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EICM Evaluation (1) 

• A comprehensive sensitivity of the effect of 
climate on pavement performance predictions 
was conducted 

– Over 600 stations 

• Environment has a significant impact on 
predicted pavement performance 

• Many trends were reasonable 

• However, differences in stations with similar 
climates were greater than expected 

• Illustrated the need for high-quality climatic 
data 
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Blue < 16%  Green 16-25% Yellow 26-40% Red > 40% 

• Trends are visible, but anomalies are present 
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EICM Evaluation (2) 



• More than 10 million 
temperature 
measurements from PCC 
and AC/PCC  

• Data was filtered using a 
program developed by Dr. 
Randal Barnes, UMN 

• Subjected field data to 14 
different tests to identify 
missing and insufficient 
data, sensors outliers, 
subset outliers 

• Suspect data were flagged 

 

 

 

  

MnROAD Data & Data Analysis 
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MnROAD Data Screening Example 



 

 PCC   AC/PCC 
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MnROAD Data: Thermal Gradients in PCC 



 

 

MnROAD Data and EICM (1) 
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MnROAD Data and EICM (2) 



 

PCC Thermal Conductivity =  

 1.25 BTU/ hr-ft-
 

F 
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MnROAD Data vs. MEPDG Default 

 
Note: MnROAD data for July 

 



• Good qualitative agreement, but the MEPDG 
underestimates frequencies of positive and 
negative temperature gradients 

• Possible explanation is the MEPDG default 
thermal conductivity value is too high 

• Action: 

– Adjust thermal conductivity to minimize the 

discrepancy for July 

– Verify the model for other months  

Model Predictions vs. Measured Data 
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MnROAD Data and EICM, Pt. 2 (1) 

 

PCC Thermal Conductivity =  

 0.94 BTU/ hr-ft-
 

F 
 

 
Note: MnROAD data for July 
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MnROAD Data and EICM, Pt. 2 (2) 

 

PCC Thermal Conductivity =  

 0.94 BTU/ hr-ft-
 

F 
 

 
Note: MnROAD data for March 

 



• MnROAD data confirmed thermal insulating 
effect of AC over PCC 

• Quantitatively the EICM model accounts for 
this effect 

• Calibration of thermal conductivity value gave 
better agreement between measured and 
modeled data 

• Environmental effects should be considered 
with equal importance as traffic, design features 
and material properties 
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EICM Evaluation Conclusions 



Sieve Percent Passing 

A-1-a A-3 

#200 8.7 5.2 

#80 12.9 33 

#40 20 76.8 

#10 33.8 94.3 

#4 44.7 95.3 

3/8" 57.2 96.6 

1/2" 63.1 97.1 

3/4" 72.7 98 

1" 78.8 98.6 

1 1/2" 85.8 99.2 

2" 91.6 99.7 

3 1/2" 97.6 99.9 
 

 

Effect of Base Gradation in MEPDG 
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Base Gradation: Predicted Trans Cracking 
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Base Gradation: Modeled Res Modulus 



 

 

MEPDG: AC and PCC Thicknesses 

• The sensitivity to PCC layer thickness was 
evaluated for two different AC thicknesses 

– 2” AC over 7” PCC 

– 3” AC over 6” PCC 

• AADTT was adjusted to meet a target of 
20% cracking 

• All other inputs were identical 

• PCC was adjusted ± 2” at 1” increments 
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MEPDG AC/PCC: Thickness and Cracking 

• 2”AC / 7” PCC structure will support over 
3000 AADTT more than 3” AC/ 6” PCC 
structure 

- 

AC Thickness PCC Thickness % Cracking

2 5 99.8

2 6 89.3

2 7 20.0

2 8 0.2

2 9 0.0

AC Thickness PCC Thickness % Cracking

3 4 99.9

3 5 96.9

3 6 20.0

3 7 0.3

3 8 0.0

Traffic: 7420 AADTT 

TICP TAP, OCT 2011 

Traffic: 4325 AADTT 



 

 

