Performance Benefits of Fiber-reinforced Thin Concrete Pavement and Overlays

MnDOT Contract No. 1003325; Work Order 56

TAP MEETING #1

TL: Tom Burnham (MnDOT)

PI: Manik Barman (UMD) (Presenter)

TAP Members

Tim Anderson, MnDOT

Kaye Bieniek, Minnesota LRRB

Tom Burnham, MnDOT (TL)

John Donahue, Missouri DOT

Christine Dulian, MnDOT

Debra Fick, MnDOT

Bernard Izevbekhai, MnDOT

James Krstulovich, Illinois DOT

Clifford, McDonald

Maria Masten, MnDOT

Luke Pinkerton, Helix Steel

Dulce Rufino, California DOT

Julie Vandenbossche, University of Pittsburgh

Matthew Zeller, Concrete Paving Association of Minnesota

Research Group

Manik Barman, Assistant Professor (PI)

Bryce Hansen, Graduate Student

Uma Arepalli, Post Doctoral Associate

Thin Concrete Pavement/ Overlay

Thin conc. Pavement

Over agg. base

Thickness: 3 to 6 inches

Thin conc. Overlays

Over asphalt

Over composite

Over concrete

Distresses

Cracks

Joint faulting

Slab migration

Use of Fibers

Many concrete overlays were constructed with structural fiber reinforced concrete

Observed benefits:

1. Reduce cracking/ crack propagation

2. Increased load transfer efficiencyreduced faulting

Quantification of the benefits ??

3. Reduced slab migration

Research Objectives

Determining contribution of fibers in:

- reducing panel fatigue cracking
- mitigating joint faulting
- Increasing panel size

Research Methodology

Cell number	Length (ft)	Pavement/ overlay Type	Underlying layer (constr. year)	Type of concrete/ fiber dosage*	Panel size W ft x L ft	Panel thickness (inch)
506 606* 706 806	144 138	Thin pavement on grade	11 in. class 5Q aggregate base (2017)	Plain concrete FRC/ standard FRC/ enhanced FRC/ high	6 x 6	5; 6*
139	270	Ultra-thin Pavement on grade	6 in. class 5 aggregate base (2017)	FRC/ enhanced	6 x 6	3
239	273	Thin Pavement on grade			6 x 6	4
705	144	Thin unbonded	Concrete	FDC/ standard	Driving: 14 x 12 Passing: 13 x 12	5
805	124	overlay	(1993)	FRC/ standard	Driving: 6 x 12 and 8 x 12 Passing: 6 x 12 and 7 x 12	5

Research Methodology

Tasks

Tasks	Schedule
Task 1: Literature review	2017 Nov to 2018 February
Task 2: Annual cell performance report	2018 Aug to 2018 October: Year 1 2019 Aug to 2019 October: Year 2 2020 Aug to 2020 October: Year 3
Task 3: Contribution of fibers in reducing panel fatigue cracking	2019 Jan to 2019 Dec
Task 4: Contribution of fibers in mitigating joint faulting	2019 May to 2020 April
Task 5: Optimal panel size for FRC overlays	2019 Aug to 2020 July
Task 6 and 7: Final report	April 2020 to 2020 October

Task Descriptions (Tasks 1 and 2)

Tasks	Schedule
Task 1: Literature review	Draft report submitted; Findings will be discussed shortly
Task 2: Annual cell performance report	Annual performance and distress data will be analyzed to understand the influence of fibers The observed trends will be used in Task 4,5 and 6.

