation of the Winkler foundation is adopted 

to model the foundation support.  This formulation of the Winkler foundation models the 

foundation with concentrated springs at the nodes of the plate element as shown in Figure 

11.   
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Figure 11 Spring idealization of Winkler foundation using concentrated springs at the 

nodes of the plate element.  

 

The stiffness of the foundation is defined as a product of the coefficient of 

subgrade reaction and the area of the subgrade (Khazanovich et al. 2000).  Since a four-

node finite element ijkl is used to represent the plate element, the foundation stiffness at 

each node of the element corresponding to the degree of freedom representing vertical 

deflection can be written as follows: 

 

    (74) 

where: 

   = stiffness of the foundation supporting the plate element 

  ksubgrade = coefficient of subgrade reaction 

  Ae = area of the element 

d = local degree of freedom corresponding to vertical deflection at element nodes 

 

The foundation stiffness matrix [Kfoundation]e is added to the element stiffness 

matrix [k]e in order to incorporate the boundary conditions for the slab-on-grade analysis 

when the element node is in contact with the foundation.  An approach similar to that in 

ISLAB2000 is adopted to model the separation of the slab from the foundation for curling 

analysis.  For an out of contact node, no contribution from the foundation is considered 

by setting the stiffness of the spring equal to zero (Khazanovich et al. 2000). 

 

Viscoelastic Winkler Foundation 

The foundation model can also incorporate a viscoelastic analysis similar to that 

presented for the plate in the preceding section.  Analogous to equation (67), the 

increment of creep deflections in the viscoelastic Winkler foundation can be written as 

follows: 

 

   (75) 
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where: 

   = increment of creep deflections in the foundation at the end of time 

interval Δtj 

   = stress acting on the foundation at time tj 

  ki and ηi = spring stiffness and dashpot viscosity of the i-th term of the Prony 

series 

  μ = Poisson’s ratio 

 

The total creep deflections in the viscoelastic Winkler foundation at any time tj+1 

are given by adding the creep deflections at time tj and the increment of creep deflections 

during the time interval Δtj.  The fictitious forces acting on the foundation at any time tj 

due to the presence of creep deflections are computed as: 

 

    (76) 

 

where: 

   = total creep deflections in the viscoelastic Winkler foundation at 

any time tj 

 

It must be noted that the fictitious Winkler foundation creep force acts on each 

spring in contact with the nodes of the plate element.  The foundation creep force acts 

only in the degree of freedom corresponding to the vertical deflection of the plate, or in 

other words, the foundation creep force is equal to zero for the rotational degree of 

freedom. 

 

Assembling the Global Matrix and Computing Stresses Based on the Time-Discretized 

Viscoelastic Analysis 

 

The equilibrium equation for all elements of the plate can be expressed from equation 

(57a) as follows:  

 

      (77) 

 

where: 

  [K] = global stiffness matrix 

  {δ} = global displacement vector 

{F} = global force vector consisting of forces due to traffic loads and self weight 

of the slab 

{F0} = local force vector due to inelastic strains such as thermal strain and 

viscoelastic creep strains from the plate and/or foundation 

 

The global stiffness matrix [K] is assembled by adding the terms of element 

stiffness matrix [k]e and the foundation stiffness matrix [Kdd foundation]e corresponding to 

the element ijkl into a global matrix at the corresponding global degrees of freedom over 
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the total number of elements.  Similarly, the global force vectors {F} and {F0} are also 

assembled by adding the terms of the element force vectors at corresponding global 

degrees of freedom over all the elements.  Equation (77) can be re-written at any time 

step tj as follows:  

 

    (78) 

 

Thus, the nodal displacements of the plate at time step tj are calculated by 

multiplying the inverse of the global stiffness matrix [K] and the sum of the load vector 

, temperature load vector , and the fictitious creep load vector 

 at time step tj.  The load and the temperature load vectors depend on the 

magnitude of the external loads and temperature at time tj, respectively, whereas the 

creep load vector depends on the stress time history.  The stiffness matrix [K] from the 

previous time step is initially used in the next time step analysis.  This permits avoiding 

an additional inversion of the stiffness matrix, which is the most computationally 

expensive step.  However, if the contact conditions are changed at any node (i.e. the 

deflection changed its sign from the previous time step) then the foundation stiffness 

matrix should be updated and the corresponding global stiffness matrix [K] should be 

computed.  

Once the global displacements are calculated from equation (78), the element 

displacement can be extracted using the global degrees of freedom corresponding to each 

node of the element.  The stresses are computed at the end of each time interval from 

equation (62) as follows: 

 

    (79) 

 

The formulation of the FE model for a single layer slab-on-grade was presented in 

this section.  The next section presents the extension of this model to multi-layered 

pavements.  

 

Extension of the FE Model to Multi-Layered Composite Pavements 

 

The FE model presented in the preceding section was developed based on the Kirchhoff-

Love plate theory for a single layer plate placed on the Winkler foundation.  Pavements, 

on the other hand, are multi-layered systems with different bonding conditions between 

the various layers.  The interface condition between two layers in contact may vary from 

zero friction (fully unbonded) to full friction (fully bonded).  In this study, only extreme 

cases (fully bonded and fully unbounded) were considered.  In the case of composite 

pavements defined as a system of AC over PCC over base layers, two layer interfaces 

exist – one between the AC and PCC layers and other between the PCC and base layers.  

This leads to four sets of interface conditions: bonded-bonded, unbonded-unbonded, 

bonded-unbonded, and unbonded-bonded. 

As discussed in Part 2, multi-layered pavements can be transformed into single 

layer systems using the method of equivalent thickness (MET).  As long as certain 
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conditions are fulfilled that include equality of deflection profiles and equality of 

modulus of subgrade reaction between the multi-layered slab-on-grade and equivalent 

single layer slab-on-grade, the stress solution of the multi-layered slab can be expressed 

in terms of the stress solution of the equivalent slab (Ioannides et al. 1992).  Thus, the 

plate theory is used to calculate stresses in the equivalent single layer slab, which are 

further used to compute the stresses in the layers of a multi-layered slab. 

In this section, the equivalency equations between the composite pavement and an 

equivalent single layer slab are presented for bonded-bonded interface conditions of the 

composite slab.  The equivalency equations for other interface conditions are detailed in 

Appendix A. 

 

Equivalent Single Layer Slab  

 

Either the thickness or the modulus of the equivalent single layer slab can be computed 

by equating it's the equivalent slab’s flexural stiffness to the flexural stiffness of the 

composite pavement if the Poisson’s ratio of all the layers of the composite pavement and 

that of the equivalent layer are equal (Ioannides et al. 1992).  The thickness (or modulus) 

can be computed from the following equation if the modulus (or thickness) is known. 

 

 
  

(80) 
 

where: 

  Eeq, EAC, EPCC, EBase = Young’s moduli of the equivalent, AC, PCC, and base 

layers, respectively 

  heq, hAC, hPCC, hBase = thicknesses of the equivalent, AC, PCC, and base layers, 

respectively 

  x = distance of the neutral axis of the composite pavement from the top of the AC 

layer 

 

The unit weight of the equivalent single layer is calculated as: 

 

     (81) 

 

where: 

  γeq, γAC, γPCC, γBase = unit weights of the equivalent, AC, PCC, and base layers, 

respectively 
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Equivalent Linear Temperature Gradient in the Equivalent Single Layer Slab  

 

It has been shown by Khazanovich (1994) that bending of a multi-layered pavement due 

to an arbitrary temperature distribution throughout the pavement system can be described 

by the bending of an equivalent single layer slab subjected to a linear temperature 

gradient.  The equivalent linear temperature gradient in the equivalent single layer slab 

was approximated in terms of the temperature data of the multi-layered pavement as 

follows: 

  (82) 

 

where: 

 ΔTeq = difference between the top and bottom surface temperatures of the 

equivalent single layer slab 

 Ti and Toi = temperature and reference temperature at point i, respectively 

 αeq, αAC, αPCC and αBase = coefficients of thermal expansion of the equivalent, AC, 

PCC and base layers, respectively 

 

Appendix A details the procedure for calculating the equivalent linear temperature 

gradient given in equation (82). 

 

Equivalent Linear Creep Strain Gradient in the Equivalent Single Layer Slab  

 

Analogous to an arbitrary temperature profile that can be expressed in terms of an 

equivalent linear temperature gradient; the arbitrary creep strain profile of the composite 

pavement can also be expressed as an equivalent linear creep strain gradient present in 

the equivalent single layer slab.  Therefore, analogous to equation (82) for equivalent 

linear temperature gradient, the equivalent linear creep strain gradient can be written as: 
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  (83) 

 

where: 

 = difference between the top and bottom surface creep strains in the 

equivalent single layer slab 

 εcr
i and εcr

oi = creep strains and the reference creep strains at point i, respectively 

 

Additional Stresses in the Composite Pavements Due to Non-linear-strain-causing 

Temperature and Non-linear-strain-causing Creep Strains Components 

 

As discussed in Part 2, it was shown by Khazanovich (1994) that any arbitrary 

temperature profile could be separated into three components: constant-strain-causing 

temperature component, linear-strain-causing temperature component, and nonlinear-

strain-causing temperature component.  The constant-strain-causing temperature 

component does not cause stresses if the pavement is free to expand and contract.  The 

linear-strain-causing temperature component produces bending stresses that can be 

calculated from the FE solution for bending of an equivalent single layer slab subjected to 

an equivalent linear temperature gradient determined from equation (82).  The nonlinear-

strain-causing temperature component produces self-equilibrating stresses. 

The total temperature at any point in the slab can be presented in terms of the 

various temperature components.  Therefore, the nonlinear-strain-causing temperature 

component is given as: 

 

    (84) 

 

where: 

  T  = temperature at the point of interest in the composite pavement 

  z = depth of the point of interest from the neutral axis, 

  T0 = reference temperature 

  TC = constant-strain-causing temperature component 

  TL = linear-strain-causing temperature component 

  TNL = nonlinear-strain-causing temperature component 

 

The stress due to the nonlinear-strain-causing temperature component, ζNL is 

equal to: 

 

     (85) 

 

 






























































 





4

1

11

2

3
4

*)13(*)(

3
4

*)23(*)(

24

12

i ACcr

oACi

cr

i

ACcr

oACi

cr

i

AC

eq

AC

eq

cr

x
h

i

x
h

i
h

E

E

h
T





crT

    )()()()()()()()( zTzTzTzTzTzTzTzT ooLocoNL 

 )()(
)1(

)()(
)( zTzT

zzE
z oNLNL 











  45 

where: 

 E, α, and μ = Young’s modulus, coefficient of thermal expansion, and Poisson’s 

ratio, respectively, at the point of interest 

 

For the case of a single layer viscoelastic slab, creep strains are linear through the 

slab thickness.  However, for a multi-layer slab, this is not necessarily the case.  Similarly 

to the nonlinear-strain-causing temperature component, the nonlinear-strain-causing 

creep strain component is defined as: 

 

  (86) 

 

where: 

   = creep strain at the point of interest in the composite pavement 

  z = depth of the point of interest from the neutral axis 

   = reference creep strain 

   = constant-strain-causing creep strain component 

   = linear-strain-causing creep strain component 

   = nonlinear-strain-causing creep strain component 

 

The stress due to the nonlinear-strain-causing creep strain component,  is 

given as: 

     (87) 

 

where: 

   = material property matrix defined in equation (58) 

 

Total Stress in the Composite Pavements 

 

Finally, the total stress at any point in the multi-layered composite pavement at any time t 

can be written as: 

 

   (88) 

 

       (89) 

 

where: 

  β = is the factor that converts the linear bending stresses at the bottom of the 

equivalent single layer slab to the linear bending stresses in the multi-layered slab 

at the depth of interest z 

  ζeq = stress at the bottom surface of the equivalent single layer slab 

  ζNL = stress due to the nonlinear-strain-causing temperature component at the 
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depth of interest 

   = stress due to the nonlinear-strain-causing creep stain component at the 

depth of interest 

 

Step-by-Step Procedure for Computing the Stresses in the Composite Pavement 

 

In this section, the step-by-step procedure used to develop the FE code based on the FE 

formulation is presented.  The FE code was programmed using the programming 

language FORTRAN 90 (Visual Numerics, Inc. 1997) and the commercial package 

MATHEMATICA (Wolfram Research, Inc. 1988).  

 

Step 1: Read inputs.  The input file format mirrors an ISLAB2000 input file.  The inputs 

required for the analysis of composite pavements include slab size, mesh configuration, 

layer properties, interface conditions, properties of the Winkler foundation, temperature 

profile, and traffic loading.  Additional inputs such as number and size of time increments 

and coefficients of the Prony series for representing the viscoelastic AC layer (or 

viscoelastic Winkler foundation, if present) were also included in the input file.   

 

Step 2: Determine the equivalent single layer slab parameters.  The thickness and unit 

weight for an equivalent single layer slab with a Young’s modulus of 4.0E+6 psi and 

coefficient of thermal expansion of 5.5E-6 1/°F are computed depending on the interface 

conditions of the composite pavement.  Also, the equivalent linear temperature gradient 

in the equivalent single layer slab and the corresponding non-linear-strain-causing 

temperature stresses in the composite pavement are computed.  Appendix A details the 

procedure adopted in this step for different interface conditions in the composite 

pavement.  

 

Step 3: Generate a finite element mesh.  A finite element mesh consisting of regular four-

node rectangular plate elements with three degrees of freedom per node is generated over 

the dimensions of the equivalent single layer slab. 

 

Step 4: Compute the stiffness matrix.  The element stiffness matrix {K}e is computed 

using equation (59).  The boundary conditions present due to contact of the equivalent 

single layer slab with the spring formulation of the Winkler foundation are enforced on 

the element stiffness matrix.  Finally, the global stiffness matrix [K] is generated by 

assembling the element stiffness matrix for each element at the appropriate global degree 

of freedom.  The global stiffness matrix is generated in sparse format.  

 

Step 5: Compute the global force vector.  The forces due to traffic loading, self-weight of 

the slab, thermal strains, and creep strains are computed at time tj.  At the initial time 

t1,the fictitious forces due to creep strains are equal to zero.  The global forces acting on 

the equivalent single layer slab are calculated by adding all the forces at the appropriate 

degree of freedom for each element. 

 

Step 6: Compute displacements.  Using Cholesky’s factorization, the system of equations 

cr

NL
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(78) is solved to find the global displacements. 