AC/PCC PCC

12' 20.0 20.0

12.5' 2.3 3.0

13' 0.1 0.3

13.5' 0.1 0.3

14' 0.1 0.3

% Cracking
Width

AC/PCC PCC

12' 0.0 0.8

15' 20.0 20.0

17' 68.1 75.3

19' 91.1 98.4

Length
% Cracking
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MEPDG AC/PCC: Slab Width and Joint Spacing 



 

 

MEPDG/EICM Conclusions (1) 

TICP TAP, OCT 2011 

• EICM/MEPDG very sensitive to climate 
data and erroneous climate files can 
undermine analysis entirely 

• EICM/MEPDG models sensitive to 
thermal conductivity 

• MEPDG pavement performance models 
very sensitive to PCC layer thickness in 
AC-PCC projects 

 



 

 

Two papers submitted on MEPDG climate 
sensitivity 
 

• TRB 2010 

– Accepted for presentation and publication 

– Award: Geology and Properties of Earth 
Materials Section 2010 Best Paper Award 

• TRB 2011 

–  Accepted for presentation and publication 

TICP TAP, OCT 2011 

MEPDG/EICM Conclusions (2) 
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• Development of Design Guidelines 
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California LCCA Case Studies 

 

 

• Case 1:  Lane replacement of  truck 
lanes in Southern California as TICP 
instead of  JPCP.  

• Case 2:  Convert multi-lane highway 
in Northern California into divided 
highway by adding new direction with 
TICP instead of  JPCP.  
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CA LCCA Decision Metrics 

 

 

• Thickness of  the PCC in the TICP pavement 

that resulted in same NPV for the TICP as for 

the JPCP 

• The reduction in cost of  the TICP PCC as a 

percentage of  the cost of  JPCP PCC that 

resulted in the same NPV for TICP and JPCP 

• The increase of  PCC life in the TICP 

pavement beyond the normal PCC service life 
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Minnesota LCCA Case Study 
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• New two-lane, high-volume road 

• MN LCCA decision metrics 

– When is the NPV of  TICP and JPCP construction 
comparable? 

– Cost of  initial construction 

– Cost of  minor and major maintenance 

– Cost of  rehabilitation regimens  



 

 

 

 

For ESALs > 7 million… 

JPCP Maintenance Schedule 

TICP Maintenance Schedule 
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Minnesota LCCA Case Study (2) 
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Minnesota LCCA Case Study (3) 

• Three levels of concrete and asphalt costs 

• Cost of TICP concrete could be 25%, 

50%, 75%, or 100% the cost of the JPCP 

concrete 
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Minnesota LCCA Case Study (4) 

• A reduction in cost of the TICP PCC layer 

could be accomplished by 

– Increasing the percentage of  supplementary 
cementitious materials  

– Substituting recycled concrete aggregates for 
conventional coarse aggregates 

– Allowing a higher percentage of  fine, soft, spall, or 
slate in the coarse aggregate.  

– Decreasing the cost of  concrete is not limited to 
these examples 



 

 

MN LCCA: Primary Variable Inputs 
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• Cost of concrete (H, M, L) 

• Cost of asphalt (H, M, L) 

• Cost of concrete in TICP relative to 

the cost of concrete in JPCP (0%, 

25%, 75%, 100%) 

• Discount rate (2.5% & 5.0%) 



 

 

MN LCCA: Influence of AC Cost 
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MN LCCA Conclusions 
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• TICP becomes more cost competitive 

with JPCP when/as . . . 

– The cost of  concrete increases 

– The cost of  asphalt is low and the cost of  
concrete is high or medium 

– The cost of  concrete for TICPs decrease 
relative to the cost of  JPCP concrete 

– The discount rate increases 



 

 

LCCA: Other Applications 

 

 

• Stage Construction 

• Preventive Maintenance 
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TICP vs. Structural Overlay 

TICP 
Rehabilitation 
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Structural Modeling 

 

 

AC Layer

PCC Layer

Direction of Traffic

• Composite pavement is subjected to 

– Positive temperature gradient 

– Traffic load 

• PCC layer cracks at the bottom 

– Crack propagates upwards 

AC Layer

PCC Layer

Curling due to day-time 
positive temperature gradient

AC Layer

PCC Layer

Critical stress region at the 
bottom of the slab

Curling due to day-time 
positive temperature gradient

Mid-slab traffic load

AC Layer

PCC Layer

Curling due to day-time 
positive temperature gradient

AC Layer

PCC Layer

Crack

Transverse Joint
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• CRK is the percentage of bottom up PCC cracking 