Tasks 3 Descriptions

Tasks	Schedule
Task 3: Contribution of fibers in reducing panel fatigue cracking	2019 Jan to 2019 Dec

Based on the strain measured at the MnROAD sections –

- Investigate the applicability of the existing structural models (e.g., BCOA-ME, New Design procedure for unbonded conc. Overlay (Dr. Khazanovich and Dr. Vandenbossche's study)
- Adjust/ modify the relevant models to incorporate the fibers contribution as a function of fiber properties (e.g., modulus of rupture, residual strength, joint performance (or stiffness) gain)

Tasks 3 Descriptions

Tasks	Schedule
Task 3: Contribution of fibers in reducing panel fatigue cracking	2019 Jan to 2019 Dec

Based on the performance and distress of the MnROAD and other similar projects –

Develop incremental fatigue damage procedure (similar to AASHTO-ME); critical stress and strain
are function of fiber property, joint stiffness, effective slab length, etc., which will vary with crack
width = function of seasonal tempr.

Tasks 4 Descriptions

Tasks 4 Descriptions

Tasks	Schedule
Task 4: Contribution of fibers in mitigating joint faulting	2019 May to 2020 April

Based on the FWD and crack width movement data –

- Study the load transfer behavior of FRC (existing lab study)
- Consider creep issue or plastic elongation of fibers
- Verify the load transfer behavior of FRC sections with the FWD data
- Adjust/ modify the relevant models to incorporate the fibers contribution as a function of fiber properties (e.g., modulus of rupture, residual strength, joint performance gain)
- To consider the seasonal crack width movement, incremental damage approached will be adopted

Tasks 5 Descriptions

Tasks	Schedule
Task 5: Determine optimal panel size	2019 Aug to 2020 July

Through FEM analysis

Tasks 5 Descriptions

Tasks	Schedule
Task 5: Determine optimal panel size	2019 Aug to 2020 July

Tasks 5 Descriptions

Tasks	Schedule
Task 5: Determine optimal panel size	2019 Aug to 2020 July

Based on the performance and distress of the Cells 139, 239, 705 and 805 and FEM analysis findings-

Optimal slab size = f(fiber property, underlying layer properties, temperature change in the region, etc.)

Task 1 Findings

Fibers

Materials (ASTM C1116)

Type I: steel Type II: glass

Type III: synthetic

Type IV: natural fibers

Micro/ non-structural Macro/ structural

Geometry/texture

Straight Crimped Hooked end

. . . .

. . . .

FRC: Fresh Conc. Properties

Steel

Typical volume fraction: 0.25% to 1.5%

Slump: 1 to 4 in. lower compared to PCC

Fiber balling: When aspect ratio >100

Synthetic

Typical volume fraction: 0.25% to 1.5%

Slump: Usually drops

Fiber balling: When aspect ratio >100 $V_f > 1\%$

Comp. strength: 0% to 25% increase

Flexural strength: 0 to 50% (@1.5% volume fraction)

Direct tensile strength: 40% more compared to PCC

Vol. fraction

Vol. fraction

After Mahadik & Kamane, 2014

Comp strength: Little improvement; ductile failure of cylinders

Flexural strength: No improvement

Toughness/ Residual strength: Significant improvement

Load transfer efficiency (LTE): Significant improvement

27

Pictures of Enduro 600 fibers after fatiguing with 10 million load cycles.

FRC in Existing Conc. Overlays

State	Number of Projects	Projects using Steel fibers		Projects using Synthetic fibers		Synthetic Fiber Dosage Distribution (%)	
	·	%	Dosage lb/yd ³	%	Dosage lb/yd ³	3 lb/yd³	Other lb/yd³
Georgia	6	0	N/A	100	3	100	0
Illinois	19	6	80	94	3, 4, 7.5	11	89
Kansas	8	0	N/A	100	3	88	12
Minnesota	11	0	N/A	100	3, 6.5, 25	36	64
South Carolina	3	0	N/A	100	3	100	0
Virginia	3	28	50, 75	72	3, 20, 25, 0.9	17	83
Total	50	6	N/A	94		51	49