 

Step 7: Check contact condition.  The contact between the equivalent single layer slab 

and the Winkler foundation is checked using the vertical displacement of the nodes.  If 

the vertical displacement at a plate node is positive, it indicates that the node is in contact 

with the foundation.  If the vertical displacement at a node is negative, it indicates that 

node is not in contact with the foundation.  The change in sign of a nodal displacement 

between one time step and the next implies that the contact condition at the node has 

changed.  The foundation stiffness matrix [Kdd foundation]e is then revised for those nodes 

and the global stiffness matrix [K] is updated to reflect the change.  Steps 4 and 6 are 

repeated if the contact condition changes between any two time steps. 

 

Step 8: Compute stresses in the equivalent single layer slab.  The total strain and elastic 

stress in the equivalent single layer slab are computed using equations (61) and (79), 

respectively, at time tj.   

 

Step 9: Compute creep strains.  The increment of creep strains corresponding to the i-th 

term of the Kelvin-Voigt element are computed using equation (67) at time tj.  The 

resulting creep strain for each Kelvin-Voigt element and the total creep strain in the 

equivalent single layer slab at time tj are updated. 

 

Step 10: Calculate nodal stresses.  The average stress at each node at the top and bottom 

of the equivalent single layer slab is computed at time tj.  Further, the stresses for each 

layer of the composite pavement system are computed.  For example, the total stresses at 

the top and bottom of the PCC layer of the composite pavement are calculated as follows: 

 

     (90) 

 

    (91) 

 

Repeat steps 5 to 10 for the next time tj+1. 

 

Step 11: Output results.  The displacement and stresses in the composite pavement at 

each node are printed in ISLAB2000 output format. 

 

Validation of the Finite Element Model 

 

The FE model presented in the preceding sections has the capability of analyzing a 

multi-layered pavement incorporating elastic and/or viscoelastic layers placed over an 

elastic or a viscoelastic Winkler foundation.  This section presents simple examples 

validating the finite element implementation.  The following cases are considered: 
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1. A viscoelastic plate placed on a viscoelastic Winkler foundation, 

2. A viscoelastic plate with simply supported corners,  

3. Verification of formation for multi-layered slabs, and 

4. Sensitivity of the viscoelastic FE model to internal parameters. 

 

Viscoelastic Plate on Viscoelastic Winkler Foundation 

 

To verify the FE code, a semi-analytical solution is obtained for a viscoelastic plate 

placed on the viscoelastic Winkler foundation when the creep compliance functions of 

the viscoelastic plate and the viscoelastic Winkler foundation are proportional.  The semi-

analytical solution is compared with the finite element solution. 

The governing equation for an elastic plate resting on an elastic Winkler 

foundation has the following form (Timoshenko and Woinowsky-Krieger 1959): 

 

      (92) 

 

where: 

  w = deflection of the plate 

  k0 = coefficient of subgrade reaction of the Winkler foundation 

  p = load per unit area acting on the plate 

  x = spatial coordinates x, y, and z 

  D0 = stiffness of the plate given as follows: 

 

       (93) 

 

where: 

  E0 = Young’s modulus of the plate 

  h = thickness of the plate 

  μ = Poisson’s ratio 

 

Consider a viscoelastic plate resting on a viscoelastic Winkler foundation.  The 

governing equation for the plate can be written as (Li et al. 2009): 

 

     (94) 

 

where: 

  w(x,t) = deflection of the viscoelastic plate at time t 

  p(x,t) = load per unit area acting on the viscoelastic plate at time t 

  = stiffness of the viscoelastic plate, is an operator defined as:  

 

     (95) 
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  = operator of subgrade reaction of the viscoelastic foundation relating the 

deflection of the subgrade with the history of the applied pressure at the same 

point.   

 

Assume that the operator of subgrade reaction has the following form: 

 

      (96) 

 

The operator  is the normalized creep compliance operator defined using 

equations (32) and (43) as follows: 

 

      (97) 

 

The creep compliance of operators  and  is proportional.  By substituting 

equations (95) and (96) in (94), we get:  

 

    (98a) 

 

or 

    (98b) 

 

Now, a fictitious deflection w1 is introduced such that: 

 

      (99) 

 

Substituting equation (99) into equation (98) results in: 

 

      (100) 

 

For any time t, equation (100) is identical to the governing equation for an elastic 

plate placed on the elastic Winkler foundation.  If the plate is loaded so that: 

 

      (101) 

 

where: 

 H(t) = Heaviside step function, then the deflection of the plate has the following 

form: 
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       (102) 

 

If a solution of the elastic problem is obtained analytically or numerically, then 

the solution of the corresponding viscoelastic problem can be obtained as follows: 

 

      (103) 

 

It can be also easily shown that for this boundary value problem the stresses in the 

viscoelastic plate are proportional to the applied loading.  Since the applied load does not 

change in time for , the stresses in the viscoelastic slab do not vary with time for 

. 

To verify the finite element program, a semi-analytical solution was obtained and 

compared with the finite element solution in which a 15 ft long, 12 ft wide, and 9 in-thick 

viscoelastic plate was placed on a viscoelastic Winkler foundation.  The plate was loaded 

with a constant 100 psi pressure acting at the center of the slab over a footprint of 60 in x 

48 in.  An uniform mesh of element size equal to 6 in was generated on the plate surface.  

The load and mesh configuration are shown in Figure 12. 

 

Figure 12 Mesh and load configuration for the composite pavement subjected to a wheel 

load. 

 

The creep compliance of the viscoelastic material is represented by a Prony series 

in the form of a two-term generalized Kelvin-Voigt model presented in Figure 9.  Table 1 
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lists the parameters of the Kelvin-Voigt model used to define the creep compliance 

function for the viscoelastic plate and the viscoelastic Winkler foundation. 

 
Table 1 Parameters of the Kelvin-Voigt model for the plate and Winkler foundation. 

Instantaneous modulus Normalized creep compliance parameters 

Viscoelastic plate 
Viscoelastic Winkler 

foundation 
Spring stiffness Dashpot viscosity 

E0, psi k0, psi/in E1* E2* η1* η2* 

4.0e6 100 0.0238 0.0254 2.8269 0.2494 

 

The FE solution is obtained by executing the FE code for a viscoelastic plate 

placed on a viscoelastic Winkler foundation.  The semi-analytical solution for deflections 

at any time t is derived by multiplying the elastic deflections at the initial time t = 0 

obtained from the FE solution with the operator , as given in equation (103).  Figure 

13 presents the deflections computed using the FE model and the semi-analytical solution 

for a total time of 400 seconds.  A good agreement is found between the deflections 

obtained from the semi-analytical solution and the FE solution.   

 

 

Figure 13 Comparison of deflections for a viscoelastic plate placed on a viscoelastic Winkler 

foundation. 

 

Figure 14 presents the bottom surface stress at the center of the plate computed 

using the FE model for a total time of 400 seconds.   
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Figure 14 Stress at the bottom of the viscoelastic plate placed on viscoelastic Winkler 

foundation. 

 

A small variation is observed in the stresses at the bottom of the viscoelastic plate 

during the initial increments of time.  Since the time is discretized into small intervals, 

the observed error is attributed to the size of the time interval selected. 

 

Viscoelastic Plate with Simply Supported Corners 

 

Consider a viscoelastic plate supported at the corners so that the vertical deflections of 

the corners are equal to zero.  The solution of the plate can be derived if appropriate 

boundary conditions are satisfied.  The governing equation and the boundary conditions 

are given as follows: 

 

      (104) 

 

and 

      (105) 

 

where: 

   = stiffness operator for the viscoelastic plate defined by equation (95) 

  w(x,t) = deflection of the plate at time t 

  p(x,t) = applied load at time t and is defined by equation (101) 
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  S = set of spatial coordinates at which the boundary conditions are imposed  

 

Applying equations (95) and (99) to equation (104) yields the following equation: 

 

     (106a) 

 

or 

     (106b) 

 

Multiplying both sides of equation (105) by the operator  from the left and 

applying equation (99) leads to the following: 

 

     (107a) 

 

or 

      (107b) 

 

Equations (106b) and (107b) are identical to the governing equation and boundary 

condition, respectively, for an elastic plate with simply supported corners.  This implies 

that equation (103), which relates the viscoelastic deflections to the elastic deflections as 

a function of the operator  at any time t, is also a solution for a viscoelastic plate with 

simply supported corners.  The solution given by equation (103) is used to verify the FE 

solution for a viscoelastic plate with simply supported corners. 

A 15 ft long, 12 ft wide, and 9 in thick viscoelastic plate with simply supported 

corners is analyzed using the FE model.  The plate is loaded with a 100 psi pressure over 

a footprint of 60 in x 48 in at all times as shown in Figure 12.  The creep compliance 

function for the viscoelastic plate is defined using the parameters of the Kelvin-Voigt 

model presented in Table 1.   

The FE solution for the deflections of the viscoelastic plate with simply supported 

corners is obtained by executing the FE code.  The semi-analytical solution for 

deflections at any time t is derived by multiplying the elastic deflections at the initial time 

t = 0 obtained from the FE solution with the operator .  Figure 15 presents the 

comparison of deflections computed using the FE model and the semi-analytical solution 

for a total time of 400 seconds. 
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Figure 15 Comparison of deflections for a viscoelastic plate with simply supported corners. 

 

The deflections obtained from the semi-analytical solution and the FE solution for 

a viscoelastic plate with simply supported corners match well.   
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resting on an elastic Winkler foundation was loaded with 100 psi of pressure acting in the 

form of a single axle dual wheel configuration.  The size of the slab was 180 in x 144 in.  

The coefficient of subgrade reaction for the elastic Winkler foundation was equal to 100 

psi/in.  A uniform mesh of element size 6 in x 6 in was generated as shown in Figure 16.   
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Figure 16 Mesh and loading configuration for the composite pavement subjected to a 

single-axle dual-wheel load. 

 

 Elastic and viscoelastic analyses were conducted to verify the ability of the FE 

code to analyze a multi-layered slab-on-grade.  If the FE code is robust, the stresses at a 

particular point obtained from the analysis of a three-layered pavement system and a 

corresponding single-layer (or two-layered) system must be equal.  It must be noted that 

all the layers of the three-layered slab and the layer(s) of the corresponding single or two-

layered slab should have the same Poisson’s ratio μ.   

The elastic analysis was conducted at the initial time (t = 0).  Table 2 presents the 

layer properties for the following cases considered for the elastic analysis: 

 

 Case 1 – To verify the ability of the FE code to analyze single-layer systems, a 

three-layer slab-on-grade is compared with a corresponding single-layer slab-on-

grade when all layers have the same material properties.  In this case, the 

thickness of the corresponding single-layer slab is equal to the sum of the 

thicknesses of all the layers of the three-layer slab. 

 Case 2 – To verify the ability of the FE code to analyze two-layered systems, a 

three-layer slab-on-grade was compared with a corresponding two-layer slab-on-

grade.  The first and second layers of the three-layer slab had the same material 

properties, and the thickness of the first layer of the corresponding two-layer slab 

was equal to the sum of the thicknesses of the first and second layers of the three-

layer slab. 
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 Case 3 – The ability of the FE code to analyze a three-layer system is verified 

when one of the layers is eliminated by setting its thickness equal to zero.  In this 

case, a corresponding two-layer slab-on-grade is analyzed with the same layer 

thicknesses and material properties as those for the second and third layers of the 

three-layer slab. 

 
Table 2 Layer properties for the elastic analysis. 

 Three-layered pavement Single- / two-layered pavement 

Case 1 

h1 = 9 in E = 4.0E+06 psi 

h = 20 in E = 4.0E+06 psi h2 = 5 in E = 4.0E+06 psi 

h3 = 6 in E = 4.0E+06 psi 
 

Case 2 

h1 = 9 in E = 4.0E+06 psi 
h1 = 14 in E = 4.0E+06 psi 

h2 = 5 in E = 4.0E+06 psi 

h3 = 6 in E3 = 4.0E+04 psi h2 = 6 in E2 = 4.0E+04 psi 
 

Case 3 

h1 = 0 in E1 = 2.0E+05 psi h1 = 5 in E1 = 4.0E+06 psi 

h2 = 5 in E2 = 4.0E+06 psi h2 = 6 in E2 = 4.0E+04 psi 

h3 = 6 in E3 = 4.0E+04 psi  

 

Figure 17 presents the comparison of stresses at the bottom of the second layer of 

a three-layered system at the center of the slab.   

 

 

Figure 17 Stress from three-layered analysis versus single- or two-layered analyses. 
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Next, a viscoelastic analysis is conducted with a 9 in thick viscoelastic surface 

layer (layer 1) for the multi-layered slab.  The creep compliance function for the first 

layer is represented using the generalized two-term Kelvin-Voigt model.  The parameters 

of the Kelvin-Voigt model are presented in Table 3. 

 
Table 3 Kelvin-Voigt parameters for the viscoelastic surface layer. 

Element # Spring stiffness, psi Dashpot viscosity, psi-sec 

0 200000 -- 

1 95265 11307535 

2 101500 997600 

 

For all the cases in the viscoelastic analysis, the stresses from a three-layered 

pavement system are compared with the stresses from a corresponding two-layered 

system. 

 

 Case 4 – The ability of the FE code to perform a viscoelastic analysis for multi-

layered systems was verified.  The second and third layers of the three-layered 

slab have the same material properties. The thickness of the second layer of a 

corresponding two-layer slab was equal to the sum of thicknesses of the second 

and third layers of the three-layer slab. 

 Case 5 – The ability of the FE code to perform a viscoelastic analysis was verified 

when the second layer of the three-layer slab was eliminated by setting its 

thickness equal to zero.  In this case, a corresponding two-layered slab-on-grade 

was analyzed with layer thicknesses and material properties the same as those for 

the first and third layers of the three-layer slab. 

 Case 6 – This case is similar to case 5 but the third layer of the three-layer slab 

was eliminated by setting its thickness equal to zero.   

 

Table 4 presents the properties of the underlying layers of the multi-layered 

pavements considered for the viscoelastic analysis. 

 
Table 4 Layer properties for multi-layered composite pavements. 

