UNIVERSITY OF MINNESOTA Driven to Discover[™]

Task 3. EICM Validation and Analysis

Lev Khazanovich Associate Professor

Janulary 8, 2009 TAP meeting

Presentation Outline

- 1. Minimum AC thickness
- 2. Time of traffic opening
- 3. Comparisons of AC overlay and semi-rigid MEPDG models
- 4. Effect of weather station
- 5. MnROAD temperature data

- Objective
 - Determine minimum allowable AC thickness
- *Note*
 - The MEPDG produces a warning message when the input AC overlay thickness is less than 2 inches
- Case study:
 - 6-inch PCC with 1.9 or 2.0 inch AC overlay
 - Other inputs were identical
- Predicted transverse cracking in PCC layer
 - 1.9 in = 14.2%
 - 2.0 in = 1%
- Conclusion: The minimum AC thickness must be 2 in unless the EICM is modified

Effect of AC Sublayering

- Objective
 - Determine differences of MEPDG predictions
 - Case study
 - 6-inch JPCP with 4-inch AC overlays
 - One 4-inch thick AC layer, or
 - Two 2-inch thick AC layers
 - Other inputs were identical

Effect of AC Sublayering

Department of Civil Engineering

• MEPDG results

	(1) – 4 in	(2) – 2 in
Terminal I RI	124.5	124.8
Transverse Cracking	8.7	8.7
AC Top-Down Cracking	4.5	4.6
AC Bottom-Up Cracking	0	0
Rutting – AC	0.46	0.47
Rutting – Total	0.46	0.47

- Conclusion
 - No significant differences in MEPDG output

Janulary 8, 2009 TAP meeting

Time of Traffic Opening

- Objective
 - Determine differences in MEPDG predcitions if the opening date to traffic is changed
- MEPDG input options:
 - Pavement construction
 - Overlay construction
 - Traffic opening
- Case study:
 - 6-inch JPCP with 4-inch AC overlay
 - Traffic opening months: June, July, August

Time of Traffic Opening

UNIVERSITY OF MINNESOTA Driven to Discover[™]

	June-July- August	May-June- June	June-July- July
Terminal IRI	124.4	123.8	123.6
Transverse			
Cracking	8.6	8.8	8.7
AC Top-Down			
Cracking	4.1	4.9	4.5
AC Bot-Up Cracking	0	0	0
Rutting - AC	0.46	0.46	0.46
Rutting - Total	0.46	0.46	0.46

Time of Traffic Opening

- Layer moduli were also examined
 - No significant differences
- Traffic opening month was also tested for a 4inch overlay with two 2-inch layers
 - Yielded same results
- Conclusions
 - The month a pavement structure is opened to traffic does not affect pavement performance predictions produced by the MEPDG

- Objective: compare MEPDG outputs of a 4-inch AC overlay of PCC and Cement Treated Base (CTB)
- All other inputs given were as close as possible

	PCC	СТВ
Thermal Conductivity	1.25 BTU/hr-ft-ÞF	1.25 BTU/hr-ft-ÞF
Heat Capacity	0.28 BTU/Ib-ÞF	0.28 BTU/lb-ÞF
Coefficient of Thermal		
Expansion	5.5 per ÞF x 10^-6	NA

PCC	Month	Month	СТВ
Existing Pavement	June	May	Base/Subgrade
Overlay Construction	July	July	Pavement
Traffic Opening	August	August	Traffic Opening

Predicted Distresses

	PCC	СТВ
Terminal IRI	124.4	142.5
Transverse Cracking	8.6	NA
AC Top-Down Cracking	4.1	0.4
AC Bot-Up Cracking	0	0
Rutting - AC	0.46	0.81
Rutting - Total	0.46	1.15

Total rutting: AC over PCC structure

Janulary 8, 2009 TAP meeting

Department of Civil Engineering

Surface Temperatures: AC over PCC structure

Average Monthly Quintile Temperatures - Surface

Month	1st	2nd	3rd	4th	5th	Mean	Std.
	Quintile	Quintile	Quintile	Quintile	Quintile	Temp.	Dev.
	(°F)	(°F)	(°F)	(°F)	(°F)	(°F)	(°F)
January	13.2	22.8	28.2	33	41.3	27.7	10
February	22.2	30	34.9	39.8	48	35	9.2
March	27	35.1	40.8	48	60.2	42.3	12
April	38.1	46.6	53.4	62.3	77.1	55.5	14.1
May	49	57.6	64.8	73.3	86.9	66.4	13.5
June	58.5	68.4	75.9	85.7	98.9	77.5	14.5
July	65.2	72.8	80.2	90	101.7	82	13.3
August	63.9	70.8	77.2	86.4	98.1	79.3	12.4
September	54	62.3	69.2	77.8	92.7	71.2	13.9
October	41.7	50.2	56.5	63.7	76.3	57.7	12.4
November	30.5	38.3	43.7	49.1	57.9	43.9	9.8
December	20.1	27.6	32.8	37.6	45.2	32.7	9