• FD is the fatigue damage  

• n is the applied number of load applications at conditions t, j, k, l, m, p 

• N is the allowable number of load applications at conditions t, j, k, l, m, 

p 

• t, j, k, l, m, p are conditions relating to the age, month, axle type, load 

level, temperature difference, and traffic path, respectively 

68.11

100

FD
CRK

p,m,l,k,j,t

p,m,l,k,j,t

N

n
FD

2

,,,,,

1,,,,, .)log(

C

pmlkjt

pmlkjt

MR
CN

•    MR is the modulus of rupture of PCC 

•    σ is the applied stress at conditions t, j, k, l, m, p 

•    C1, C2 are calibration constants (C1 = 2.0, C2 = 1.22) 
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Bottom-up Cracking Model 



Limitations due to the adaptation 

• Stiffness of the AC layer is dependent on 

loading time 

– Traffic loading: approx. 0.01 sec. to 0.05 sec.  

– Temperature loading: 1 hour (3600 sec) 

• Fatigue cracking considers combined 

temperature and traffic loading 

• MEPDG AC dynamic modulus does not 

capture VE response 

TICP TAP, OCT 2011 



• Composite pavement  

• Location: Minneapolis, MN 

• Structure: AC (4 in. ) over PCC (6 in.) over A-1-a 

base (8 in.) over A-6 subgrade (semi-infinite) 

• All other inputs: MEPDG defaults 

• Dynamic modulus – mid-depth of AC layer 

– traffic load 

– temperature load ))(log(
1

*)log(
rte

E

)log()log()log()log(
rTr ctt

Shift Factor Loading Time 
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AC/PCC Case for Analysis 
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Asphalt stiffness versus pavement age 



• Visco-elastic analysis 

– Rigorous 

– Computationally expensive 

• Two-moduli approach 

– Compatible with the MEPDG 

– Fast and inexpensive 

TICP TAP, OCT 2011 

Two Alternative Approaches 



• Creep compliance function – Prony series (Park et al. 

1999, Bendetto et al. 2004, Zofka et al. 2008) 

 

 

• Generalized Kelvin-Voigt model 
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Viscoelastic Characterization of AC 



• Consider that the material is stress-free for time 

t < 0 

• Differential form 

 
 

– Implemented in FE algorithms (Lesieutre and Govindswamy 

1996, Johnson et al. 1997) 

– Creep strain approximated using time-discretization  
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VE Characterization of AC (2) 



• FE model incorporating viscoelastic/elastic 

layers 

• Kirchhoff-Love plate theory for bending of  

isotropic and homogenous medium-thick plates 

• Similar to ISLAB2000 

– four-noded rectangular plate element with three 
degrees of  freedom at each node 

z, w

x

y

θx

θyj (0, d) k (c, d)

i (0, 0) l (c, 0)

(e)

x

y
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Development of VE Model (1) 



• Time-discretized process 

– Total time to develop creep behavior is discretized 
into sufficiently small time intervals 

• At any time t, the plate is subjected to 

– Axle loads at time t 

– Fictitious forces due to  

• Temperature distribution at time t 

• Creep strains at the start of  time interval Δt 

 )()()( )( jcreepjthermjj tFtFtFtK
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Development of VE Model (2) 



• Compute stress at any time t 

(Hooke’s law) 

)()()( 1 j

cr
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• Update creep strain at the end of  

time interval Δt 

Development of VE Model (3) 



• Elastic / VE Plate 

• Elastic / VE Winkler foundation 

• Winkler foundation 

– Proportionality of  applied pressure and plate 
deflection at any point 

– Spring formulation 

TICP TAP, OCT 2011 

Development of VE Model (4) 



Any temperature distribution can be split into 

the following 3 components: 