 Three-layered pavement (3LS) Two-layered pavement (2LS) 
 

Case 4 
h2 = 5 in E2 = 4.0E+06 psi 

h2 = 11 in E2 = 4.0E+06 psi 
h3 = 6 in E3 = 4.0E+06 psi 

 

Case 5 
h2 = 0 in E2 = 4.0E+06 psi 

h2 = 6 in E2 = 4.0E+04 psi 
h3 = 6 in E3 = 4.0E+04 psi 

 

Case 6 
h2 = 5 in E2 = 4.0E+06 psi 

h2 = 5 in E2 = 4.0E+06 psi 
h3 = 0 in E3 = 4.0E+04 psi 

 

Figures 18 and 19 present the comparison of stresses at the bottom of the 

viscoelastic surface layer (layer 1) at the center of the slab.   
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Figure 18 Stress versus time for cases 4 and 6 using the viscoelastic FE model. 

 

 

Figure 19 Stress versus time for case 5 using the viscoelastic FE model. 
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Excellent agreement is obtained between the stress from the three-layered 

analyses and that from the single- or two-layered analyses for all cases. 

 

Sensitivity of the Viscoelastic FE Model to Internal Parameters 

 

The sensitivity of the FE model to the following internal parameters was verified: 

 

1. Implementation of creep compliance function using the Prony series  

a. Parameters of the Kelvin-Voigt element 

b. Number of Kelvin-Voigt elements 

2. Presence of the viscoelastic layer 

 

Sensitivity of the FE Model to Parameters of Kelvin-Voigt Element 

As established previously, the creep compliance function is commonly expressed in the 

form of an N-term Prony series.  For each term of the Prony series there are two 

coefficients defining the stress-strain relationship of a viscoelastic material.  These 

coefficients can be interpreted as the spring stiffness and dashpot viscosity of commonly 

adopted physical models such as the Kelvin-Voigt model.  In this example, sensitivity of 

the FE model to the parameters of the Kelvin-Voigt model is verified. 

Consider the single layer viscoelastic plate with geometry, mesh, and loading 

geometry as shown in Figure 12.  The plate rests on an elastic Winkler foundation with a 

coefficient of subgrade reaction equal to 100 psi/in.  The viscoelastic material 

characterization of the plate is defined using the spring and dashpot properties of a one-

term Kelvin-Voigt element connected to an elastic spring, presented in Table 5. 

 
Table 5 Parameters of the Kelvin-Voigt element for the viscoelastic plate. 

Element # Spring stiffness, psi Dashpot viscosity, psi-sec 

0 98988.175 -- 

1 95265 1.0E+04 to 1.0E+07 

 

The dashpot viscosity of the Kelvin-Voigt element is varied between 1.0E+04 psi-

sec and 1.0E+07 psi-sec (1.0E+04, 1.0E+05, 2.0E+05, 4.0E+05, 1.0E+06, 1.0E+07).  

Deflections and stresses in the plate under the applied load are computed using the FE 

model.  Figures 20 and 21 show the deflections and top surface stresses at the plate center 

versus time, respectively, for the factorial of dashpot viscosities of the Kelvin-Voigt 

element.  
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Figure 20 Deflection versus time for a factorial of dashpot viscosities of the Kelvin-Voigt 

element. 
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Figure 21 Stress versus time for a factorial of dashpot viscosities of the Kelvin-Voigt 

element. 

 

The deflection and stress for the factorial of dashpot viscosities vary between the 

deflection and stress for the extreme values of the viscosity considered.  Therefore, it can 

be said that the viscoelastic FE model is not sensitive to the parameters of the Kelvin-

Voigt element. 

 

Sensitivity of the FE Model to the Number of Kelvin-Voigt Elements 

Consider the single layer viscoelastic plate presented in Figure 12.  The plate rests on an 
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To verify the sensitivity of the viscoelastic FE model on the number of Kelvin-Voigt 

elements adopted to represent the creep compliance function, the viscoelastic behavior of 

the plate is defined using two material models considered as follows: 

 

1. Material model 1 – a single Kelvin-Voigt model attached to an elastic spring in 

series as shown in Figure 13(a), and 
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Figure 22 Schematic for (a) material model 1 and (b) material model 2. 

 

The parameters of material models 1 and 2 are presented in Table 6.  Material 

model 2 is an extension of material model 1.  Under certain conditions described below, 

the creep compliance functions defined by material models 1 and 2 can be exactly equal.  

In such cases, the deflections and stresses at any node between slabs incorporating 

material models 1 and 2 should also be exactly equal.   

 
Table 6 Prony series coefficients for material models 1 and 2. 

 Material Model 1 Material Model 2 

Element 

# 

Spring stiffness, 

psi 

Dashpot viscosity, 

psi-sec 

Spring stiffness, 

psi 

Dashpot viscosity, 

psi-sec 

0 E0a -- 200000 -- 

1 95265 2.0E+05 95265 2.0E+05 

2   101500 η2b 

 

The instantaneous modulus E0a for material model 1 can be expressed using the 

parameters of material model 2 when the following conditions are present: 

 

   (108) 

 

   (109) 

 

where: 

 E0a
 
= instantaneous modulus of material model 1 

 E0b= instantaneous modulus of material model 2 

 E2b and η2b = spring stiffness and dashpot viscosity of the second Kelvin-Voigt 

element of material model 2, respectively 

 

Two values for the dashpot viscosity of the second Kelvin-Voigt element of 

material model 2 are considered (a) η2b = 1.0E+13 and (b) η2b = 1.0E+03.  The creep 

compliance function (equation (34)) is plotted for material models 1 and 2 in Figure 23 

when the instantaneous modulus E0a varies with the dashpot viscosity η2b. 
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Figure 23 Creep compliance for material models 1 and 2. 
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Figure 24 Deflection of the plate incorporating material models 1 and 2. 

 

Figure 25 Stress at the bottom of the plate incorporating material models 1 and 2. 
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Excellent agreement is obtained for the creep compliance, deflection, and stress 

between material models 1 and 2.  Therefore, it can be established that the viscoelastic 

FE model is not sensitive to the number of Kelvin-Voigt elements used in the 

representation of the creep compliance function. 

 

Sensitivity of the FE Model to the Presence of Viscoelastic Layer 

The sensitivity of the FE model to the presence of the viscoelastic AC layer is verified by 

varying the thickness of the AC layer of the composite pavement.  A composite pavement 

with slab geometry, foundation support, mesh configuration, and wheel loading the same 

as those presented in Figure 16 for this example.  A factorial of thicknesses for the AC 

layer is considered varying between 0 and 9 in (0, 1, 2, 3, 4, 5, 6, 7, 8, and 9).  The layer 

properties for the baseline case are given in Table 7.  All the layer interfaces are fully 

bonded.  Additionally, an elastic two-layer system consisting of fully bonded PCC and 

base layers is also considered.  The thicknesses and material properties for the PCC and 

base layers are same as those of the composite pavement. 

 
Table 7 Layer properties for the baseline composite pavement. 

 
Material 

definition 

Thickness, 

h (in) 

Layer modulus, 

E (psi) 

Poisson’s 

ratio, 

μ 

Unit 

weight, 

γ (lb/in3) 

AC 
Viscoelastic 

9 
Reference Table 

3 
0.15 0.087 

PCC Elastic 5 4.0E+06 0.15 0.087 

Base Elastic 6 4.0E+04 0.15 0.087 

 

Figure 26 presents the FE results for PCC bottom stresses at the center of the slab 

at different times of the viscoelastic analysis.  The elastic PCC bottom stresses at the 

center of the slab from the two-layer system are also shown in the Figure. 
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Figure 26 PCC bottom stresses versus AC thickness. 

 

As expected, lower values of stress at the bottom of PCC layer are obtained for 

thicker AC layers at any time t.  The stress in the PCC layer converges to the PCC 

stresses from the elastic two-layer system when the thickness of the AC layer tends to 

zero at any time t.  Also, for any thickness of the AC layer, the stress solution converges 

as time increases to the stress at infinite time.  The difference between the stress at time t 

= 0 and time t at infinity is most prominent for thicker AC layers, and the difference 

reduces as the thickness of the viscoelastic AC layer reduces.   

Thus, the FE model developed under this research is capable of analyzing 

pavements that incorporate elastic or viscoelastic layers and is not sensitive to the internal 

parameters used to develop the FE model. 

 

Summary 

 

In this section, a finite element model of a composite pavement incorporating viscoelastic 

layers placed on a subgrade was presented.  The FE model has the capability of analyzing 

the pavement under traffic loading and temperature gradients.  The time-dependent 

stress-strain behavior due to the presence of a viscoelastic AC layer was incorporated into 

the FE model using the differential form of the creep compliance function represented by 

the Prony series.  The FE model was validated against semi-analytical solutions using 

simple examples.  Finally, the sensitivity of the FE model to internal parameters was 

analyzed and it was found that the model is internally consistent as well as robust for 
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computing the elastic or viscoelastic stress solutions for up to three-layer pavement 

systems.  
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PART 4:  STRESS SOLUTIONS USING THE 2-MODULI APPROACH 

 

The Mechanistic Empirical Pavement Design Guide (MEPDG) uses a load duration-

dependent dynamic modulus to characterize the constitutive relationship for asphalt 

concrete (AC).  The loading duration for traffic loads depends on the vehicle speed.  For 

a typical interstate pavement with vehicle speeds of roughly 60 mph, the loading duration 

ranges between 0.01 sec and 0.05 seconds.  The analysis of fatigue cracking (i.e. cracking 

due to repeated traffic loads) in the AC layer for flexible pavements does not involve 

temperature-induced stresses, which develop much more slowly.  The cracking due to 

temperature gradients is computed separately using a thermal cracking model developed 

for flexible pavements. 

In the case of composite pavements, there is an interaction between curling, which 

is a rigid pavement phenomenon, and deformations due to traffic loading.  Temperature 

gradients and traffic loads both cause bending stresses that cannot be simply added when 

composite pavements are subjected to a combination of temperature gradients and 

instantaneous traffic loads.  This is so because temperature curling causes a separation of 

the slab from the subgrade making the system to behave non-linearly.  Moreover, the 

loading durations of the temperature gradients and fast moving traffic loads are 

significantly different.  Therefore, for the case of composite pavements in the MEPDG 

framework, the material representation of the AC layer using a single dynamic modulus 

seems to be an over-simplification. 

A finite element (FE)-based model incorporating the viscoelastic behavior of the 

AC layer in composite pavements was presented in Part 3.  Although that FE model 

provides a robust framework for analyzing the viscoelastic slab-on-grade problems, it 

requires providing the creep compliance of the pavement layer(s), which is not a direct 

input or output of the MEPDG.  In order to maintain compatibility with the MEPDG 

framework, a procedure is developed such that two different moduli are used to represent 

the AC layer for different loading durations determined using the MEPDG process.  The 

2-moduli approach shall substitute for the time-discretized viscoelastic analysis presented 

in Part 3 by a combination of three elastic solutions such that the total stresses in the 

pavement are computed as a combination of the stresses from these three solutions. 

Part 4 discusses the difference in the MEPDG prediction for AC moduli under 

traffic loads and temperature gradients, the 2-moduli approach developed to replace the 

time-discretized viscoelastic analysis, a stress computation procedure for combined 

stresses under traffic loads and temperature gradients using the 2-moduli approach, and 

verification of the stresses using simple examples. 

 

AC Moduli under Traffic Loads and Temperature Gradients 

One of the limitations identified in the adoption of the jointed plain concrete pavement 

(JPCP) fatigue cracking model for composite pavements was the use of a single load 

duration-dependent dynamic modulus to characterize the stress-strain relationship in the 

viscoelastic AC layer.  A preliminary investigation, presented in Part 2 suggested that the 

AC modulus may be significantly different under fast moving traffic loads and 

temperature loading.  The MEPDG assumes the temperature gradient to be a step 

function of time with duration of one hour.  Therefore, to maintain consistency with the 
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MEPDG, the duration of temperature loads is selected to be one hour.  An analysis of the 

AC dynamic modulus, based on the MEPDG guidelines, was conducted and the results 

are presented herein.   

In the following example, the AC modulus of a composite pavement located in 

Minneapolis, MN as prescribed by the MEPDG is analyzed.  The pavement structure and 

layer thicknesses are given in Table 8.  All other inputs are taken as the MEPDG defaults.   

 
Table 8 Structural details of the composite pavement analyzed in the MEPDG. 

Layer No. Type Material Thickness, (in) 

1 Wearing AC 4 

2 Structural PCC 6 

3 Base A-1-a 8 

4 Subgrade A-6 Semi-infinite 

 

In the MEPDG, the AC dynamic modulus is calculated for the 3
rd

 quintile 

monthly AC temperatures at the mid-depth of the AC layer obtained from Enhanced 

Integrated Climatic Model (EICM) outputs.  The AC dynamic modulus is calculated 

using equations (22) and (23) for the loading time t corresponding to (a) the MEPDG 

default traffic speed of 60 mph, and (b) 3600 seconds (i.e., one hour of temperature 

loading).  Figure 27 illustrates the MEPDG-generated dynamic modulus of the AC layer 

versus pavement age corresponding to the traffic duration and temperature duration for 

the first two years of the design life of the composite pavement. 

 

 

Figure 27 Asphalt dynamic modulus using the MEPDG versus pavement age 
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It can be established from Figure 27 that the AC dynamic modulus is significantly 

different under typical traffic load durations and one hour of temperature loading.  

Therefore, for composite pavements under combined traffic and temperature loading, the 

use of a single dynamic modulus to characterize the stress-strain relationship in the 

viscoelastic AC layer may be insufficient.   

 

The 2-Moduli Approach 

Consider a composite pavement subjected to an arbitrary temperature distribution 

throughout the slab thickness acting on the time interval 0 < t < tT and axle loading at the 

end of the time interval.  As was demonstrated above, the AC dynamic modulus is 

significantly different under typical traffic loads and temperature gradients.  It is 

proposed that two separate AC dynamic modulus should be considered as follows: 

 

1. The traffic-duration-dependent dynamic modulus, EACL, that characterizes the 

pavement response under typical traffic loads 

2. The temperature-duration-dependent dynamic modulus, EACT, that characterizes 

the pavement response for the duration of temperature loads, tT.   