Department of Civil Engineering

Surface Temperatures: AC over PCC structure

Average Monthly Quintile Temperatures - Surface

Month	1st	2nd	3rd	4th	5th	Mean	Std.
	Quintile	Quintile	Quintile	Quintile	Quintile	Temp.	Dev.
	(°F)	(°F)	(°F)	(°F)	(°F)	(°F)	(°F)
January	15	24.1	29	33.2	40.4	28.3	9
February	22	30	35.1	40.1	48.8	35.2	9.6
March	26.9	34.9	40.9	48.2	60.8	42.4	12.2
April	39	47.4	53.9	62.7	77.9	56.2	14
May	49.7	58.2	65.4	73.8	87.4	66.9	13.5
June	58	67.9	75.4	85.2	98.6	77	14.5
July	65.9	73.5	80.8	90.7	102.4	82.7	13.3
August	63.9	70.8	76.9	86.1	97.9	79.1	12.3
September	54.2	62.6	69.7	78.4	93.4	71.7	14.1
October	42.2	50.6	56.9	64.2	76.7	58.2	12.4
November	31.7	39.7	45	50.5	59.7	45.3	10
December	19.8	27.5	32.8	37.7	45.7	32.7	9.3

Conclusions

- Significant differences are found
 - Rutting
 - IRI
 - Surface temperatures
 - Given the same EICM files, and thermal property values
 - Layer Moduli
 - Not just in PCC and CTB layers, but throughout pavement structure
- AC/CTB should not be used for composite pavements

- Objective
 - Study the effect of weather stations used to generate an .icm file for composite and flexible pavements
- Case studies
 - 6-inch PCC with 2-inch AC overlay, various weather stations
 - MEPDG provides 6 available stations to select when generating an .icm file using interpolation. Three categories were created:
 - Nearest only
 - All except nearest
 - All

Effect of Weather Stations

UNIVERSITY OF MINNESOTA Driven to Discover[™]

Case 1. Minneapolis - St. Cloud

Janulary 8, 2009 TAP meeting

Percent Slabs Cracked

Locations	L a t.	Lon g.	Elev.	% Cracking after 20 years using all weather stations
Minneapolis	44. 53	-93.14	874	20.3
Pt. 8	44. 581	-93.20	910	22.2
Locat ion 2	45. 0 27	- 93. 261	918	24.0
Pt. 6	45.08	-93. 325	950	24.4
Locat ion 3	45. 1 25	-93. 383	86 9	26.5
Pt. 5	45.17	-93.44	957	32.3
Locat ion 4	45. 2 23	-93. 506	961	45.6
Pt. 7	45. 272	-93. 568	971	56.6
St. C Ioud	45.32	-94.03	10 2 4	60.2

• As the location becomes closer to St. Cloud, the percentage of cracking increases

Department of Civil Engineering

Missing Months

- Not all stations have a complete hourly climatic data (hcd) files
- MEPDG uses nearby stations to interpolate for missing data
- This is a possible reason for extreme cracking values for St. Cloud

