UNIVERSITY OF MINNESOTA Driven to Discover™

Design and Construction Guidelines for Thermally Insulated Concrete Pavements

Lev Khazanovich Associate Professor Civil Engineering Department University of Minnesota – Twin Cities

Department of Civil Engineering

- Task 1. Literature Review
- Task 3. EICM Validation and Analysis
 - Review of last year status
 - New findings
- Task 4. Evaluation of Response Models

 Review of last year status
 New findings
- Task 5. Develop Design Guidelines

 CalME models

17 Dec 2009

- First draft was submitted in April 09
 - Concentrated on AC overlays on PCC
 - Lack of information on composite pavements
 Insufficient description of the MEPDG
- Comments were received in June 09
- New draft was submitted and approved in July-August 09
- The document has been updated. It will be used as a basis for the Synthesis

- MEPDG 1.0 minimum AC thickness analysis
 - 1.9" had 14.2% cracking
 - -2.0" had 1%
- No significant differences between 4-in single layer AC system and 2 x 2" AC system

This was verified for MEPDG version 1.1

- Time of traffic opening
 - Determine differences in MEPDG predictions if the date of traffic opening is changed
 - User selects month of
 - Pavement construction
 - Overlay construction
 - Traffic opening
- Conclusions

17 Dec 2009

 The month a pavement structure is opened to traffic does not affect pavement performance predictions made by the MEPDG

Department of Civil Engineering

Task 3. EICM evaluation Past Findings

UNIVERSITY OF MINNESOTA Driven to Discover™

Effect of Weather Stations

- Case 1
 - MSP STC example: 40% difference in predicted cracking
 - 7 additional locations were selected
 - As the location becomes closer to STC, predicted cracking increases
 - STC has missing climate data
 - This was thought to cause problem will examine further
- Case 2

17 Dec 2009

- Primary evaluation of data quality
 - Cases were run for identical locations using the interpolation option
 - Nearest station only (1 station)
 - All except nearest (5 stations)

Department of Civil Engineering

Effect of Weather Stations

- If data quality is high, there should be little difference between the two predicted values for each station
- At some locations the predicted values are very close
- At others, there are large differences
- It's known that some existing stations have incomplete data files
- This is thought to cause the inconsistencies

UNIVERSITY OF MINNESOTA Driven to Discover[™]

Effect of Weather Stations

Locations	Lat.	Long.	Elev.	% Cracking after 20 years for weather station		
				Nearby station only	Interpolated climate	
Columbus, OH	39.59	-82.53	849	6.4 30.9		
Grand Forks, ND	47.57	-97.11	842	9,9	11.0	
Fort Wayne, IN	41.01	-85.13	806	12.3	20.1	
San Antonio, TX	29.32	-98.28	821	17.5 36.2		
Madison, WI	43.08	-89.21	860	18.1	17.1	
Oshkosh, WI	43.59	-88.34	816	22.9	19.3	
Cedar Rapids, IA	41.53	-91.43	870	24.2	27.1	
Ann Arbor, MI	42.13	-83.44	836	27.7	12.2	
Joplin, MO	37.09	-94.3	985	37.6	35.9	
Lawrence, KS	39.01	-95.13	833	43.0	28.8	
Oak Ridge, TN	36.01	-84.14	916	51.5 22.3		
Atlanta, GA	33.22	-84.34	837	58.9	19	

17 Dec 2009

Department of Civil Engineering

UNIVERSITY OF MINNESOTA Driven to Discover[∞]

EICM

- Requires information about 5 weather related parameters on an hourly basis
 - Air temperature
 - Wind speed
 - Percent sunshine
 - Precipitation

17 Dec 2009

- Relative Humidity

EICM Climate Database

- 851 Stations located across the USA
- Varying amounts of climate data
- Max: 116 months

- Requires 24 months to run

- 116 months may not be sufficient eliminate year-to-year variations
 - Stations with less data are more sensitive to outliers (year-to-year variations)