 

The stresses obtained by executing separately the curling analysis and the traffic 

load analysis cannot be simply added to obtain the stress under a combination of traffic 

loads and temperature curling (AASHTO 2008).  This is due to the fact that the slab-

foundation interaction is non-linear.  Under compression, the deformation of the slab-

foundation increases linearly with an increase in surface pressure, but the slab-foundation 

cannot resist vertical upward movement.  The curling of the slab due to the daytime 

temperature gradient causes a void under the center of slab as a result of separation from 

the foundation.  The night-time temperature gradient causes a void under the edges of the 

slab.  Hence, due to non-linear interaction of slab with the foundation, two different 

loading cases (and resulting stresses) cannot be linearly superimposed to mimic the 

combined loading. 

To account for the effect of load duration dependency of the AC layer and non-

linear slab foundation interaction, a procedure that involves a combination of solutions of 

three elastic boundary value problems (BVP) is developed.  This procedure is presented 

next. 

 

Stress Computation Procedure using the 2-Moduli Approach 

The 2-moduli approach is an alternative to the more involved viscoelastic analysis 

presented in Part 3.  This method is a combination of three elastic BVPs.  The first elastic 

BVP considers slab curling only and uses the long-term AC modulus, EACT to 

characterize the AC stiffness.  The second elastic BVP involves determination of the 

stress field in the composite pavement subjected to curling with the AC layer 

characterized by the short-term AC modulus, EACL, and having the same deflection 

profile as that determined by the first elastic solution.  In the third elastic BVP, the short-

term AC modulus, EACL, is used to determine the stress field from the combined effect 
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of curling and axle loading.  The total stresses in the pavement are computed as a 

combination of the stresses from these three solutions. 

 

The First Elastic Problem 

Problem 1 models a three-layer system of AC, PCC, and base layers as shown in Figure 

28.  The system rests on the spring idealization of an elastic Winkler foundation.  The AC 

layer is modeled as an elastic material with an elastic modulus corresponding to the 

temperature-duration-dependent modulus, EACT.  The PCC and base layers are elastic 

with the modulus of elasticity equal to EPCC and EBase, respectively.  The thicknesses of 

the AC, PCC, and base layers are hAC, hPCC, and hBase, respectively.  The unit weights of 

the AC, PCC, and base layers are γAC, γPCC, and γBase, respectively.  All of the layers have 

Possion’s ratio equal to μ.  The coefficient of thermal expansion for the AC layer is αAC 

while that for the PCC and base layers is selected as αPCC.  The interface conditions 

between the layers could be either fully bonded or unbonded. 

 

 

Figure 28 System 1. 

 

The pavement system of problem 1 is subjected to a positive temperature gradient 

T(z) as shown in Figure 29.  The deflection profile of the slab under the temperature 

gradient T(z) is recorded.  The stress at the bottom of the PCC layer at the mid-slab 

location under temperature gradient T(z) is denoted as ζ1.  Solutions detailing the 

computation of this stress are discussed later in the section. 

 

 

AC: EACT, hAC, γAC, αAC, μ

PCC: EPCC, hPCC, γPCC, αPCC, μ

Base: EBase, hBase, γBase, αPCC, μ

Direction of Traffic
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Figure 29 System 1 under positive temperature gradient T(z) only. 

 

The Second Elastic Problem 

Problem 2 has the same three-layer structure and material properties as problem 1 except 

that the AC layer is modeled as an elastic material with elastic modulus corresponding to 

the traffic-duration-dependent modulus, EACL.  The pavement system of problem 2 is 

presented in Figure 30.  The layer interface conditions are the same as those chosen in 

problem 1. 

 

 

Figure 30 System 2. 

 

Assume that a fictitious force Ffict acts on the pavement system such that its 

deflection profile is exactly the same as that from problem 1, i.e. the deflection at each 

node of system 2 is exactly equal to the deflection at the corresponding node in system 1.  

Since the deflection profile does not change between problems 1 and 2, it ensures that the 

subgrade below system 2 is under the same stress distribution as the subgrade below 

system 1, and that the contact area between the slab and foundation did not change.  This 

ensures that the non-linear behavior of the slab-foundation interaction is properly 

accounted for.  Figure 31 presents system 2 under a fictitious force Ffict.  The stress 

resulting from the fictitious force Ffict at the bottom of the PCC layer at the mid-slab 

location is denoted as ζ2.  Solutions detailing the computation of this stress are discussed 

later in the section. 

AC (EACT)

PCC (EPCC)

Base (EBase)

T(z)

AC: EACL, hAC, γAC, αAC, μ

PCC: EPCC, hPCC, γPCC, αPCC, μ

Base: EBase, hBase, γBase, αPCC, μ

Direction of Traffic
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Figure 31 System 2 under fictitious force Ffict. 

 

The Third Elastic Problem 

Since system 2 characterizes the AC layer with an elastic modulus corresponding 

to the traffic-duration-dependent modulus, EACL, in Problem 3, the traffic load F can be 

superimposed on top of the fictitious load, Ffict as shown in Figure 32.  The stress at the 

bottom of the PCC layer at the mid-slab location due to the total load is denoted as ζ3.  

Solutions detailing the computation of this stress are discussed later in the section. 

 

 

 

Figure 32 System 2 under mid-slab traffic load F and fictitious force Ffict. 
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Combined Stress 

Finally, to obtain the stress distribution in the pavement due to the combined effect of 

temperature and axle loading, solutions of the three elastic problems are combined as 

follows:  

 

      (110) 

 

where: 

ζ2M = combined stress at a given location,  

ζ1 = stress at the given location from the first elastic solution, 

ζ2 = stress at the given location from the second elastic solution, and 

ζ3 = stress at the given location from the third elastic solution. 

 

It should be noted that the combined stress (equation (110)) is an approximation 

of the viscoelastic boundary value problem if the viscoelastic properties of the AC layer 

are as follows (Figure 33):   

 

      (111) 

where: 

tT = duration of the temperature loading prior to application of the axle load. 

 

 

Figure 33 Kelvin-Voigt model connected to an elastic spring in series. 

 

Several examples verifying this statement are presented later in the section.  The 

next section presents the FE formulation to obtain the elastic solutions of the BVPs 

discussed above.  
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Brief Formulation for the FE Model Based on the 2-Moduli Approach 

The 2-moduli approach has been incorporated into a FE code, and it is similar to the 

viscoelastic FE model presented in Part 3.  In this section, the main differences of the 

formulation are highlighted.  The variables of these equations follow the definitions and 

notations used in Part 3.   

Recall system 1 considered in the first elastic problem, which considers curling of 

the composite pavement and where the long-term AC modulus EACT is used to 

characterize the AC layer.  The equilibrium equation for system 1 can be expressed as 

follows: 

 

      (112) 

 

where: 

 [K1] = global stiffness matrix for system 1 with long-term AC modulus EACT 

 {Ftherm} = global force vector due to temperature distribution T(z) 

 {δ} = global displacement vector of system 1 

 

The global stiffness matrix [K1] and the global thermal force vector {Ftherm} are 

assembled using the procedure described in the Part 3 section entitled Development of a 

Finite Element Model for the Analysis of Viscoelastic Slab-on-Grade.  The displacements 

of the slab, δ1 can be written as: 

 

      (113) 

 

Since system 1 is subjected to the temperature distribution T(z), elastic stress in an 

element of system 1 can be calculated as: 

 

      (114) 

 

where: 

subscript e = an individual elements in a plate 

 = elastic stress from the first elastic solution 

 = material property matrix corresponding to modulus EACT and is given by 

equation (58) 

 = total strain corresponding to the global displacements δ1 and is given by 

equation (61) 

 = thermal strain given by equations (47) and (64) 

 

System 2, considered in the second elastic problem, characterizes the viscoelastic 

AC layer using the short-term modulus EACL.  The deflection profile of system 2 due to 

the application of a fictitious force Ffict must be exactly the same as that of system 1.  

Therefore, the fictitious force Ffict can be computed as follows: 
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      (115) 

 

where: 

 K2 = global stiffness matrix for system 2 with the short-term AC modulus EACL 

 

Since no initial strains act on system 2 and the global displacements of system 2 

are exactly the same as those of system 1, the elastic stress in an element of system 2 can 

be calculated as follows: 

 

       (116) 

 

where: 

 = elastic stress from the second elastic solution 

 = material property matrix corresponding to the modulus EACL computed 

using equation (58) 

 

In the third elastic problem, system 2 is subjected to traffic loads F along with the 

fictitious force Ffict.  The global displacements δ under a combination of loads can be 

computed as follows: 

 

     (117) 

 

where: 

  = global force vector due to traffic loads, and 

 = global fictitious force vector from the second elastic solution 

 

The elastic stress from the third elastic problem can be calculated as follows: 

 

       (118) 

where: 

 = elastic stress from the third elastic solution 

 = total strain corresponding to the global displacements δ 

 

Finally, using equation (110) the combined stresses are calculated in the 

pavement. 

 

Step-by-Step Procedure for Computing the Combined Stresses 

A step-by-step procedure used to develop the second FE code for computing the 

combined stresses using the three elastic solutions is presented. 

 

Steps 1 through 8 given in the Part 3 section entitled Step-by-Step Procedure for 

Computing the Stresses in the Composite Pavement are repeated for an equivalent 
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single layer slab 1 corresponding to system 1 and an equivalent single layer slab 2 

corresponding to system 2.  The modifications applied to these steps are noted below. 

 

Step 1: Read inputs.  In place of the creep compliance parameters for the viscoelastic FE 

inputs, the short-term AC modulus EACL and long-term AC modulus EACT are given in 

the input file.   

 

Step 2: Determine parameters of equivalent single layer slab 1 corresponding to system 1. 

The thickness and unit weight for an equivalent single layer slab 1 are computed 

depending on the short-term AC modulus EACT and the interface conditions of system 1.  

 

Step 5: Compute the global force vector for the equivalent single layer slab 1.  The global 

force vector due to the thermal strains and self-weight of the slab is computed at the 

appropriate degree of freedom for each element. 

 

Step 9: Calculate nodal stresses for the first elastic solution.  Stresses for each layer of the 

composite pavement system are computed.  For example, the total stress at the bottom of 

the PCC layer of the composite pavement for the first elastic solution is calculated as 

follows: 

 

    (119) 

 

where: 

 and  = elastic stresses at the bottom of the PCC layer of system 1 

and at the bottom of equivalent single layer slab 1, respectively 

heq_1, hAC, and hPCC = thicknesses of the equivalent single layer slab 1, AC, and 

PCC layers, respectively 

x1 = distance of the neutral axis of system 1 from the top of the AC layer 

 = stress due to the nonlinear-strain-causing temperature component 

 

Step 10: Determine parameters of equivalent single layer slab 2 corresponding to system 

2.  The thickness and unit weight for an equivalent single layer slab 2 are computed 

depending on the long-term AC modulus EACL and the interface conditions of system 2 

(which are the same as those chosen for system 1).  

 

Step 11: Compute the stiffness matrix.  Repeat step 4 to generate the global stiffness 

matrix [K2] corresponding to system 2.  

 

Step 12: Compute the fictitious force vector in the equivalent single layer slab 2.  The 

global fictitious force vector acting on equivalent single layer slab 2 is computed using 

the global displacements from the first elastic solution according to equation (115). 

 

Step 13: Compute stresses in the equivalent single layer slab 2.  Repeat step 8 to obtain 

the stresses in the equivalent single layer slab 2 corresponding to the second elastic 
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problem.   

 

Step 14: Calculate nodal stresses for the second elastic solution.  Stress for each layer of 

the composite pavement system is computed.  For example, the total stress at the bottom 

of the PCC layer of the composite pavement for the second elastic solution is calculated 

as follows: 

 

     (120) 

 

where: 

 and  = elastic stresses at the bottom of the PCC layer of system 2 

and at the bottom of equivalent single layer slab 2, respectively 

heq_2 = thickness of the equivalent single layer slab 2 

x2 = distance of the neutral axis of system 2 from the top of the AC layer 

 

Step 15: Compute the global force vector for the third elastic solution.  The global force 

vector is computed by adding the traffic loading to the fictitious force acting on system 2 

at the appropriate degree of freedom for each element. 

 

Step 16: Compute displacements for the third elastic solution.  Same as step 6. 

 

Step 17: Check contact condition.  Same as step 7. 

 

Step 18: Compute stresses in the equivalent single layer slab 2.  Repeat step 8 to obtain 

the stresses in the equivalent single layer slab 2 corresponding to the third elastic 

problem.   

 

Step 19: Calculate nodal stresses for the third elastic solution.  The stress for each layer of 

the composite pavement system is computed.  For example, the total stress at the bottom 

of the PCC layer of the composite pavement for the third elastic solution is calculated as 

follows: 

 

     (121) 

 

where: 

 and  = elastic stresses at the bottom of the PCC layer of system 2 

and at the bottom of equivalent single layer slab 2, respectively, for the third 

elastic solution 

 

Step 20: Compute combined stress.  The combined stress from the three elastic solutions 

is calculated using equation (110). 
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Step 21: Output results.  The displacements and combined stresses in the composite 

pavement at each node are printed in ISLAB2000 output format. 

 

Verification of the Combined Stress Obtained Using the 2-Moduli Approach 

The stress computation procedure presented previously is verified using simple examples 

for the following cases: 

 

1. Comparison with the viscoelastic FE model (presented in Part 3) for a fictitious 

tire footprint 

2. Comparison with the viscoelastic FE model for a typical tire footprint. 

3. Comparison of the combined stress obtained using the 2-moduli approach with a 

simple addition of stresses obtained by executing separately the curling analysis 

and the traffic load analysis, to confirm the presence of non-linear slab-foundation 

interaction. 

 

Comparison with the Viscoelastic FE Model – Example 1 

A three-layered composite pavement placed on an elastic Winkler foundation is loaded 

with a single wheel load that has a tire footprint of 60 in x 48 in and tire pressure of 100 

psi.  The wheel load is applied at the center of the slab.  A uniform mesh consisting of 6 

in x 6 in elements is generated in the horizontal plane.  Both interfaces (AC-PCC and 

PCC-base) are fully bonded.  Figure 12 shows the mesh and loading configuration for the 

composite pavement under this wheel load.   

The composite pavement is also subjected to a non-linear temperature distribution 

given in Table 9.  The temperature profile is adopted from a typical MEPDG hourly 

thermal distribution for the AC and PCC layers.  To maintain consistency with the 

MEPDG, the temperature in the base layer is assumed to be constant and equal to the 

temperature at the bottom of layer 2.  The depth of the temperature data point in a layer is 

given from the top of the corresponding layer.   