1. Constant-strain-causing temperature component 

• Does not cause stress 

2. Linear-strain-causing temperature component 

• Bending stresses computed using FE analysis 

3. Nonlinear-strain-causing temperature 

component 

• Self equilibrating stress calculated using analytical 

solutions (Khazanovich 1994) 

TICP TAP, OCT 2011 

Thermal loads 



• Bending stress in the equivalent single layer slab  
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Total stress 

• Stress due to nonlinear-strain-causing temperature 

component 

• Stress due to nonlinear-strain-causing creep 

component 



1. Viscoelastic plate on viscoelastic 

Winkler foundation 

2. Viscoelastic plate with simply 

supported corners 

3. Sensitivity to internal parameters 
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Model Verification Examples 
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VE Plate on VE Foundation 



• Why ? 

– Compatibility with the existing MEPDG 
framework 

• EACL & EACT 

• Combined stress procedure 

• Verification examples 

• Comparison with the existing MEPDG 

stress computation procedure 

TICP TAP, OCT 2011 

Two-Moduli Approach 



1. EACL 

 Traffic-duration-dependent AC dynamic 

modulus to characterize the pavement 

response under typical traffic loads, and 

2. EACT  

 Temperature-duration-dependent AC 

dynamic modulus to characterize the 

pavement response for the duration of 

temperature loads, tT. 

TICP TAP, OCT 2011 

Two-Moduli Approach (2) 



AC Layer

PCC Layer

Critical stress region at the 
bottom of the slab

Curling due to day-time 
positive temperature gradient

Mid-slab traffic load

TICP TAP, OCT 2011 

Non-linear Slab-Foundation Interaction 



Three Systems to Model 

• System 1 

– Temperature curling only 

– AC layer characterized  by long-term modulus   

• System 2 

– AC layer characterized  by short-term modulus   

– Determine fictitious loading that produces the 
same deflection profile as in System 1 

• System 3 

– AC layer characterized by short-term modulus 

– Subjected to traffic and fictitious loading 

TICP TAP, OCT 2011 



• System 1: AC layer characterized with 

EACT 

• Subjected to temperature distribution T(z) 

only 

 AC (EACT)

PCC (EPCC)

Base (EBase)

T(z)
thermFK1

thermFK
1

11

ethermTe
D 11
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Boundary Value Problem # 1 



• System 2: AC layer characterized with EACL 

• Deflection profile of  system 2 = deflection 

profile of  system 1  

12KF fict

eLe
D 12

AC (EACL)

PCC (EPCC)

Base (EBase)

Fictitious Force, Ffict
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Boundary Value Problem # 2 



• System 3: AC layer characterized with EACL 

• Subjected to traffic load F and fictitious load 

Ffict  

AC (EACL)

PCC (EPCC)

Base (EBase)

Fictitious Force, Ffict

Traffic load, F

+

fictFFK
1

2

eTLe
D3
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Boundary Value Problem # 3 



• Total stress due to combined loading 

 

 

• Advantages 

– Accounts for the duration of  loading 

– 2-moduli approach permits using existing MEPDG 
procedure for AC dynamic modulus 

– Accounts for non-linearity of  slab-foundation 
interaction 

– Substitutes viscoelastic analysis 

)( 2312M
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Two-Moduli Stress Calculation 



 
Location, in 

Deflection, in 
Rotation Longitudinal 

Stress, psi X Y θy θx 

Three elastic solution 

# 1 90 0 -0.0077 0.00 0.00 108.74 

# 2 90 0 -0.0077 0.00 0.00 -138.36 

# 3 90 0 0.0038 0.00 0.00 204.06 

Combined stress 451.17 

 

Viscoelastic FE 

solution 
90 0 0.0038 0.00 0.00 451.12 

 

EACT, temperature 

load only 
90 0 -0.0077 0.00 0.00 108.74 

EACL, traffic load 

only 
90 0 0.0033 0.00 0.00 284.05 

      392.79 

 

% Difference 14.86% 
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Comparison with Simple Addition of the 
Stresses 