17 Dec 2009

Department of Civil Engineering

UNIVERSITY OF MINNESOTA Driven to Discover™

EICM Climate Database

- Wet > 25" in rainfall/yr
- Freeze > 200 FI
- Dry No Freeze region: 77 stations
- Dry Freeze region: 136 stations
- Wet No Freeze region: 164 stations
- Wet Freeze region: 233 stations

MEPDG Predictions

- A identical pavement structure was analyzed at many locations
 - Composite, Rigid, & Flexible
- The only variable was the climate file
- Only stations with "complete" climate files were used
 - "No missing months"
- 610 Stations had complete data
 - Files had varying amounts of data
- MEPDG Version 1.0

17 Dec 2009

Department of Civil Engineering

UNIVERSITY OF MINNESOTA Driven to Discover™

Design

- Composite 2" AC over 7" PCC
- Rigid 9" PCC
- Flexible 9" AC
- Granular base
 - A-1-a, 6"
- Subgrade
 - A-6, semi-infinite
- Traffic 3200 AADTT

Department of Civil Engineering

UNIVERSITY OF MINNESOTA Driven to Discover[∞]

Design

- 1.25" Doweled transverse joints
 - 12" spacing
- 15' joint spacing
- AC

– 52-28PG

- Water table depth: 5'
- MEPDG default values were used unless otherwise specified

17 Dec 2009

Department of Civil Engineering

UNIVERSITY OF MINNESOTA Driven to Discover[™]

MEPDG Predictions - IRI

-Climate had less effect on predicted Composite IRI

-IRI values for Composite and Flexible (not shown) designs were very similar

17 Dec 2009

Department of Civil Engineering

UNIVERSITY OF MINNESOTA Driven to Discover[∞]

MEPDG Predictions – AC Rutting

-Histograms suggest AC/PCC pavement is less sensitive to climate than equivalent single layer AC system

-Composite values exhibit less rutting - confined to 2" AC layer

17 Dec 2009

Department of Civil Engineering

UNIVERSITY OF MINNESOTA Driven to Discover[™]

MEPDG Predictions – Transverse Cracking in PCC Layer

-Minimum: 0.0% Bethel & Cold Bay, AK; Maximum: 79.1% Nogales, AZ (AC/PCC)

-Wide range of predicted cracking values - Rigid tended to be more extreme

17 Dec 2009

-Climate has an enormous impact on predicted cracking values – investigate further

Department of Civil Engineering

Department of Civil Engineering

Environmental · Geomechanical · Structures · Transportation · Water Resources

Google Earth Plot

- Transverse cracking results were plotted on Google Earth
- 4 icon colors according to predicted percentage of cracked slabs
 - Blue: <16%
 - Green: 16-25%
 - Yellow: 26-40%
 - Red: > 40%

UNIVERSITY OF MINNESOTA Driven to Discover[™]

Blue < 16% Green 16-25% Yellow 26-40% Red > 40%

- Trends are visible, but anomalies are present

17 Dec 2009

Department of Civil Engineering

UNIVERSITY OF MINNESOTA Driven to Discover™

Cracking Percentage Organized by Environmental conditions

No. of S	Predicted Cracking Percentage				
Climate	No. of Stations	0-15%	16-25%	26-40%	40%<
Wet – Freeze	233	63	39	93	38
Wet - No Freeze	164	47	14	30	73
Dry – Freeze	136	26	28	42	40
Dry - No Freeze	77	14	13	15	35

Department of Civil Engineering

Southern California Example

- Large differences were observed for stations geographically close
- Los Angeles, CA 3.8% Elev. 326ft
- Burbank, CA 62.7% Elev. 734ft
- 58.9% Difference
- Distance 18.64 miles

UNIVERSITY OF MINNESOTA Driven to Discover[∞]

East Coast Example

UNIVERSITY OF MINNESOTA Driven to Discover™

Lessons from MEPDG Simulations

 A comprehensive sensitivity of the effect of climate on pavement performance predictions was conducted