 
Table 9 Temperature profile for the composite pavement. 

Layer No. of temperature data points 

1 2 3 4 5 6 7 8 9 10 11 

AC 

Reference temperature = 55.90 °F 

Depth, 

in 
0.0 1.0 2.0 3.0 4.0 

 
Temp., 

°F 
90.9 86.0 81.0 76.4 71.8 

PCC 

Reference temperature = 55.90 °F 

Depth, 

in 
0.0 0.8 1.6 2.4 3.2 4.0 4.8 5.6 6.4 7.2 8.0 

Temp., 

°F 
71.8 69.0 66.9 64.8 63.0 61.4 60.0 58.7 57.6 57.0 55.9 

 

The material properties for the constituent layers of the composite pavement are 

presented in Table 10. 



  80 

 
Table 10 Layer properties for the composite pavement. 

Layer 
Thickness, 

h (in) 

Layer modulus, 

E (psi) 

Poisson’s 

ratio, 

Μ 

Unit 

weight, 

γ (lb/in3) 

Coefficient of 

thermal expansion, 

α (1/°F) 

AC 4 
EACT = 39448.9 

0.15 0.087 1.65E-05 
EACL = 2.0E+05 

PCC 8 4.0E+06 0.15 0.087 5.50E-06 

Base 0 4.0E+04 0.15 0.087 5.50E-06 

 

The AC layer of the composite pavement is represented by (a) the creep 

compliance function using a two-term generalized Kelvin-Voigt model when the stresses 

are computed using the viscoelastic FE model presented in Part 3 and (b) the moduli 

EACL and EACT when stresses are computed using the 2-moduli approach.  The traffic-

duration-dependent AC modulus EACL is equal to the instantaneous modulus of the 

generalized Kelvin-Voigt model.  The temperature-duration-dependent AC modulus 

EACT is equal to the inverse of creep compliance computed using the generalized 

Kelvin-Voigt model at the end of one hour of loading.  Table 11 presents the material 

properties of the AC layer for the viscoelastic FE model and the 2-moduli approach.   

 
Table 11 Material properties for the AC layer. 

Viscoelastic FE Model 

Element # Spring stiffness, psi Dashpot viscosity, psi-in 

0 200000  

1 95265 11307535 

2 101500 997600 

2-Moduli Approach 

 AC Modulus, psi 

EACL 200000 

EACT 39448.9 

 

The viscoelastic FE solution is obtained by executing the FE code presented in 

Part 3 for the composite pavement configuration detailed herein.  The temperature 

distribution is applied for 3600 seconds (1 hour) during which the creep strains and 

corresponding fictitious creep forces develop in the AC layer.  At the end of one hour, the 

wheel load is applied to the pavement.  

The combined stress using the 2-moduli approach was obtained by executing the 

stress computation procedure detailed in above.  Tables 12 and 13 present the deflections 

and longitudinal stresses from the viscoelastic FE model at the end of the load application 

and the three elastic solutions for select nodes at the bottom of the PCC layer.   

  



  81 

 
Table 12 Deflections and stress at the bottom of the PCC layer at slab center. 

 
Location, in 

Deflection, in 
Rotation Longitudinal 

Stress, psi X Y θy θx 

Three elastic solution 

# 1 90 72 -0.0054 0.00 0.00 78.65 

# 2 90 72 -0.0054 0.00 0.00 -96.61 

# 3 90 72 0.2401 0.00 0.00 1947.8 

Combined stress 2123.06 

 

Viscoelastic FE 

solution 
90 72 0.2401 0.00 0.00 2122.84 

 

% Error -0.01% 

 
Table 13 Deflections and stress at the bottom of the PCC layer at an edge node. 

 
Location, in 

Deflection, in 
Rotation Longitudinal 

Stress, psi X Y θy θx 

Three elastic solution 

# 1 90 0 0.0188 -0.0007 0.00 74.35 

# 2 90 0 0.0188 -0.0007 0.00 -101.04 

# 3 90 0 0.1220 0.0015 0.00 716.08 

Combined stress 891.462 

 

Viscoelastic FE 

solution 
90 0 0.1220 0.0015 0.00 891.461 

 

% Error -0.00015% 

 

The stress from the viscoelastic FE solution and the combined stress from three 

elastic solutions match very well at the both the center of the slab and the edge node as 

shown by the .01% and .00015% errors, respectively. 

 

Comparison with the Viscoelastic FE Model – Example 2 

Consider the three-layered composite pavement presented previously.  The pavement is 

loaded with a single-axle dual-wheel (SADW) load that has a tire footprint of 7 in x 7 in 

and tire pressure of 100 psi.  The SADW load is applied at the mid-slab location such that 

one of the wheels is at the edge of the slab.  The pavement is also subjected to the 

temperature distribution given in Table 9.  Figure 15 shows the mesh and loading 

configuration for the composite pavement under the SADW load.  The layer properties of 

the composite pavement are given in Tables 10 and 11 above.  The AC layer is 

represented in the manner similar to example 1 using (a) the creep compliance function 

for the viscoelastic FE model and (b) moduli EACL and EACT for the 2-moduli 

approach.  Tables 14 and 15 present the deflections and longitudinal stresses obtained 
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using the viscoelastic FE model and the three elastic solutions for select nodes at the 

bottom of the PCC layer. 

 
Table 14 Deflections and stress at the bottom of the PCC layer at slab edge. 

 
Location, in 

Deflection, in 
Rotation Longitudinal 

Stress, psi X Y θy θx 

Three elastic solution 

# 1 90 0 0.0188 -0.0007 0.00 74.35 

# 2 90 0 0.0188 -0.0007 0.00 -101.04 

# 3 90 0 0.0466 -0.0011 0.00 268.11 

Combined stress 443.5 

 

Viscoelastic FE 

solution 
90 0 0.0466 -0.0011 0.00 443.3 

 

% Error -0.046% 

 
Table 15 Deflections and stress at the bottom of the PCC layer at an interior node. 

 
Location, in 

Deflection, in 
Rotation Longitudinal 

Stress, psi X Y θy θx 

Three elastic solution 

# 1 72 54 -0.0034 -0.00015 0.00008 69.44 

# 2 72 54 -0.0034 -0.00015 0.00008 -106.09 

# 3 72 54 0.0106 -0.00026 -0.00004 -21.51 

Combined stress 154.02 

 

Viscoelastic FE 

solution 
72 54 0.0106 -0.00026 -0.00004 153.76 

 

% Error -0.169% 

 

The stress from the viscoelastic FE solution and the combined stress from the 

three elastic solutions match fairly well at both the center of the slab and the interior node 

as shown by the .046% and .169% errors, respectively.  The slight difference noted in 

both the examples is attributed to the accumulation of error due to the length of time 

interval considered in the viscoelastic FE solution. 

 

Comparison with Simple Addition of the Stresses 

To confirm that the stress in a pavement is not a direct addition of stresses due to traffic 

load and temperature gradient, a typical composite pavement slab placed on an elastic 

Winkler foundation is considered.  A 15 ft long by 12 ft wide pavement slab is loaded 

with single-axle dual-wheel (SADW) loads at the edge of the slab as shown in Figure 34.  

The SADW loads have a tire footprint of 7 in x 7 in and tire pressure of 100 psi.  A 

uniform mesh consisting of 6 in x 6 in elements is generated.  The modulus of subgrade 

reaction for the Winkler foundation is equal to 100 psi/in.  The interface between the AC 
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and PCC layers of the composite pavement is fully bonded while that between the PCC 

and base layers is fully unbonded. 

 

Figure 34 Mesh and load configuration for the composite pavement subjected to SADW 

edge loading. 

 

The composite pavement is also subjected to a non-linear night-time temperature 

distribution given in Table 16.   

 
Table 16 Temperature profile for the composite pavement. 

Layer No. of temperature data points 

1 2 3 4 5 6 7 8 9 10 11 

AC 

Reference temperature = 55.90 °F 

Depth, 

in 
0.0 0.5 1.0 1.5 2.0 

 
Temp., 

°F 
40.9 46.0 49.0 52.9 57.8 

PCC 

Reference temperature = 55.90 °F 

Depth, 

in 
0.0 0.7 1.4 2.1 2.8 3.5 4.2 4.9 5.6 6.3 7.0 

Temp., 

°F 
57.8 60.2 62.5 64.7 66.9 68.0 70.9 72.8 74.5 76.2 78.8 

 

The material properties for the constituent layers of the composite pavement are 

presented in Table 17. 
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Table 17 Layer properties for the composite pavement. 

Layer 
Thickness, 

h (in) 

Layer modulus, 

E (psi) 

Poisson’s 

ratio, 

μ 

Unit 

weight, 

γ (lb/in3) 

Coefficient of 

thermal expansion, 

α (1/°F) 

AC 2 
EACT = 39448.9 

0.15 0.087 1.65E-05 
EACL = 2.0E+05 

PCC 7 4.0E+06 0.15 0.087 5.50E-06 

Base 6 4.0E+04 0.15 0.000 5.50E-06 

 

The stress in the pavement is computed using the 2-moduli approach presented 

above.  Further, the stress is computed when the composite pavement is subjected to (a) 

the temperature load only and the AC layer has short-term modulus EACT and (b) the 

traffic load only and the AC layer has short-term modulus EACL.  The combined PCC 

top stress at the edge of the slab using the 2-moduli approach is compared against the 

sum of stresses from case (a) and case (b).  The results are presented in Table 18 below. 

 
Table 18 Deflections and stresses at the top of the PCC layer at slab edge. 

 
Location, in 

Deflection, in 
Rotation Longitudinal 

Stress, psi X Y θy θx 

Three elastic solution 

# 1 90 0 -0.0077 0.00 0.00 108.74 

# 2 90 0 -0.0077 0.00 0.00 -138.36 

# 3 90 0 0.0038 0.00 0.00 204.06 

Combined stress 451.17 

 

Viscoelastic FE 

solution 
90 

0 
0.0038 0.00 0.00 451.12 

 

EACT, temperature 

load only 
90 0 -0.0077 0.00 0.00 108.74 

EACL, traffic load 

only 
90 0 0.0033 0.00 0.00 284.05 

      392.79 
 

% Difference 14.86% 

 

The difference between the stresses from the two approaches, which was 14.86%, 

clearly demonstrate that the stress from individual traffic and temperature loads cannot 

simply be added to obtain the combined stress.  This phenomenon is due to the non-linear 

behavior of the slab-foundation interaction. 

 

Comparison of the Stress Solution using the 2-Moduli Approach with the Stress 

Solution using the MEPDG Process 

The stresses obtained using the 2-moduli approach are compared with the stresses 

obtained using the MEPDG procedure in order to assess the difference between the two 
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procedures.  The MEPDG considers the temperature distribution present in the layers of 

the pavement to be a step function of time with duration of one hour.  In this example, the 

temperature distribution with the maximum temperature difference between the top of the 

AC layer and the bottom of the PCC layer was selected for each month over two years of 

data.  The stress in the pavement was then computed using the selected temperature 

distribution for each month in combination with the traffic loading.  The MEPDG 

employs neural networks (NNs) to compute the stresses in rigid and composite 

pavements.  These NNs are trained using a factorial of ISLAB2000 cases.  Therefore, to 

maintain consistency with the MEPDG, ISLAB2000 cases were executed such that the 

composite pavement was subjected to a combination of the temperature distribution 

corresponding to each month of the analysis and traffic loading.   

Consider the three-layered composite pavement presented above.  Twenty-four 

cases corresponding to twenty-four months are analyzed such that the pavement is 

subjected to the SADW load given previously and the selected temperature distribution 

with maximum gradient for each month.  The properties of the constituent layers of the 

composite pavement are given in Table 19.  The AC layer is represented using the 2-

moduli approach such that (a) the short-term modulus EACL is dependent on the vehicle 

loading rate and (b) the short-term modulus EACT is dependent on one hour of 

temperature loading.  Also, both EACL and EACT for each month are calculated using the 

3
rd

 quintile AC temperatures at the mid-depth of the AC layer for the corresponding 

month. 

 
Table 19 Layer properties for the composite pavement. 

Layer 
Thickness, 

h (in) 

Layer modulus, 

E (psi) 

Poisson’s 

ratio, 

Μ 

Unit 

weight, 

γ (lb/in3) 

Coefficient of 

thermal expansion, 

α (1/°F) 

AC 2 
EACT 

0.15 0.087 1.00E-13 
EACL 

PCC 7 4.0E+06 0.15 0.087 5.50E-06 

Base 0 4.0E+04 0.15 0.087 5.50E-06 

 

ISLAB2000 cannot currently analyze a three-layered system if both the layer 

interfaces are fully bonded.  While this is rarely a limitation for the analysis of rigid 

pavements, it introduces some limitation when fully bonded composite pavements are 

analyzed.  Therefore, to maintain compatibility with ISLAB2000, the thickness of the 

base layer of the composite pavement is set to zero.  The stresses obtained using the 2-

moduli approach and by executing the ISLAB2000 case for replicating the MEPDG 

procedure are presented in Figure 35.  The stress is computed at the bottom of the PCC 

layer at the edge of the slab. 
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Figure 35 Comparison of stress using the 2-moduli approach and the MEPDG procedure. 

 

A difference between the stresses from the 2-moduli approach and the MEPDG 

procedure is observed.  There could be several factors that contribute to this difference.  

The MEPDG uses a single traffic loading based AC dynamic modulus (EACL) whereas 

the 2-moduli approach employs moduli EACT and EACL.  This may cause a difference 

between the self-equilibrating stresses present in a layer due to the non-linear-strain-

causing temperature component, which directly affects the total stress at any point in the 

pavement. 

 

Summary 

The MEPDG employs a single load duration-based AC dynamic modulus.   It was 

identified that when a composite pavement is subjected to a combination of traffic load 

and temperature distribution, for which the loading durations are significantly different, 

the use of a single AC dynamic modulus seems insufficient.  Therefore, a procedure to 

analyze the load duration dependent behavior of the layer using two separate AC 

dynamic moduli, or the 2-moduli approach, was introduced.  The combined stress from 

the 2-moduli approach was compared with the stress at the end of the viscoelastic 

analysis conducted using the viscoelastic FE model and a good agreement was observed.  