 
Location, in 

Deflection, in 
Rotation Longitudinal 

Stress, psi X Y θy θx 

Three elastic solution 

# 1 90 0 0.0188 -0.0007 0.00 74.35 

# 2 90 0 0.0188 -0.0007 0.00 -101.04 

# 3 90 0 0.1220 0.0015 0.00 716.08 

Combined stress 891.462 

 

Viscoelastic FE 

solution 
90 0 0.1220 0.0015 0.00 891.461 

 

% Error -0.00015% 

 

 
Location, in 

Deflection, in 
Rotation Longitudinal 

Stress, psi X Y Θy θx 

Three elastic solution 

# 1 90 72 -0.0054 0.00 0.00 78.65 

# 2 90 72 -0.0054 0.00 0.00 -96.61 

# 3 90 72 0.2401 0.00 0.00 1947.8 

Combined stress 2123.06 

 

Viscoelastic FE 

solution 
90 72 0.2401 0.00 0.00 2122.84 

 

% Error -0.01% 

 

Center node 

Edge node 
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Comparison with VE FE Solution 



 
Location, in 

Deflection, in 
Rotation Longitudinal 

Stress, psi X Y θy θx 

Three elastic solution 

# 1 72 54 -0.0034 -0.00015 0.00008 69.44 

# 2 72 54 -0.0034 -0.00015 0.00008 -106.09 

# 3 72 54 0.0106 -0.00026 -0.00004 -21.51 

Combined stress 154.02 

 

Viscoelastic FE 

solution 
72 54 0.0106 -0.00026 -0.00004 153.76 

 

% Error -0.169% 

 

 
Location, in 

Deflection, in 
Rotation Longitudinal 

Stress, psi X Y θy θx 

Three elastic solution 

# 1 90 0 0.0188 -0.0007 0.00 74.35 

# 2 90 0 0.0188 -0.0007 0.00 -101.04 

# 3 90 0 0.0466 -0.0011 0.00 268.11 

Combined stress 443.5 

 

Viscoelastic FE 

solution 
90 0 0.0466 -0.0011 0.00 443.3 

 

% Error -0.046% 
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Comparison with VE FE Solution (2) 

Edge node 

Interior 

node 
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MEPDG Stress Comparison 



• Why is there a significant difference? 

– Self-equilibrating stresses are based on 
EACT instead of  EACL as in the 
MEPDG 

– Reference temperature follows existing 
MEPDG guidelines 

TICP TAP, OCT 2011 

MEPDG Stress Comparison (2) 
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Simplification of the Structural System in 
the  MEPDG 

(a) original multi-layered system

(c) two-slab system B

(b) single slab system A

TICP TAP, OCT 2011 



• System A 

– Case I: temperature loading only, 

– Case II: combined traffic and temperature loading, 

– Case III: traffic loading only,  

• System B 

– Case I: no load transfer between the slabs,  

– Case II: load transfer efficiency between two slabs is equal 
to shoulder LTE,  
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Simplification of the Structural System in 
the  MEPDG (2) 



• Factorial 

of  98 

cases 

• Wheel 

offset  

– 0, 2, 4, 

6, 12, 

18, and 

24 

• PCC 

thickness 

– 2-15” in 

1” incr 

 

y = 1.0236x

R² = 0.9991
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Simplification of the Structural System in 
the  MEPDG (3) 



• Simplify multi-layered pavement in terms of  single layer 

slab 

• If  the following are valid (AASHTO 2008)… 

– Equality of  slab stiffness,  

 

– Equality of  Korenev’s non-dimensional temperature gradient,  

 

– Equivalency of  radius of  relative stiffness,  

 

– Equivalency of  normalized load ratio,  
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Equivalency Techniques  



If  (above) valid, then… 

– Deflections are related as:  

 

 

– Stresses are related as:  
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Equivalency Techniques (2) 



 
Location, in 

Deflection, in 
Bending stress, psi 

X Y σSL β σ3LS 

Three elastic solution – Three-layered composite pavement 

# 1 90 0 0.0188   136.19 

# 2 90 0 0.0188   -101.04 

# 3 90 0 0.0424   180.99 

Combined stress 418.22 

 