Over 600 stations

- Environment has a significant impact on predicted pavement performance
- Many trends were reasonable
 - However, differences in stations with similar climates were greater than expected
- Illustrated the need for high-quality climatic data

17 Dec 2009

Lessons from MEPDG Simulations

- Data quality is non-uniform
 - MEPDG allows stations with low-quality data to be used
 - It does prevent stations with missing data to be used alone
 - Low-quality data can be used when interpolating
 - It was demonstrated that missing data can only decrease the quality of predictions
- It is recommended that all missing data is removed from the database

17 Dec 2009

Department of Civil Engineering

Environmental · Geomechanical · Structures · Transportation · Water Resources

Lessons from MEPDG Simulations

- Improved data quality will likely improve MEPDG predictions
 - Data cleaning
 - Uniform, high-quality data
 - More data
 - Eliminate year-to-year variations

17 Dec 2009

Department of Civil Engineering

Environmental · Geomechanical · Structures · Transportation · Water Resources

Lessons from MEPDG Simulations

- Improved data quality will likely improve MEPDG predictions
 - Data cleaning
 - Uniform, high-quality data
 - More data
 - Eliminate year-to-year variations

17 Dec 2009

MEPDG Climate Sensitivity

- Two papers were submitted on MEPDG climate sensitivity
 - TRB (Transportation Research Board)
 - Accepted for presentation and publication
 - Award: Geology and Properties of Earth Materials Section 2010 Best Paper Award

Department of Civil Engineering

- JAMC (Journal of Applied Meteorology and Climatology)
 - Under review

Department of Civil Engineering

Environmental · Geomechanical · Structures · Transportation · Water Resources

Past Findings

- MnROAD Cell 53 data
 - Data from overlay and no-overlay sections were compared
 - Attempt was made to salvage Cell 53 data

Department of Civil Engineering

Environmental · Geomechanical · Structures · Transportation · Water Resources

MnROAD Cell 54

- Cell 54 was examined
- Analysis indicated that the temperature sensor began experiencing problems in 2006
- All data more recent than 2006 are considered unreliable

UNIVERSITY OF MINNESOTA Driven to Discover™

Closer Examination of Cell 54

Department of Civil Engineering

Environmental · Geomechanical · Structures · Transportation · Water Resources

17 Dec 2009

UNIVERSITY OF MINNESOTA Driven to Discover™

MnROAD Cells 106 & 206

- Temperature data from MnROAD cells 106 & 206 were processed to determine data quality
 - Cell 106: 48 sensors
 - Cell 206: 16 sensors
- 14 different 'flags'
 - Each represents a different data test failure

Department of Civil Engineering

17 Dec 2009

Definition of Flags

In this section we define constants for each of the flags. 0/_____ % Missing data flags FLAG_MISSING_DATA = 1; % missing data FLAG_NOT_YET_OPERATIONAL = 2; % missing data at the beginning FLAG DEACTIVATED = 3; % missing data at the end FLAG TOO SPARSE DAY = 4; % not enough data in any day % Time-series based FLAG OUT OF RANGE = 5; % sensor outliers with annual & diurnal fit FLAG NEIGHBORHOOD OUTLIERS = 6; % sensor outliers with local neighborhood fit FLAG LAG ONE OUTLIERS = 7; % sensor outliers in lag one % Subset-based flags FLAG POINT EXTREMES = 8; % subset outliers, record-by-record = 9: % subset daily range outliers, day-by-day FLAG DAILY RANGE FLAG DAILY EXTREMES = 10; % subset daily extreme outliers, day-by-day % Sensor-by-sensor consistency FLAG_INTERMITTENT_DATA = 11; % too many flagged data points around FLAG INCONSISTENT DAY = 12; % too small of a fraction of good data, day-by-day FLAG INCONSISTENT WEEK = 13; % too small of a fraction of good data, week-by-week FLAG INCONSISTENT MONTH = 14; % too small of a fraction of good data, month-by-month