It was found that the combined stress procedure using the 2-moduli approach is efficient 

in predicting the stress solution and can be used as a substitute for the viscoelastic 

analysis.  Finally, the stress procedure using the 2-moduli approach was compared to the 
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existing MEPDG stress procedure and a significant difference was observed between the 

stresses during certain periods of time. 



PART 5:  DEVELOPMENT OF A FRAMEWORK FOR IMPLEMENTATION OF 

THE 2-MODULI APPROACH INTO MEPDG  

 

The objective of this research is to develop a framework for the structural analysis of 

composite pavements, which can be implemented into the existing or future versions of 

the Mechanistic Empirical Pavement Design Guide (MEPDG).  The 2-moduli approach 

presented in the last section is an attractive alternative to the elastic analysis currently 

implemented by the MEPDG and the more rigorous viscoelastic finite element (FE) 

model.  As was discussed previously, a direct implementation of a FE solution into the 

MEPDG is not feasible due to the computational time constraint. 

The current structural analysis of composite pavements implemented into the 

MEPDG utilizes rapid solutions that are developed based on the results of a factorial of 

ISLAB2000 runs.  In order to accommodate a large number of design parameters in the 

proposed 2-moduli approach, the following techniques were adopted (AASHTO 2008): 

 

1. Replacement of the structural system by a combination of two simpler systems  

2. Equivalency techniques to reduce the number of independent input parameters. 

 

Part 2 provides the details of the techniques employed by the MEPDG for the 

simplification of stress analysis in the existing fatigue cracking distress models for rigid 

and composite pavements.  In this section, similar methods are introduced for the 

simplification of the stress analysis using the 2-moduli approach presented in Part 4.  

Further, examples are presented to verify the proposed simplification and its 

compatibility with the MEPDG framework.  

 

Simplification of the Structural System 

The MEPDG employs a framework of artificial neural networks (NNs) to predict the 

stress solutions for rigid and composite pavements under traffic loading, temperature 

distribution, or their combinations (AASHTO 2008).  The NNs are based on a 

combination of two simpler systems presented in the Part 2 section entitled MEPDG 

Neural Networks for Computing PCC Stresses to compute stresses in the original multi-

slab system.  A similar approach is adopted for the development of a MEPDG compatible 

framework that shall incorporate the stress solutions obtained using the 2-moduli 

approach.   

The original multi-slab composite pavement system consists of one or more 

connected pavement slabs and a shoulder that provides edge support to the slab through 

load transfer between the pavement slab and the shoulder (refer to Figure 2a).  The 

original system is subjected to an axle load acting over a tire footprint area and a 

temperature distribution, which varies throughout the depth of the pavement.  The asphalt 

concrete (AC) layer of the composite pavement is characterized using the short-term AC 

modulus EACL when the pavement is subjected to the axle load and the long-term AC 

modulus EACT when the pavement is subjected to temperature distribution. 

A single slab system—system A (refer to Figure 2b—is the first system used to 

simplify the representation of the original multi-slab pavement. System A is subjected to 

three separate loading regimes as follows: 
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 Temperature curling only  

 Combined axle loading and temperature curling 

 Axle loading only 

 

For computing the stresses corresponding to the combined axle loading and 

temperature curling load regime, the boundary value problem (BVP) detailed in the Part 4 

section entitled Stress Computation Procedure using the 2-Moduli Approach is used.  

The AC layer of the composite pavement system A is represented using the short-term 

modulus EACL when the pavement is subjected to the axle load and the long-term 

modulus EACT when the pavement is subjected to the temperature distribution.  For 

computing the stresses due to temperature curling only and axle loading only, either the 

FE code presented in Part 3 or ISLAB2000 may be used.  The footprint of the axle load 

for system A is considered to be 7 in by 7 in. 

A two-slab system—system B (refer to Figure 2c)—is the other system used to 

simplify the representation of the original multi-slab pavement.  Similar to system A, the 

details of system B are not repeated here.  System B is used to account for the effect of 

tire footprint geometry and shoulder support.  Since a curling analysis of system B is not 

required, the AC layer of the composite pavement of system B is represented using the 

short-term modulus EACL only.  Again, either the FE code or ISLAB2000 may be used 

for computing the stress due to axle loading only.   

Similar to the total stress obtained using the MEPDG procedure (equation (23)), 

the stress in the original multi-slab composite system is related to the stress in systems A 

and B as follows:  

 

  (122) 

 

where: 

 = stress in the original multi-slab composite pavement 

 = stress in system A due to temperature curling only and is equal to the 

stress from the first elastic BVP of the 2-moduli approach 

 and  = stresses in system A due to the combined axle 

loading and temperature curling and are equal to the stresses from the second and 

third elastic BVPs of the 2-moduli approach, respectively 

 = stress in system A due to axle loading only 

 = stress in system B when the shoulder provides no edge support 

LTE = load transfer efficiency between the pavement slab and the shoulder 

 

Equation (122) is verified using a 15 ft long by 12 ft wide composite pavement 

placed on an elastic Winkler foundation.  The modulus of subgrade reaction for the 

Winkler foundation is equal to 100 psi/in.  The material properties of the constituent 

layers are presented in Table 20.  Both of the layer interfaces are fully bonded.  The 

stresses  and are computed using projects designed in ISLAB2000.   
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Table 20 Layer properties for the composite pavement. 

Layer 
Thickness, 

h (in) 

Layer modulus, 

E (psi) 

Poisson’s 

ratio, 

μ 

Unit 

weight, 

γ (lb/in3) 

Coefficient of 

thermal expansion, 

α (1/°F) 

AC 4 
EACT = 39448.9 

0.15 0.087 1.65E-05 
EACL = 2.0E+05 

PCC 8 4.0E+06 0.15 0.087 5.50E-06 

Base 0 4.0E+04 0.15 0.087 5.50E-06 

 

In this example, the thickness of the base layer is purposely selected to be zero 

inches.  This is done to maintain compatibility with ISLAB2000 since ISLAB2000 is not 

capable of analyzing fully bonded three-layered systems.  However, it must be noted that 

other options such as combining the thickness of layers 2 and 3 (while maintaining the 

exact same properties for the two layers) can also be used to maintain compatibility with 

ISLAB2000. 

The composite pavement is subjected to a non-linear temperature distribution 

given in Table 21 below.   

 
Table 21 Temperature profile for the composite pavement. 

Layer No. of temperature data points 

1 2 3 4 5 6 7 8 9 10 11 

AC 

Reference temperature = 55.90 °F 

Depth, 

in 
0.0 1.0 2.0 3.0 4.0 

 
Temp., 

°F 
90.9 86.0 81.0 76.4 71.8 

PCC 

Reference temperature = 55.90 °F 

Depth, 

in 
0.0 0.8 1.6 2.4 3.2 4.0 4.8 5.6 6.4 7.2 8.0 

Temp., 

°F 
71.8 69.0 66.9 64.8 63.0 61.4 60.0 58.7 57.6 57.0 55.9 

 

The axle load present on the slab is in the form of single axle dual wheel (SADW) 

load with a total load of 18000 lbs.  The tire footprint is 9 in by 5 in and the load is 

applied at an offset, s, from the longitudinal edge of the slab.  A uniform mesh of 6 in by 

6 in elements is generated on the slab.  Figure 36 presents the mesh and the loading 

configuration of the composite pavement.   
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Figure 36  The original composite pavement system. 

 

System A is the first simplified structural system with slab dimensions, layer 

properties, axle type, total axle load, wheel offset, and non-linear temperature distribution 

exactly the same as that of the original composite pavement.  However, the tire footprint 

for system A is selected as a square with 7 in sides.  The schematic of system A is shown 

in Figure 37. 
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Figure 37 System A. 

 

System B, the other simplified structural system, is considered as a single slab 

with layer properties, axle type, total axle load, wheel offset, and load footprint geometry 

exactly the same as that of the composite pavement.  However, the dimensions for the 

slab in system B are selected as 30 ft long by 12 ft wide to ignore slab size effects.  The 

schematic of system B is shown in Figure 38. 

 

Figure 38 System B. 

 

A factorial of 98 cases was considered by varying the offset s (i.e., distance of the 

axle load from the slab edge) and the thickness of the PCC layer.  The offset is varied 

from 0 to 24 in (0, 2, 4, 6, 12, 18, and 24).  The thickness of the PCC layer is varied from 

2 to 15 in (2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, and 15).  The stress at the bottom of the 

PCC layer in the original composite pavement was calculated using the combined stress 
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procedure detailed in Part 4 (equation (110)) and it was verified against the stress 

obtained from systems A and B using equation (122).  The comparison of the stresses is 

presented in Figure 39.   

 

Figure 39  Comparison of PCC bottom stresses in the original composite pavement system 

using the 2-moduli approach and simplified systems A and B. 

 

A very good match is observed between the stresses obtained using the two 

methods mentioned above.  This implies that similar to the MEPDG, simplified structural 

systems can be used to represent a composite pavement system for computing stresses 

using the 2-moduli approach developed in this research. 

Another technique employed by the MEPDG to simplify stress analysis is the use 

of equivalency conditions to analyze single layer systems in place of multi-layered 

pavement systems.  Using this technique, the number of independent input parameters 

required for the analysis of multi-layered pavement can be substantially reduced.  This 

was a significant contribution towards the development and training of the MEPDG 

neural networks.  The following section presents the application of this technique for 

computation of stresses using the 2-moduli approach. 

 

Equivalency Techniques for Multi-Layered Pavements 

The stresses in a multi-layered pavement subjected to a combination of traffic loads and 

temperature distribution are dependent on several factors (AASHTO 2008).  The MEPDG 

identifies up to 30 input parameters for the distress model of fatigue cracking in jointed 

plain concrete pavements (JPCP).  These parameters include but are not limited to slab 
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geometry, material properties of the constituent layers, foundation properties, temperature 

distribution, load geometry and properties, joint spacing, and load transfer efficiency.  In 

the case of composite pavements, there are additional input parameters due to the 

presence of a viscoelastic asphalt concrete (AC) layer that influence the distress model of 

fatigue cracking for composite pavements.   

In order to reduce the number of input parameters required for the analysis, the 

solution of a multi-layered pavement is expressed in terms of the solution of a simpler 

equivalent system.  The equivalent system is generally selected as a single layer slab-on-

grade.  Finally, using equivalency conditions discussed below, the deflection and stress in 

the multi-layered pavement can be computed in terms of the deflection and stress in the 

equivalent single layer system, respectively.  This technique has been adopted in the 

MEPDG for the analysis of rigid and composite pavements. 

The equivalency between any two pavement systems is established based on the 

following criteria (Korenev and Chernigovskaya 1962; Ioannides et al. 1992; and 

Khazanovich 1994):  

1. Equivalency of slab stiffness,  

 

2. Equivalency of Korenev’s non-dimensional temperature gradient, 

 

 

3. Equivalency of radius of relative stiffness, , and 

 

4. Equivalency of normalized load ratio,  

 

where: 

 D = stiffness of the slab 

 h and γ = thickness and unit weight of the layer, respectively 

 E and μ = Young's modulus and Poisson's ratio of the layer 

 α = coefficient of thermal expansion of the layer 

 k = modulus of subgrade reaction 

 ∆T = equivalent linear temperature gradient given by equation (82) 

 P = applied axle load, and 

 L and W = length and width of the slab, respectively 

 

If the above mentioned equivalency conditions are satisfied, then the deflections 

and stresses in the two pavements are related as follows: 
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       (124) 

 

where: 

 w = deflection of the pavement 

 ζ = stress in the pavement 

 subscripts 1 and 2 = pavement systems 1 and 2, respectively 

 

A simple example to verify the applicability of equivalency conditions for the 

stress analysis using the 2-moduli approach is presented next.  The original three-layered 

composite pavement system, placed on an elastic Winkler foundation, is loaded under a 

SADW wheel load at an offset of 2 in from the slab edge (Figure 36).  The modulus of 

subgrade reaction for the Winkler foundation is equal to 100 psi/in.  The properties of the 

constituent layers are given in Table 20.  Both of the layer interfaces are fully bonded.  

The pavement is also subjected to the non-linear temperature distribution given in Table 

21. 

Corresponding to the multi-layered systems 1 and 2 of the BVPs described in Part 

4, two equivalent single layer slabs (SL1 and SL2) are obtained.  Slab SL1 corresponds to 

the long-term AC modulus EACT and slab SL2 corresponds to the short-term AC 

modulus EACL.  Both the slabs are placed on an elastic Winkler foundation with a 

coefficient of subgrade reaction equal to 100 psi/in. 

Using the equivalency of slab stiffness, either the thickness or the Young’s 

modulus of the equivalent single layer slab can be computed.  For this example, the 

Young’s modulus of the equivalent single layer slab Eeq is assumed to be known and the 

corresponding thickness heq is calculated as follows: 

 

  (125) 

 

where:  

 x = distance of the neutral axis from the top of the AC layer 

 

The unit weight of the equivalent single layer slab γeq is calculated as: 

 

    (126) 

 

2

21

12
1 






h

h


3

2

22

333

2

22
12

1














































































x
h

hhhE

x
h

hhEx
h

hE

hEhEhE

E
h

Base
PCCACBaseBase

PCC
ACPCCPCC

CA
CACA

BaseBasePCCPCCCAAC

eq

eq

 

eq

BaseBasePCCPCCACAC
eq

h

hhh 







  96 

The properties of the slabs SL1 and SL2 are presented in Table 22 where the 

thickness and the unit weight are computed using equations (125) and (126), respectively. 

 
Table 22 Layer properties for slabs SL1 and SL2. 

 
Young’s 

modulus, (psi) 

Poisson’s 

ratio 

Coefficient of thermal 

expansion, (1/°F) 

Thickness, 

(in) 

Unit weight, 

(lb/in3) 

SL1 4.0E+06 0.15 5.50E-06 8.09 0.1290 

SL2 4.0E+06 0.15 5.50E-06 8.43 0.1238 

 

Slab SL1 is subjected to an equivalent linear temperature gradient calculated 

using the non-linear temperature distribution present in the three-layered composite 

pavement system (Table 21) and equation (82).  Since SL1 corresponds to the long-term 

AC modulus EACT and is subjected to the temperature gradient only, stresses in slab SL1 

are computed using the first BVP presented in Part 4 section entitled Stress Computation 

Procedure using the 2-Moduli Approach for temperature curling only.  