Three elastic solution – Equivalent single layer slabs SL1 and SL2 

SL1: # 1 90 0 0.0188 136.73 0.996 136.191 

SL2: # 2 90 0 0.0188 -102.73 0.914 -101.038 

SL2: # 3 90 0 0.0424 184.03 0.914 180.993 

Combined stress 418.221 

 

% Difference 0.000% 
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Equivalency Techniques (3) 



• A novel stress computation procedure was 

developed 

– Uses different moduli for curling and axle load 
analysis 

– Verified with viscoelastic finite element solutions 

• A framework for the implementation of  the 

proposed stress procedure into the MEPDG was 

developed  

– Minimum modifications to the existing MEPDG 
framework are required to be implemented into the 
MEPDG for predicting fatigue cracking 

TICP TAP, OCT 2011 

Conclusions on Two-Moduli Approach and MEPDG 
Stress Comparison 



 

 

• Lattice 3D model 

– Developed at UC-Davis by Prof. John 

Bolander 

– Modified under R21 project to account for 

mixed mode failure 

• Coupling with ISLAB (FEM) completed, 

currently being validated for additional 

beam and slab problems 

  

Reflection Cracking Modeling 
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Mode I 
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Reflection Cracking Modeling 



 

 

 

Mode II 

TICP TAP, OCT 2011 

Reflection Cracking Modeling 



 

 

• Weakened 
interface 
moves away 
from mid-span 

• Effect near 

support is an 

“unzipping,” 

with shear 

initiating 

fracture then 

tensile events 

increasing in 

number 
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Modeling Mixed Mode Fracture 



 

 

TPF-(5)149 

• Literature Review 

• LCCA 

• EICM Validation and Analysis 

• Evaluation of Response Models 

• Development of Design Guidelines 

• Development of Construction Guidelines 

• Development of Synthesis 

TICP TAP, OCT 2011 



Synthesis is 

• TICP focuses on new construction 

– Life-cycle cost analysis 

– EICM/MEPDG revisions/enhancements 

– CalME/MEPDG merging 

– Construction guidelines 

• Scope of synthesis should include 

conventional AC overlays (rehabilitation) 

TICP TAP, OCT 2011 



1. Introduction 

– AC-over-PCC (AC-PCC) as pavement preservation 

– Benefits of AC-PCC 

2. Evaluation of existing PCC 

– Structural and Functional Evaluations 

3. Repair and preparation of existing PCC 

– Slab support, Full- and partial-depth repair, edge 
drains, restoring LTE, cleaning 

4. AC overlay mix design 

– Overlay mix guidelines TBD 

AC-PCC Guidelines Overview (1) 
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5. Geotextile interlayer 

6. AC overlay structural design 

– MEPDG & CALME 

7. AC-PCC performance evaluation 

– Includes extensive LTPP experience 

8. AC overlay construction 

– Saw & seal technique and effectiveness 

– Construction guidelines TBD with UCD experience 

AC-PCC Guidelines Overview (2) 
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• AC overlay on PCC plays to both materials’ strengths: 
– Long-term performance of PCC 

– Renewability and low noise performance of AC 

• With some planning, best possible long-term performance can 
be achieved affordably 

AC-PCC Benefits 

TICP TAP, OCT 2011 



Evaluate existing PCC (1) 

• Evaluation procedure 

– From office (historical records) to field (surveys 
and tests) 

• Structural evaluation 

– Survey extent of  damage and drainage 

– NDT for slab strength, subgrade reaction, etc. 

• Functional evaluation 

– Assess friction, roughness, noise 

• Decide on rehabilitation or maintenance 
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Evaluate existing PCC (2) 

STH 38, Racine County, Wisconsin 
from Wen et al 2005 
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Repair and prepare existing PCC (1) 

• Restore PCC slab support 

– Alleviate pumping or loss 
of  support 

– Use slab stabilization or 
slab jacking 

• Partial-depth slab repair 

– Repair functional damage 
(i.e. not structural) such as 
shallow spalled joints or 
cracks 

– Define repair area, remove 
questionable material, use 
fill material (AC, PCC, or 
other alternatives) 

STH 38, Racine County, Wisconsin 
from Wen et al 2005 
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Repair and prepare existing PCC (2) 

• Full-depth slab repair 

– Repair major structural damage, can include corner breaks, 
severe cracking, d-cracking, etc. 