Department of Civil Engineering

UNIVERSITY OF MINNESOTA Driven to Discover™

MnROAD Cell 106, Sensor 28

- Example of erroneous sensor (#28) in cell 106
 - "Flagged", i.e. questionable, data are green
 - "Un-flagged" data are blue
- Two time periods to note
 - June '09 onward

17 Dec 2009

- Easily observed
- End of January '09
 - Not as noticeable

UNIVERSITY OF MINNESOTA Driven to Discover[∞]

MnROAD Cell 106, Sensor 28

Department of Civil Engineering Environmental · Geomechanical · Structures · Transportation · Water Resources

17 Dec 2009

UNIVERSITY OF MINNESOTA Driven to Discover™

Department of Civil Engineering

Environmental · Geomechanical · Structures · Transportation · Water Resources

MnROAD Cell 106, Sensor 28

- Not all flagged data are revealing at first glance
- A plot of Flags vs. Time accounts for this

- Also indicated which flag was activated

MnROAD Cell 106, Sensor 28

17 Dec 2009

Department of Civil Engineering

UNIVERSITY OF MINNESOTA Driven to Discover™

MnROAD Cell 106, Sensor 28

- Flags present in January '09
 - 10: Data has extreme outliers
 - Daily max & min values are too extreme
 - 12: Inconsistent from day-to-day
 - Fraction of good data is too small from day-to-day

Department of Civil Engineering

UNIVERSITY OF MINNESOTA Driven to Discover™

Department of Civil Engineering

Environmental · Geomechanical · Structures · Transportation · Water Resources

MnROAD Cell 106, Sensor 28

- Flags present in June '09
 - -9: Daily Range
 - 10: Daily extremes
 - 12: Inconsistent from day-to-day
 - 13: Inconsistent week-to-week
 - 14: Inconsistent month-to-month

Closer examination of January '09 flags

17 Dec 2009

Department of Civil Engineering

Closer Examination of January '09 Flags

- The 'expected' minimum value was lower than what was recorded
 - This 'expected' value is determined by other observations in the same subset
 - Subset: sensors at the similar depth and in the same material
- Even though data looks reasonable, software indicates there is a problem

Environmental · Geomechanical · Structures · Transportation · Water Resources

Department of Civil Engineering

UNIVERSITY OF MINNESOTA Driven to Discover™

Closer examination of June '09 flags

 Easily observed that something is wrong with the sensor

17 Dec 2009

Department of Civil Engineering

MnROAD Temperature Data Evaluation

UNIVERSITY OF MINNESOTA Driven to Discover[∞]

Closer examination of January '09 flags

Elle Edit Were Insert Iools Desktop Window Help

Department of Civil Engineering

17 Dec 2009

UNIVERSITY OF MINNESOTA Driven to Discover[∞]

Similarities in Data Trends

- Sensors 4 & 12
 - Appears to be a problem near the end of the time period
 - Spike in December '08
- Sensors 28 & 12
 - Flagged data at end of January '09
- Sensors 20 & 28

17 Dec 2009

- Problems begin in June '09
- Sensor 20 returns to 'normal' until August '09
- Sensor 28 does not erroneous data is present until end of time period
 - Also appears to be a spike in sensor 12 near mid-June, but data is unflagged

Department of Civil Engineering

UNIVERSITY OF MINNESOTA Driven to Discover™

MnROAD Cell 106 & 206

- Most sensors had 98% or more data "unflagged"
 - All 16 sensors in Cell 206
 - 40 of 48 in Cell 106
- This can be slightly misleading
 - Sensor 28 (which was previously examined) reported 93.20% un-flagged data
 - Doesn't mean there isn't any useful data from Sensor 28

17 Dec 2009

Department of Civil Engineering Environmental · Geomechanical · Structures · Transportation · Water Resources

Temperature Differences in Cell 106

- Difference = Ttop Tbot
- Results were plotted as a histogram
- 4 different sets were compared
- Sorted according to season
 - Dec, Jan, Feb
 - Mar, Apr, May
 - Jun, Jul, Aug