Effect of Weather Stations

Department of Civil Engineering

MEPDG Interface showing number of missing months

Environment/Climatic	? 🛛
 Climatic data for a specific weather station. Interpolate climatic data for given location. 	45.32 Latitude (degrees.minutes) -94.03 Longitude (degrees.minutes) 1024 Elevation (ft) Seasonal Depth of water table (ft) Annual average 5
✓ 0.0 miles ST CLOUD, MN - ST CLOUD REGIONAL AIRPORT Lat. 45.32 Lon	Note: Ground water table depth is a positive number measured from the pavement surface. 94.03 Ele. 1024 Months: 116 (M1)
46.8 miles MINNEAPOLIS, MN - CRYSTAL AIRPORT Lat. 45.04 Lon93.21 E	ile. 872 Months: 101 (C)
56.1 miles MINNEAPOLIS, MN - FLYING CLOUD AIRPORT Lat. 44.5 Lon93.3	28 Ele. 922 Months: 100 (C)
59.9 miles MINNEAPOLIS, MN - MINPLIS-ST PAUL INTL ARPT Lat. 44.53 Lor	n93.14 Ele. 874 Months: 116 (C)
60.0 miles BRAINERD, MN - BRAINERD LAKES RGNL ARPT Lat. 46.24 Lon.	-94.08 Ele. 1225 Months: 116 (C)
63.9 miles ST PAUL, MN - ST PAUL DWTWN HOLMAN FD AP Lat. 44.56 Lon	93.03 Ele. 711 Months: 116 (M6)
Generate Select stations for generating interpolated climatic files. The bestations that are geographically close in differing directions. A st denoted (C)omplete. (M#) denotes missing month. Cancel Press the Generate button after selecting desired weather static and Depth of Water Table. Missing data for a given station will complete stations.	est interpolation occurs by selecting ation without missing any data is ons and inputing Elevation be interpolated from

Janulary 8, 2009 TAP meeting

Effect of Weather Stations

Department of Civil Engineering

MEPDG Interface Showing Error for Missing Data

Lis on		
45.32Latitude (degrees.minutes)-94.03Longitude (degrees.minutes)1024Elevation (ft)SeasonalDepth of water table (ft)Annual average5		
able depth is a positive for (year/month) = 199611 or missing data.		
f		

Janulary 8, 2009 TAP meeting

Case 2.

- 13 locations were selected across the US
 - Elevation of each location is between 800-1000ft
 - This is similar to Minneapolis (Elev. 874ft)
 - Covered a large area climatologically
- Factorials were ran at each location
 - "Nearest Only" "All except nearest" "All"
 - Identical composite pavement structure as used in Minneapolis - St. Cloud experiments

Selected Locations Across the US

Department of Civil Engineering

Janulary 8, 2009 TAP meeting

Effect of Weather Stations

UNIVERSITY OF MINNESOTA Driven to Discover[™]

Locations	Lat.	Long.	Elev.	% Cracking after 20 years for weather station			
				Nearest only	All except	All	
					nearest		
Fort Wayne, IN	41.01	-85.13	806	44.4	57.8	44.4	
Oshkosh, WI	43.59	-88.34	816	64.5	59.4	64.5	
San Antonio, TX	29.32	-98.28	821	47.5	70.2	47.5	
Lawrence, KS	39.01	-95.13	833	78.3	66.8	78.3	
Ann Arbor, MI	42.13	-83.44	836	68.2	45.2	59.5	
Grand Forks, ND	47.57	-97.11	842	43.1	43.5	43.3	
Columbus, OH	39.59	-82.53	849	27.5	69.8	27.5	
Madison, WI	43.08	-89.21	860	57.3	56.1	57.3	
Cedar Rapids,	41.53	-91.43	870	65.4	67.3	65.4	
IA							
Parsons, KS	37.2	-95.3	901	78.8	72.4	61.5	
Oak Ridge, TN	36.01	-84.14	916	81.5	57.3	77.9	
Atlanta, GA	33.38	-84.26	974	80	80	78.5	
Joplin, MO	37.09	-94.3	985	73.8	72.9	72.6	

Department of Civil Engineering

Conclusion: Quality of weather station data should be carefully evaluated.

Janulary 8, 2009 TAP meeting

Effect of AC Thickness on PCC Temperature Gradients

- Objective
 - Compare EICM predictions of PCC temperature gradients with and w/o AC overlays
- Case study: 8-inch PCC
 - No AC layer
 - 1.5 in AC overlay
 - -2 in AC overlay
 - 3 in AC overlay
 - -4 in AC overlay

Effect of AC Thickness on PCC Temperature Gradients

University of Minnesota Driven to Discover[™]

Janulary 8, 2009 TAP meeting

Effect of AC Thickness on PCC Temperature Gradients

UNIVERSITY OF MINNESOTA Driven to Discover[™]

Janulary 8, 2009 TAP meeting

Field Validation of EICM

UNIVERSITY OF MINNESOTA Driven to Discover™

- MnROAD Cell 53
- Data from Overlay and No-Overlay sections were compared

Field Validation of EICM

Field Validation of EICM

UNIVERSITY OF MINNESOTA Driven to Discover™

Remaining Work

- "Global" sensitivity of EICM to weather stations and locations
- Effect of other EICM inputs
- Effect of design features
- Attempt to salvage Cell 53 data
- Comparisons with MnROAD data.