– Ensure that repair area includes all deterioration through 
slab, use repair material based on lane closure time 
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Repair and prepare existing PCC (3) 

• Install edge drains or reseal joints 

– Assess need for improved drainage, if  required, 
retrofit edge drains or repair existing 
damage/blocked drains 

• Improve LTE across joints 

– Restore LTE by replacing damaged dowels or 
retrofitting dowels to undoweled pavement 

• Clean and prepare slab for overlay 

– Grinding and grooving to restore surface 

TICP TAP, OCT 2011 



Repair and prepare existing PCC (4) 

STH 38, Racine County, Wisconsin 
from Wen et al 2005 
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AC overlay mix design 

• AC overlay mix design to be determined 

– Prof. Marasteanu at UMN will be consulted for 

overlay mix design 

• AC mix design will consider paving concerns 

(site conditions, etc.) for TPF(5)-149 member 

states 
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Geotextile interlayer 

• Interlayer to arrest crack propagation from existing PCC into 

AC overlay 

– While it has been shown to be effective in reducing reflective cracking 

in thin overlays… 

– the cost of implementation may outweigh the benefits 

• Guidelines will briefly detail interlayers in hope of informing 

user on both sides of existing research (still in process) 

Mukhtar & Dempsey 1996 
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AC-PCC long-term performance (1) 

• LTPP AC-PCC sections included: 

– GPS-7. AC Overlay of PCC Pavements 

– SPS-6. Rehab Using AC Overlays of PCC Pavements 

– These include 8-inch OL over crack-and-seat, 4-inch OL over crack-

and-seat or intact pavement, and full-depth repair with/without 

grinding 

• U. Mich. found that for Arizona SPS-6 pavements: 

– Reflective cracking was the greatest contributor to post-overlay 

roughness 

– A layered Asphalt Rubber AC (ARAC) and AC over reduced the 

development of post-overlay roughness better than a conventional AC 

overlay 

• NCHRP 20-50 found… (cont.) 
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AC-PCC long-term performance (2) 

• NCHRP 20-50 found that for 4-inch asphalt overlays of intact 

slabs no significant mean differences in long-term roughness 

or cracking performance were detected between (cont.): 

– minimal versus intensive preoverlay preparation 

– sections without versus with sawing and sealing of transverse joints 

– overlays with sawed and sealed joints versus overlays of 

cracked/broken and seated slab 

• NCHRP 20-50 ranked effectiveness of rehab as 

– 8-inch over crack and seat 

– 4-inch over crack and seat or intact 

– Non-overlay full-depth repair with diamond grind 

– Non-overlay full-depth repair without grind 
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AC-PCC construction 

• AC overlay construction to be determined 

– UCD will be consulted for its AC overlay 

construction expertise 

– Earlier sections on existing PCC slab preparation 

will be revised to reflect UCD input 

• Construction will include details on sawing and 

sealing, which was investigated for the SHRP2 

R21 project and implemented at MnROAD 
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AC-PCC saw and sealing (1) 

• Guidelines cite saw & seal spec developed for Illinois Tollway 

by SHRP2 R21 

– Saw cutting no longer than 48 hours after overlay paving, sawed joints 

to be ½ inch wide by 5/8 inch deep for 3-inch AC OL 

– Locating underlying JPCP joint is critical (misidentified joint below) 

– Joint cleanliness and site conditions emphasized 

Elseifi et al 2011 
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AC-PCC saw and sealing (2) 

• Saw and seal found to be effective in Louisiana DOT 

and SHRP2 R21 experience 

– SHRP2 R21 tour of EU countries that implemented saw 

and seal in AC-PCC (Austria, Germany, Netherlands 

 

SHRP2 2010 
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• Guidelines for AC overlays of existing PCC 

pavements in development 

– AC OL mix design and AC OL construction await 

expert input 

• Inclusion of AC over existing PCC alongside 

new construction of TICP… 

– further expands definition of TICP and 

– expands possible user base for TICP products 

Conclusions: TICP and AC Overlays 
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