Differences in Temperature in Cell 106 Ttop – Tbot of PCC slab

17 Dec 2009

UNIVERSITY OF MINNESOTA Driven to Discover[™]

Department of Civil Engineering

Next Steps

- Compare with PCC temperature data from the adjacent sections
- Compare EICM and measured data

Department of Civil Engineering

Department of Civil Engineering

Environmental · Geomechanical · Structures · Transportation · Water Resources

Task 4. Evaluation of Response Models

- AC characterization
 - Past findings
 - Correction of past findings
 - MEPDG E* calculation process and its limitations
- Effect of AC viscoelastic properties on responses of composted pavements
- MEPDG curling analysis modification

17 Dec 2009

MEPDG Level 2 vs Level 3 analysis

Asphalt Material Properties	Asphalt Material Properties ?
Asphalt material type: Asphalt concrete Layer thickness (in): 4	Asphalt material type: Asphalt concrete
🖪 Asphalt Mix 📕 Asphalt Binder 🔲 Asphalt General	🗖 Asphalt Mix 🗖 Asphalt Binder 🔲 Asphalt General
Certons Superpave Under grading Conventional viscosity grade Conventional penetration grade	Import Import Export Superpave Inder test data
High Low Temp (°C)	
Temp (°C) -10 -16 -22 -28 -34 -40 -46	Temperature /951 Angular frequency = 10 rad/sec
46	G* (Pa) Delta (%)
52	
58	
64	
<u>v</u> ^z	
A 11.0100 VTS: -3.7010	
View HMA Plots	Its OK X Cancel View HMA Plots

Department of Civil Engineering

Past findings

17 Dec 2009

Environmental · Geomechanical · Structures · Transportation · Water Resources

$$\eta = \frac{|G^*|}{10} \left(\frac{1}{\sin\delta}\right)^{4.8628}$$

• $|G^*|$ and δ at $\omega = 10$ rad/sec for PG 58-28 binder

Temp (°F)	G* (Pa)	δ (°)	η (cP)
40	5000000	9.42	3.3228E+10
70	45000000	24.91	3.0158E+08
100	3000000	30.40	8.2300E+06
130	2000000	55.87	5.0148E+05

- Divide G* by **1000** for input in MEPDG Level 1 or 2
 - Addresses error in MEPDG software code

17 Dec 2009

Department of Civil Engineering Environmental · Geomechanical · Structures · Transportation · Water Resources

MEPDG E* Calculation Process and Its Limitations

UNIVERSITY OF MINNESOTA Driven to Discover[™]

Department of Civil Engineering

$$\log(E^*) = \delta + \frac{\alpha}{1 + e^{\beta + \gamma \log t_r}}$$

 $\delta = -1.249937 + 0.02932 \rho_{200} - 0.001767 (\rho_{200})^2 - 0.002841 \rho_4 - 0.058097 V_a - 0.802208 \left[\frac{Vb_{eff}}{Vb_{eff} + V_a} \right]$ $\alpha = 3.871977 - 0.0021\rho_4 + 0.003958\rho_{38} - 0.000017\rho_{38}^2 + 0.005470\rho_{34}$ $\beta = -.603313 - .393532\log(\eta_T)$

$$\log(t_r) = \log(t) - c \log(\eta) - \log(\eta_{T_r})$$

$$\gamma = 0.313351 / c = 1.255882$$

Loading time

17 Dec 2009

Department of Civil Engineering

UNIVERSITY OF MINNESOTA Driven to Discover™

Loading Time

17 Dec 2009

Department of Civil Engineering

UNIVERSITY OF MINNESOTA Driven to Discover[∞]

Effective Distance

$$L_{eff} = 2*(a_c + Z_{eff})$$

- L_{eff} = effective distance
- a_c = radius of tire contact area = 3.5 in
- Z_{eff} = effective depth

17 Dec 2009

Department of Civil Engineering

MEPDG E* Calculation Process and Its Limitations

UNIVERSITY OF MINNESOTA Driven to Discover[™]