On the other hand, slab SL2 corresponds to the short-term AC modulus EACL and 

is subjected to the fictitious force corresponding to the temperature gradient in slab SL1, 

which is computed using the second BVP presented in the Part 4 section entitled Stress 

Computation Procedure using the 2-Moduli Approach.  Slab SL2 is also subjected to the 

SADW load acting on the three-layered composite pavement system.  The axle type, axle 

load, and wheel offset of the SADW load acting on slab SL2 are exactly the same as that 

on the three-layered composite pavement system.  The stress in slab SL2 under the sum 

of the fictitious force and the SADW load is computed using the third BVP presented in 

the Part 4 section entitled Stress Computation Procedure using the 2-Moduli Approach.  

The bending stresses obtained at the bottom of slabs SL1 and SL2 are transformed 

to the bending stress at the bottom of PCC layer in the three-layered composite pavement 

using equations (88) and (89) as follows: 

 

        (127) 

 

      (128) 

 

      (129) 

 

where: 

ζ3LS = stress in the three-layered system 

ζSL = stress in the equivalent single layer slab 

β = factor that converts the linear bending stresses at the bottom of the equivalent 

single layer slab to the linear bending stresses in the multi-layered slab at the 

depth of interest z 

 

The deflections and stresses obtained using the stress computation procedure 

presented in Part 4 for the three-layered composite pavement system are compared to the 
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deflections and stresses obtained for the equivalent single layer slabs SL1 and SL2.  

Table 23 presents the deflections and stress at the bottom of the PCC layer at slab edge. 

 
Table 23 Deflections and stress at the bottom of the PCC layer at slab edge. 

 
Location, in 

Deflection, in 
Longitudinal stress, psi 

X Y σSL β σ3LS 

Three elastic solution – Three-layered composite pavement 

# 1 90 0 0.0188   136.19 

# 2 90 0 0.0188   -101.04 

# 3 90 0 0.0424   180.99 

Combined stress 418.22 

 

Three elastic solution – Equivalent single layer slabs SL1 and SL2 

SL1: # 1 90 0 0.0188 136.73 0.996 136.191 

SL2: # 2 90 0 0.0188 -102.73 0.983 -101.038 

SL2: # 3 90 0 0.0424 184.03 0.983 180.993 

Combined stress 418.221 
 

% Difference 0.000% 

 

The combined stress in the three-layered composite pavement exactly matches the 

combined stress obtained from the equivalent single layer slabs SL1 and SL2.  This 

implies that the stress computation procedure, presented in Part 4, is capable of analyzing 

the multi-layered system through a combination of equivalent single layer systems. 

 

Summary 

The approach presented in this section permits an efficient development of rapid 

solutions for the stress analysis of composite pavements using the 2-moduli approach.  

This approach is compatible with the MEPDG stress analysis for the MEPDG PCC 

fatigue cracking model, but accounts for the load duration-dependent behavior of the AC 

layer.  The use of the equivalency concept presented above would permit development of 

a rapid solution for an equivalent single layer system, thus significantly reducing the 

number of independent parameters in the statistical model. 
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PART 6:  CONCLUSIONS 

 

Composite pavements are complex structures incorporating both asphalt and portland 

cement concrete (PCC) layers.  Composite pavement behavior exhibits features of both 

rigid and flexible pavements.  Because of this, a structural analysis of composite 

pavements is a challenging program.  This research concentrated on improving the 

structural modeling of stress analysis for prediction of PCC fatigue cracking compatible 

with the MEPDG PCC fatigue cracking modeling.  A summary of the research findings is 

presented below. 

 

Research Findings 

 

The main findings of this research work can be summarized as follows: 

 

 The use of a single load duration-dependent AC dynamic modulus to characterize 

the behavior of the AC layer seems insufficient for composite pavements 

subjected to a combination of traffic loads and temperature curling because a 

significant difference was found in the AC dynamic modulus when a composite 

pavement is subjected to typical traffic loads and to one hour of temperature 

loads.   

 A finite element (FE) model was developed to analyze a composite pavement 

placed on a Winkler foundation that incorporates elastic and viscoelastic layers.  

The FE model has the capability to analyze pavements subjected to traffic loads 

and temperature curling.  The FE model was validated against semi-analytical 

solutions. 

 A stress computation procedure was developed to calculate stresses in the 

composite pavement subjected to a combination of traffic loads and temperature 

curling using two load duration-dependent AC moduli.  The AC moduli were 

computed using the existing MEPDG procedure for calculating the dynamic 

modulus of the AC layer.   

 The stress computation procedure based on the 2-moduli approach demonstrated 

that the MEPDG may significantly underestimate the stress in composite 

pavements subjected to a combination of traffic loading and temperature curling.  

Further investigation of this issue is required. 

 A framework for the implementation of the proposed stress procedure into the 

MEPDG was developed such that minimum modifications to the existing 

MEPDG framework are required.  The proposed stress computation procedure 

can be directly implemented into the MEPDG for predicting fatigue cracking in 

composite pavements. 

 

Recommendations for the Future Research 

 

Based on the findings of this research, the following recommendations for the future 

research are made: 
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 The procedure for computing the AC dynamic modulus was originally developed 

for flexible pavements (AC layer placed directly on top of the base layer).  

Modifications to this procedure are required for the analysis of composite 

pavement due to the presence of a stiff portland cement concrete (PCC) layer 

between the AC layer and the base. 

 In the case of temperature curling analysis, both the MEPDG and the proposed FE 

model assume the reference temperature of the AC layer as equal to the 

temperature at the bottom surface of the PCC layer.  This assumption needs to be 

investigated and modified, if required. 

 The FE model developed in this research is an extension of the state-of-the-art 

pavement computational package ISLAB2000 in terms of viscoelastic material 

modeling.  However, not all features of ISLAB2000 are currently implemented in 

the FE model.  Future versions of the FE code require complete merger with 

ISLAB2000. 

 For merging the results of this research with the MEPDG fatigue cracking model 

for composite pavements, rapid solutions based on the stress computation 

procedure using the 2-moduli approach should be generated.  

 It has been observed by many researchers that the subgrade behavior of the 

Winkler foundation is load rate-dependent.  The apparent subgrade stiffness is 

much higher under the fast moving axle loads than during the slow developing 

temperature curling and moisture warping.  Therefore, it may be possible to 

extend a similar 2-moduli approach to the subgrade modulus in order to overcome 

this limitation. 

 

  



  100 

REFERENCES 

 

1. American Association of State Highway and Transportation Officials. Guide for 

Design of Pavement Structures, Washington, D.C. 1993. 

 

2. American Association of State Highway and Transportation Officials. Mechanistic-

Empirical Pavement Design Guide, Interim Edition: A Manual of Practice. 

Washington, D.C. 2008. 

 

3. ABAQUS/Standard. Hibbitt, Karlsson & Sorensen Inc. User’s Manual, Vol. 1, 

10.6.1, 1997. 

 

4. ANSYS, Inc. Theory Reference. ANSYS Release 9.0. 4-60, 2004. 

 

5. Bahia H. U., Anderson D. A., and Christensen D. W. The Bending Beam 

Rheometer; A Simple Device for Measuring Low-Temperature Rheology of 

Asphalt Binders. Journal of Association of Asphalt Paving Technologists, Vol. 61, 

pp. 117-153, 1992.  

 

6. Banan M. and Hjelmstad. Data-Based Mathematical Modeling: Development and 

Application. SRS No. 590, Civil Engineering Studies, University of Illinois, 

Urbana, IL 1994. 

 

7. Di Bendetto H., Olard F., Sauzeat C., and Delaporte B. Linear Viscoelastic 

Behavior of Bituminous Materials: From Binders to Mixes. International Journal of 

Road Materials and Pavement Design, Vol. 5, Special Issue, pp. 163-202, 2004. 

 

8. Di Bendetto H., Delaporte B., and Sauzeat C. Viscoelastic Modeling and Field 

Validation of Flexible Pavements. International Journal of Geomechanics, 

March/April, pp. 149-157, 2007. 

 

9. Ceylan H., Tutumluer E., and Barenberg E. J. Artificial Neural Networks As 

Design Tools In Concrete Airfield Pavement Design. Proceedings of the 25
th

 

International Air Transportation Conference, Austin, Texas, June 14-17, pp. 447-

465, 1998. 

 

10. Ceylan H., Tutumluer E., and Barenberg E. J. Artificial Neural Network Analyses 

of Concrete Airfield Pavements Serving the Boeing B-777 Aircraft. Transportation 

Research Record 1684, National Research Council, Washington, D.C., pp. 110-117, 

1999. 

 

11. Ceylan H., Tutumluer E., and Barenberg E. J. Effects of Combined Temperature 

and Gear Loading on the Response of Concrete Airfield Pavements Serving the 

Boeing B-777Aircraft. Proceedings of the International Air Transport Conference 

(IATC), 2020 Vision of Air Transportation, San Francisco, California, June 18-21, 

2000. 



  101 

 

12. Chen T. Determining a Prony Series for a Viscoelastic Material from Time Strain 

Data. NASA/TM-2000-210123, ARL-TR-2206, Langley Research Center, 

Hampton, Virginia, 2000. 

 

13. Chou Y. T. Structural Analysis Computer Programs for Rigid Multicomponent 

Pavement Structures with Discontinuities - WESLIQID and WESLAYER, 

Technical Report GL-81-6, U.S. Army Engineer Waterways Experiment Station, 

May 1981. 

 

14. Cook R. D., Malkus D. S., and Plesha M. E. Concepts and Applications of Finite 

Element Analysis. John Wiley & Sons, Inc., 1974. 

 

15. Daniel J. S., Kim Y. R., and Lee H. Effects of Aging on Viscoelastic Properties of 

Asphalt-Aggregate Mixtures. Transportation Research Record, Vol. 1630, pp. 21-

27, 1998. 

 

16. Darter M. I. et al. Composite Pavement Systems. Draft Interim Report, Project 

SHRP2 R21, Transportation Research Board, Washington D.C. 2008. 

 

17. Elseifi M. A., Al-Qadi I. L., and Yoo P. J. Three-dimensional Linear Behavior of 

Bituminous Materials; Experiments and Modeling. Journal of Engineering 

Mechanics, Vol. 132, Issue 2, pp. 172 – 178, 2006. 

 

18. Davids W. G., Turkiyyah G. M., and Mahoney J. EVERFE -- a New Rigid 

Pavement Finite Element Analysis Tool, Transportation Research Record No. 1629, 

pp. 69-78, Washington D. C. 1998. 

 

19. Ferry J.D. Viscoelastic Properties of Polymers. 2nd edition, Wiley Publication, 

New York 1970. 

 

20. FORTRAN. Visual Numerics, Inc., 1997 http://www.vni.com 

 

21. Gordon G. V. and Shaw M. T. Computer Programs for Rheologists. Hanser / 

Gardner Publication, Munich 1994.  

 

22. Haussmann L. D., Tutumluer E., and Barenberg E. J. Neural Network Algorithms 

for the Correction of Concrete Slab Stresses from Linear Elastic Layered Programs. 

Transportation Research Record 1568, National Research Council, Washington 

D.C., pp. 44-51, 1997. 

 

23. Hill S. A. The Analytical Representation of Viscoelastic Material Properties using 

Optimization Techniques. NASA TM-108394, February 1993.  

 

http://www.vni.com/


  102 

24. Ioannides A. M., Khazanovich L., and Becque J. L. Structural Evaluation of Base 

Layers in Concrete Pavement Systems. Transportation Research Record 1370, 

Washington D. C. 1992. 

 

25. Johnson A. R. Modeling Viscoelastic Materials Using Internal Variables. The Shock 

and Vibration Digest, Vol. 31, No. 2, pp. 91-100, 1999. 

 

26. Johnson A. R. and Quigley C. J. A Viscohyperelastic Maxwell Model for Rubber 

Viscoelasticity. Rubber Chemistry and Technology, Vol. 65, No. 1, pp. 137-153, 

1992. 

 

27. Johnson A. R., Tessler A., and Dambach M. Dynamics of Thick Viscoelastic 

Beams. ASME Journal of Engineering Materials and Technology, Vol. 119, pp. 

273-278, 1997. 

 

28. Huang Y. H. Pavement Analysis and Design. Prentice Hall, Englewood Cliffs, NJ 

1993. 

 

29. Kerr A. D. Elastic and Viscoelastic Foundation Models. ASME Journal of Applied 

Mechanics, Vol. 31, No. 3, pp. 491-498, 1964. 

 

30. Khazanovich L. Structural Analysis of Multi-Layered Concrete Pavement Systems. 

Ph.D. Dissertation, University of Illinois, Urbana, IL 1994. 

 

31. Khazanovich L. and Roessler J. DIPLOBACK: a Neural Networks-Based 

Backcalculation Program for Composite Pavements. Transportation Research 

Record 1570, Washington D. C. 1997. 

 

32. Khazanovich L., Selezneva O. I., Yu H. T., and Darter M. I. Development of Rapid 

Solutions for Prediction of Critical Continuously Reinforced Concrete Pavement 

Stresses. Transportation Research Record 1778, pp. 64-72, Washington D.C., 2001. 

 

33. Khazanovich L., Yu H. T., Rao S., Galasova K., Shats E., and Jones R. 

ISLAB2000—Finite Element Analysis Program for Rigid and Composite 

Pavements: User’s Guide. ARA Inc., ERES Consultants Division, Champaign IL, 

2000. 

 

34. Korenev B. G. and Chernigovskaya E. I. Analysis of Plates on Elastic Foundation, 

Gosstroiizdat, Moscow (in Russian), 1962. 

 

35. Lesieutre G. A. and Govindswamy K. Finite Elements Modeling of Frequency 

Dependent and Temperature Dependent Dynamic Behavior of Viscoelastic 

Materials in Simple Shear. International Journal of Solids and Structures, Vol. 33, 

No. 3, pp. 419-432, 1996. 

 



  103 

36. Li Z. D., Yang T. Q., and Luo W. B. An Improved Model for Bending of Thin 

Viscoelastic Plate on Elastic Foundation. Natural Science, Vol. 1, No. 2, pp. 120-

123, 2009. 

 

37. Marasteanu M. O. and Anderson D. A. Improved Model for Bitumen Rheological 

Characterization. Eurobitume Workshop on Performance Related Properties for 

Bituminous Binders, Luxembourg, paper no. 133, 1999.  