- Z_{eff} = effective depth
- *k* = number of the AC sublayer of interest
- h thickness of AC sublayer
- E_{AC} = modulus of AC sublayer
- *E_{subgr}*= subgrade modulus

17 Dec 2009

Department of Civil Engineering

UNIVERSITY OF MINNESOTA Driven to Discover[∞]

Iterative Process for E* Calculation

Department of Civil Engineering

MEPDG E* Calculation Process and Its Limitations

UNIVERSITY OF MINNESOTA Driven to Discover™

Limitations of the MEPDG E* procedure
 – Does not account for base or PCC properties

$$Z_{eff} = \sum_{i=1}^{k-1} h_i \sqrt[3]{\frac{E_{AC,i}}{E_{subgr}} + \frac{h_k}{2}} \sqrt[3]{\frac{E_{AC,k}}{E_{subgr}}}$$

The same value for temperature curling and axle loading

Department of Civil Engineering

Effect of AC Viscoelastic Properties on Responses of Composted Pavements

17 Dec 2009

UNIVERSITY OF MINNESOTA Driven to Discover[™]

Behavior of AC under constant stress

Department of Civil Engineering

- 3D finite element model for viscoelastic analysis
 - Viscoelastic AC layer
 - Elastic PCC layer
 - Winkler foundation
 - Traffic load
 - Temperature gradient
 - Verify stresses

Department of Civil Engineering

17 Dec 2009

Creep compliance Generalized Kelvin-Voigt model

– Bending Beam Rheometer (Zofka et al. 2008)

$$J(t) = \frac{48I\delta(t)}{PL^3}$$

Department of Civil Engineering

Effect of AC Viscoelastic Properties on Responses of Composted Pavements

UNIVERSITY OF MINNESOTA Driven to Discover™

Department of Civil Engineering

Environmental · Geomechanical · Structures · Transportation · Water Resources

17 Dec 2009

Department of Civil Engineering

- Video of ABAQUS moving load analysis
 - New AC only: AC over base and subgrade on a stiff Winkler foundation
 - Composite: AC over PCC on Winkler foundation
- Vertical deflections
 - Same deformation scale factors

Effect of AC Viscoelastic Properties on Responses of Composted Pavements

- System : AC Base Subgrade Winkler foundation
- Vehicle speed: 5 mph, 10 mph, 30 mph, 60 mph
- Strains at the bottom of AC in the middle of slab under moving load

Effect of AC Viscoelastic Properties on Responses of Composted Pavements

- System : AC PCC Winkler foundation
- Vehicle speed: 5 mph, 10 mph, 30 mph, 60 mph
- Stress at the bottom of PCC in the middle of slab under moving load

17 Dec 2009

Location: O'Hare, Chicago, IL.

17 Dec 2009

	File Name	General Information		Traffic		Structure - Thickness (in)				Output		
S. No.		Type Des. (yea	Des. Life	s. Life	Speed	ed h) AC	PCC	Base	Subgrade	% Slab Cracked	AC Bottom	AC
			(years)	AADTT	(mph)						Up Cracking	Deformation
					\ I − 7						(%)	(in)
1	AC_5	New AC	10	10000	5	3	N/A	12	Infinite	N/A	65.4	1.08
2	AC_10	New AC	10	10000	10	3	N/A	12	Infinite	N/A	64.2	0.92
3	AC_30	New AC	10	10000	30	3	N/A	12	Infinite	N/A	62	0.73
4	AC_60	New AC	10	10000	60	3	N/A	12	Infinite	N/A	60.2	0.63
5	AC_PCC_5	Overlay	10	10000	5	3	6	6	Infinite	22.8	0	0.55
6	AC_PCC_10	Overlay	10	10000	10	3	6	6	Infinite	22.8	0	0.44
7	AC_PCC_30	Overlay	10	10000	30	3	6	6	Infinite	22.8	0	0.32
8	AC_PCC_60	Overlay	10	10000	60	3	6	6	Infinite	22.8	0	0.26

Department of Civil Engineering

MEPDG Curling Analysis

- UNIVERSITY OF MINNESOTA Driven to Discover™
- Composite pavement is subjected to
 - Positive temperature gradient
 - Traffic load
- PCC layer cracks at the bottom

- MEPDG PCC cracking model for composite pavement
 - Adoption from new rigid pavement
 - Based on equivalency concept
 - Over-simplification

17 Dec 2009

Department of Civil Engineering

MEPDG JPCP Cracking Model

$$CRK = \frac{100}{1 + FD^{-1.68}} \qquad FD = \sum \frac{n_{t,j,k,l,m,p}}{N_{t,j,k,l,m,p}}$$

- CRK is the percentage of bottom up PCC cracking
- *FD* is the fatigue damage
- n is the applied number of load applications at conditions t, j, k, l, m, p
- N is the allowable number of load applications at conditions t, j, k, l, m, p
- *t, j, k, l, m, p* are conditions relating to the age, month, axle type, load level, temperature difference, and traffic path, respectively

$$\log(N_{t,j,k,l,m,p}) = C_1 \cdot \left(\frac{MR}{\sigma_{t,j,k,l,m,p}}\right)^{C_2} + 0.4371$$

- *MR* is the modulus of rupture of PCC
- σ is the applied stress at conditions *t*, *j*, *k*, *l*, *m*, *p*
- C_1 , C_2 are calibration constants ($C_1 = 2.0$, $C_2 = 1.22$)

17 Dec 2009

Department of Civil Engineering

MEPDG Curling Analysis

- Does not account for
 - AC layer temperature gradient
 - Viscoelastic behavior of AC
 - Temperature sensitivity of AC

17 Dec 2009

Department of Civil Engineering Environmental · Geomechanical · Structures · Transportation · Water Resources
MEPDG Curling Analysis Modification

Department of Civil Engineering

Environmental · Geomechanical · Structures · Transportation · Water Resources

Proposed Approach

- 1. Two-moduli approach
- 2. Stress combination
- 3. Verification of stress prediction
- 4. Modification of existing MEPDG model
- 5. Comparison with existing MEPDG model
- 6. Verification of proposed cracking model

Two-Moduli Approach

- E_L for traffic load analysis
- E_T for temperature gradient analysis

- Verification
 - ABAQUS viscoelastic model for traffic only

– ABAQUS viscoelastic model for temperature gradient only
 17 Dec 2009
 Department of Civil Engineering

• "Equivalent elastic" analysis

• AC and PCC layers assumed linear elastic

Slab-foundation interaction is non-linear
 – Separation from base due to curling

Department of Civil Engineering Environmental · Geomechanical · Structures · Transportation · Water Resources

Consider system 1

$$\sigma_1 = f T_1 \P P = 0, E_{AC} = E_T$$

Department of Civil Engineering

Consider system 2

– Find T_2 for similar deflection profile

$$\sigma_2 = f T_2 \quad \text{,} \quad P = 0, E_{AC} = E_L$$

Department of Civil Engineering

• Consider system 2 + Traffic

$$\sigma_3 = f T_2 \quad \square P, E_{AC} = E_L$$

17 Dec 2009

Department of Civil Engineering

Total stress

$$\sigma_{Tot.} = \sigma_1 + (\sigma_3 - \sigma_2)$$

Department of Civil Engineering

Environmental · Geomechanical · Structures · Transportation · Water Resources

17 Dec 2009

- Implement in MEPDG
 - Edit source code
 - Apply the new stress solution
 - Tedious process which requires
 - Implementation for each hour of analysis
 - Adaption of rapid solutions
 - Multiple rapid solutions for a single load application
 - Repeat for combination of axle loads and types
 - Compute cracking in PCC layer over the entire design life

Department of Civil Engineering Environmental · Geomechanical · Structures · Transportation · Water Resources