 

38. Marasteanu M. O. and Anderson D. A. Comparison of Moduli for Asphalt Binders 

Obtained from Different Test Devices. Journal of the Association of Asphalt Paving 

Technologists, Vol. 69, pp. 574-606, 2000. 

 

39. Marasteanu M., Velasquez R., Falchetto A. C., and Zofka A. Development of a 

Simple Test to Determine the Low Temperature Creep Compliance of Asphalt 

Mixtures. IDEA Program Transportation Research Board, National Research 

Council, 2009. 

 

40. Mase G. E.  Continuum Mechanics. The McGraw-Hill Companies, 1970. 

 

41. MATHEMATICA. Wolfram Research, Inc. 1988 

http://www.wolfram.com/mathematica/ 

 

42. Monismith C. L. and Secor K. E. Viscoelastic Behavior of Asphalt Concrete 

Pavement. First International Conference on the Structural Design of Asphalt 

Pavements, pp. 476-498, 1962.  

 

43. Monismith C. L. Analytically Based Asphalt Pavement Design and Rehabilitation: 

Theory to Practice, 1962-1992. Transportation Research Record No. 1354, pp. 5-26, 

1992.  

 

44. Maker B. N., Ferencz R. M., and Hallquist J. O. NIKE3D, A Nonlinear, Implicit, 

Three-dimensional Finite Element Code for Solid and Structural Mechanics. User’s 

Manual 4-40, 1995. 

 

45. Nesnas K. and Nunn M. E. A Model for Top-down Cracking in Composite 

Pavements. RILEM 4
th

 International Conference on Cracking in Pavements, 

Limoges, France, 2004. 

 

46. Osswald, T. A. and Menges G. Material Science of Polymers for Engineers. 2
nd

 

edition, Hanser Gardner Publication, Inc., OH 2003. 

 

47. Park S. W. and Schapery R. A. Methods of Interconversion Between Linear 

Viscoelastic Material Functions. Part I – A Numerical Method Based on Prony 

Series, International Journal of Solids and Structures, Vol. 36, pp. 1653-1675, 1999.  

 

http://www.wolfram.com/mathematica/


  104 

48. Park S. W. and Kim Y. R. Fitting Prony-Series Viscoelastic Models with Power-

Law Presmoothing. Journal of Materials in Civil Engineering, Vol. 13, Issue 1, pp. 

26-32, 2001. 

 

49. Pasternak P. L. Fundamentals of a New Method of Analysis of Structures on 

Elastic Foundation by Means of Two Subgrade Coefficients. Gosudarstvennoe 

Izdatel'stvo Literatury po Stroitel'stvu i Arkhitekture, Moscow (in Russian) 1954. 

 

50. Pellinen T. K. and Witczak M. W. Stress Dependent Master Curve Construction for 

Dynamic (Complex) Modulus. Journal of the Association of Asphalt Paving 

Technologists, 2002. 

 

51. Ping W. V. and Xiao Y. Evaluation of the Dynamic Complex Modulus Test and 

Indirect Diametral Test for Implementing the AASHTO 2002 Design Guide for 

Pavement Structures in Florida. Florida Department of Transportation, Report No.  

FL/DOT/RMC/BC-352-12, January 2007. 

 

52. Reddy J N. An Introduction to the Finite Element Method. McGraw-Hill, Inc., 

1984. 

 

53. Rowe G. M., Sharrock M. J., Bouldin M.G., and Dongre R. N. Advanced 

Techniques to Develop Asphalt Master Curves from the Bending Beam Rheometer. 

Petroleum and Coal, Vol. 43, No. 1, pp. 54-59, 2001. 

 

54. Saal R. N. J. Physical Properties of Asphaltic Bitumen: Rheological Properties. J. P. 

Pfeiffer, ed., Elsevier, Amsterdam, The Netherlands, pp. 49-76, 1950. 

 

55. Saal R. N. J. and Labout J. W. A. Rheologic Properties of Asphalts. Rheology: 

Theory and Applications, Ed. F. R. Eirich, Vol. II, Academic Press, New York, 

1958.  

 

56. Sayegh G. Viscoelastic Properties of Bituminous Mixtures. Second International 

Conference on the Structural Design of Asphalt Pavements, 1967. 

 

57. Schapery R. A. Mechanics of Composite Materials. Vol. 2, Ed. Sendeckyj G. P., 

Academic Press, New York, pp. 85-169, 1974.  

 

58. Soussou J. E., Moavenzadeh F., Gradowczyk M. H. Application of Prony Series to 

Linear Viscoelasticity. Journal of Rheology, Vol. 14, Issue 4, pp. 573-584, 1970. 

 

59. Tabatabie A. M. and Barenberg E. J. Structural Analysis of Concrete Pavement 

Systems. ASCE Transportation Engineering Journal, Vol. 106, No. 5, pp. 493-506, 

1980. 

 



  105 

60. Tayabji S. D. and Colley B. E. Improved Pavement Joints. Transportation Research 

Record No. 930, Transportation Research Board, National Research Council, 

Washington D.C., pp. 69- 78, 1983. 

 

61. Timoshenko S. P. Theory of Elasticity. McGraw-Hill Companies, 3
rd

 Edition, 1970. 

 

62. Timoshenko S. P. and Woinowsky-Krieger S. Theory of Plates and Shells. 2
nd

 

edition, McGraw-Hill, NY, 1959. 

 

63. Thomlinson J. Temperature Variations and Consequent Stresses Produced by Daily 

and Seasonal Temperature Cycles in Concrete Slabs. Concrete Constructional 

Engineering, Vol. 36, No. 6, pp. 298-307; No. 7, pp. 352-360, 1940. 

 

64. Ugural A. C. and Fenster S. K. Advanced Strength and Applied Elasticity. Pearson 

Education, Inc., 2003 

 

65. UMN Online Lecture 2011 

http://www.me.umn.edu/labs/composites/Projects/Polymer%20Heat%20Exchanger/

Creep%20description.pdf 

 

66. Van der Poel C. A General System Describing the Viscoelastic Properties of 

Bitumens and its Relation to Routine Test Data. Journal of Applied Chemistry, Vol. 

4, Issue 5, pp. 221-236, May 1954. 

 

67. Wang Q. Improvement of Structural Modeling of Flexible Pavements for 

Mechanistic-Empirical Design, Ph.D. Dissertation, University of Minnesota, 

December 2007. 

 

68. Zienkiewicz O. C. and Taylor R. L. Finite Element Method for Solid and Structural 

Mechanics, 1st Edition, Elsevier, 1967. 

 

69. Zofka A. Investigation of Asphalt Concrete Creep Behavior using 3-point Bending 

Test. Ph.D. Dissertation, University of Minnesota, 2007.  

 

70. Zofka A., Marasteanu M. O., and Turos M. Determination of Asphalt Mixture 

Creep Compliance at Low Temperatures by Using Thin Beam Specimens. 

Transportation Research Record No. 2057, Transportation Research Board, pp. 134-

139, Washington D. C. 2008.  

http://www.me.umn.edu/labs/composites/Projects/Polymer%20Heat%20Exchanger/Creep%20description.pdf
http://www.me.umn.edu/labs/composites/Projects/Polymer%20Heat%20Exchanger/Creep%20description.pdf


APPENDIX A 

 

This appendix details the procedure for calculation of stresses due to the non-linear-

strain-causing temperature component in a composite pavement.  According to 

Thomlinson (1940) any arbitrary temperature distribution, T(z) can be divided into three 

components given as follows: 

 

1. The constant strain-causing temperature component given as: 

 

   (A.1) 

 

where: 

 z = depth of the point of interest from the neutral axis 

 T0 = reference temperature of the layer at which there are no temperature-related 

stresses or strains in the layer 

 l = total number of layers in the multi-layered system 

 E =Young’s modulus 

 α = coefficient of thermal expansion 

 T(z) = arbitrary temperature distribution 

 

2. The linear strain-causing temperature component given as: 

 

 

   (A.2) 

 

 

3. The nonlinear strain-causing temperature component. 

 

By definition, the difference between the total temperature distribution and the reference 

temperature is equal to the sum of the differences of the individual temperature 

components and the reference temperature defined as follows: 

 

   (A.3) 

 

Therefore, the nonlinear-strain-causing temperature component, TNL, could be written as: 

 

   (A.4) 
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The nonlinear-strain-causing temperature component and corresponding stress at the 

bottom of the PCC layer are given as: 

 

 
 (A.5) 

 

  

 (A.6) 

 

and, at the top of the PCC layer as: 

 

 
 (A.7) 

 

   (A.8) 

 

where: 

 μ = Poisson's ratio of the layer 

 

The following sections detail the process of calculating the constant strain-causing 

temperature component and linear strain-causing temperature component using the 

temperature distribution present in the three-layered composite pavement.  The procedure 

is detailed for all combinations of interface conditions in the composite pavement. 

 

Unbonded AC-PCC and Unbonded PCC-Base Interfaces 

If a pavement slab is not constrained horizontally then the constant strain-causing 

temperature component causes free expansion of the layer.  The free expansion does not 

cause stresses (and strains) in any of the layers as the layers are not bonded.  Therefore, 

the layers can be treated independently of one another to compute the constant strain-

causing temperature component.  For this particular interface condition, the neutral axes 

(NA) of the AC and the base layers are as follows: 

 

    (A.9) 
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 (A.11) 

 

  (A.12) 

 

 (A.13) 

 

The MEPDG considers the temperature distribution in the AC and PCC layers at 4 and 11 

points through the thickness of these layers, respectively.  Therefore, the integrals of 

equations (A.11) to (A.13) can be approximated numerically as:  

 

 (A.14) 

 

   (A.15) 

 

    (A.16) 

 

Using equation (A.2), the linear strain-causing temperature component is given as: 
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    (A.17) 

 

   (A.18) 

 

   (A.19) 

 

where: 

 

 (A.20) 

 

 

The thickness and the unit weight of an equivalent slab with Young’s modulus EPCC and 

coefficient of thermal expansion αPCC, are given as: 

 

   (A.21) 

 

    (A.22) 

 

Therefore, the linear strain-causing temperature in the equivalent slab can be written as:  

 

     (A.23) 

 

Using equation (A.23), the linear strain-causing temperature at the top surface of the 

equivalent slab can be written as: 

 

    (A.24) 
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and at the bottom surface as: 

 

    (A.25) 

 

Therefore, the linear temperature gradient in the equivalent slab can be derived as: 

 

   (A.26) 

 

or 

 (A.27) 

 

 

The Mechanistic Empirical Pavement Design Guide (MEPDG) assumes that the 

temperature distribution in the base layer is constant through its thickness and is equal to 

the temperature at the bottom of the PCC layer.  Applying similar assumptions to the 

composite pavement, equation (A.27) can be rewritten as: 
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(A.29) 
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 (A.30) 

 

Finally, using equations (A.17) to (A.19) and (A.30), the linear strain-causing 

temperature at the top and the bottom of all layers of the composite pavement can be 

written as: 
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Bonded AC-PCC and Bonded PCC-Base Interfaces 

For this particular interface condition, the neutral axis (N.A.) of the composite pavement 

is given as follows: 
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 (A.37) 

 

where: 

x = distance of the N.A. from the top of the AC layer 

 

The thickness and the unit weight of an equivalent slab with Young’s modulus 

EPCC and coefficient of thermal expansion αPCC, are given as: 

 

 (A.38) 

 

    (A.39) 

 

Using equation (A.1), the constant strain-causing temperature component in the PCC 

layer is given as: 

 

 (A.40) 

 

Equation (A.40) can be approximated numerically as follows: 

 

 

(A.41) 
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The constant strain-causing temperature component in the AC and base layers can be 

written as: 

 

   

(A.42) 

 

   

(A.43) 

 

Using equation (A.2), the linear strain-causing temperature component is given as: 

 

 

(A.44) 

 

Therefore, the linear temperature gradient in the equivalent slab can be written as: 
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Equation (A.46) can be approximated numerically as follows: 
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(A.47) 

 

Finally, the linear strain-causing temperature at the top and the bottom of all layers of the 

composite pavement can be written as: 
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Unbonded AC-PCC and Bonded PCC-Base Interfaces 

For this particular interface condition, the neutral axis (NA) for the bonded layers of the 

composite pavement and for the AC layer is given as follows: 

 

   

(A.54) 

 

    

(A.55) 

 

The thickness and the unit weight of an equivalent slab with Young’s modulus EPCC and 

coefficient of thermal expansion αPCC, are given as: 
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(A.57) 

 

Using equation (A.1), the constant strain-causing temperature components in the AC, 

PCC, and base layers are given as: 
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(A.60) 

 

Equations (A.58) and (A.59) can be approximated numerically as follows: 
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Using equation (A.2), the linear strain-causing temperature components are given as: 
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(A.65) 

 

Therefore, the linear temperature gradient in the equivalent slab can be written as: 
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(A.66) 

 

or 

 

 

(A.67) 

 

Equation (A.67) can be approximated numerically as follows: 

 

 

 

(A.68) 

 

Finally, the linear strain-causing temperature at the top and the bottom of all layers of the 

composite pavement can be written as: 
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(A.70) 

 

     

(A.71) 

 

   
 

(A.72) 

 

   

(A.73) 

 

  

(A.74) 

 

 

Bonded AC-PCC and Unbonded PCC-Base Interfaces 

For this particular interface condition, the neutral axes (NA) of the bonded layers of the 

composite pavement and of the base layer are given as follows: 

 

   

(A.75) 

 

   

(A.76) 

 

The thickness and the unit weight of an equivalent slab with Young’s modulus EPCC and 

coefficient of thermal expansion αPCC, are given as: 

 

 

(A.77) 
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(A.78) 

 

Using equation (A.1), the constant strain-causing temperature components in the AC, 

PCC, and base layers are given as: 

 

(A.79) 

 

(A.80) 

 

 (A.81) 

 

Equations (A.79) to (A.81) can be approximated numerically as follows: 
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    (A.84) 

 

Using equation (A.2), the linear strain-causing temperature components are given as: 
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    (A.85) 

 

    (A.86) 

 

where: 

 

 (A.87) 

 

Therefore, the linear temperature gradient in the equivalent slab can be written as: 

 

  (A.88) 

 

Equation (A.88) can be approximated numerically as follows: 
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  (A.89) 

 

Finally, the linear strain-causing temperature at the top and the bottom of all layers of the 

composite pavement can be written as: 
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