- Compare existing model with modified model
 - Assess difference
- Sensitivity analysis
 - Layer thickness
 - Layer stiffness
 - Coefficient of thermal expansion
 - Other parameters

Department of Civil Engineering

- Reflective cracking model
 - Based on critical strains in AC overlays over joints and cracks of existing PCC pavement
 - Recursive-incremental damage approach with a time increment of 30 days
 - Calibrated using accelerated loading test data from the Caltrans heavy vehicle simulator
- Rutting model
 - Based on shear deformation approach developed by Deacon et al. (2002)
 - Postulates that the rutting will occur at the top 100 mm of AC layers
 - Recursive incremental damage approach

17 Dec 2009

Environmental · Geomechanical · Structures · Transportation · Water Resources

Department of Civil Engineering

Cracking:
$$Crm/m^2 = \frac{10}{1 + \left(\frac{\omega}{\omega_o}\right)^{\alpha}}$$

(was)a

Fatigue Damage

2

17 Dec 2009

$$\omega = \left(\frac{MN}{MNp}\right)$$

$$\omega_0 \text{ is a constant}$$

where: $MNp = A \times \left(\frac{\mu\varepsilon}{\mu\varepsilon_{ref}}\right)^{\beta} \times \left(\frac{E}{E_{ref}}\right)^{\gamma} \times \left(\frac{E_i}{E_{ref}}\right)^{\delta}$

E is the modulus of damaged material,

 E_i is the modulus of intact material,

MN is the number of load repetitions in millions ($N/10^6$),

 $\mu\epsilon$ is the strain at the bottom of the asphalt layer in μ strain, and

 α , β , γ , and δ are constants

Department of Civil Engineering

17 Dec 2009

 Comparison of fatigue damage versus no. of load repetitions for different materials at a reference temperature of 20 C and a constant strain of 500 µstrain

(a) UCPRC-RR-2007-09

(b) CE-UMN

Department of Civil Engineering

 Comparison of cracking in (m/m²) versus damage for different materials with crack initiation corresponding to 0.5 m/m² of cracking and α = -8

Department of Civil Engineering

17 Dec 2009

Permanent Deformation

 $dp_i = K \times h_i \times \gamma^i$

where: h_i is the thickness of layer i (above a depth of 100 mm), and *K* is a calibration constant. K = 1.4

Inelastic Shear Strain :

17 Dec 2009

$$\gamma^{i} = \exp\left(A + \alpha \times \left[1 - \exp\left(\frac{-\ln(N)}{\gamma}\right) \times \left(1 + \frac{\ln(N)}{\gamma}\right)\right]\right) \times \exp\left(\frac{\beta \times \tau}{\tau_{ref}}\right) \times \gamma^{e}$$

where: γ_e is the elastic shear strain,

 τ is the shear stress,

N is the number of load repetitions,

 τ_{ref} is a reference shear stress (0.1 MPa \approx atmospheric pressure), and

A, α , β , and γ are constants determined from the RSST-CH.

Department of Civil Engineering

 Comparison of the down rut (in mm) for different asphalt materials, assuming a shear stress of 0.1 MPa, a temperature of 50 C, and a loading time of 0.015 seconds.

(a) UCPRC-RR-2007-09

17 Dec 2009

(b) CE-UMN

Department of Civil Engineering

Department of Civil Engineering

Environmental · Geomechanical · Structures · Transportation · Water Resources

MnRoad Composite Cells 106 and 206

- 2" PG 64-34
- 5" PCC, 15'x12'
 - Cell 106: 1" dowels
 - Cell 206: no dowels
- 6" Class 5 aggregate base

MnROAD Distress Data

- Cell 106 (doweled)
 - 2 transverse cracks
 - Numerous reflective cracks
 - More cracks in truck lane
- Cell 206 (undoweled)
 - 1 transverse crack
 - Reflective cracks

17 Dec 2009

- Longitudinal cracks

Department of Civil Engineering Environmental · Geomechanical · Structures · Transportation · Water Resources