FRC projects in other States

State	Project details	Year of Const.	Traffic (ADT)	Overlay Thickness, Inches	Fiber type and dosage (lb/yd³)	Distress data
Pennsylvania	Intersection of State Route (SR)-133 and SR-100, Chester County	1988	36,079	4	Polypropylene, 3	N/A
Texas	Intersections on LP-250 at Wadley Road, Holiday Hill Road and Midland Drive, Midland	2005	26,650	3	Polypropylene, 3	A mid slab and corner cracks were observed after one or two years of construction which could be due to the heavy traffic and wheel path adjacent to the longitudinal joint.
Texas	Intersection of LP-250 at Midkiff Road and Garfield Road, Midland	2001	25,000	3	Polypropylene, 3	N/A
New York	Intersection at Waldon Avenue and Central Avenue, near Buffalo	2002	12,250	4	Polypropylene fibers, N/A	Corner cracks along the free longitudinal joints were found.
New York	NY-408 and SH -622, Rochester	2002	9,350	4	Polypropylene fibers, N/A	Corner cracks along the free longitudinal joints were found.
Michigan	Patterson Avenue, from 44th Street to 36th Street, Kentwood	2006	31,891	4	fibrillated polypropylene, 1.5	The overall performance of the project found good; however, there are few distress due to improper alignment of edge of existing asphalt layer and the joint between the white topping and full depth widening.

Approved list of Fibers

Illinois

Source	Fiber Trade Name	Length (inch)	Aspect ratio, specific gravity, modulus of elasticity (ksi),tensile strength (ksi)	
General Resource Technology	Advantage structural fiber	1.5 or 2	100, 0.91, N/A, 70	
Propex	Fibermesh 650	Graded	96.5, 0.91, N/A, 70	
ABC Polymer Industries	Tuf-Max DOT™	1.5 or 2	N/A, 0.91, 800, 70	
BASF Corporation	MasterFiber® MAC Matrix	2.1	70, 0.91, N/A, 85	
The Eucild Chemical Company Tuf-Strand SF ^T		2	74, 0.92, 1380, 87-94	
Forta Corporation FORTA-FERRO®		1.5 or 2.25	N/A, 0.91, N/A, 83-90	
GCP Applied Technology Strux® 90/40		1.55	90, 0.92, 1378,90	

Approved list of Fibers

Georgia

Source	Fiber trade name	Length (inch)	Aspect ratio, specific gravity, modulus of elasticity (ksi),tensile strength (ksi)
ABC Polymer Industries	(i)Tuf-Max DOT [™] (ii) Performance Plus DOT [™]	1.5 or 2.0	(i) 74, 0.91, 800, 70 (ii) N/A, 0.91, 800, N/A
BASF Corporation	(i) MasterFiber® MAC 100 (ii) MasterFiber® MAC Matrix	(i) 1.5 (ii) 2.1	(i) 59, 0.91, N/A, N/A (ii) 70, 0.91, N/A, 85
Elasto Plastic Concrete	Bar chip 48 (BC48)™	1.89	N/A, 0.90-0.92, 1450, 93
The Euclid Chemical Corporation	Tuf-Strand SF [™]	2	74, 0.92, 1380, 87-94
Forta Corporation	FORTA-FERRO®	1.5 or 2.25	N/A, 0.91, N/A, 83-90
Propex Operation Co., LLC	NOVOMESH® 950	1.8-varies	N/A, 0.91, N/A, N/A
W.R. Grace	Strux® 90/40	1.55	90, 0.92, 1378,90

Illinois

Minnesota

Minnesota

- Cell 96, No cracked panels, joint deterioration (too many fibers)

Minnesota

Localized distress in Cell 162, (b) concrete broken to replace the slab (Burnham & Andersen, 2015).

South Carolina

Missouri

- US 60: A bonded concrete overlay project (1999)
- polypropylene fibers 3 lb/yd³; 4
 inches thick and included 3 ft x 3 ft
 and 4ft x 4 ft panel sizes
- but did reduce crack widths and joint degradation. No faulting was observed on this project and may be related to the use of fibers.

General Performance Summary

State	Performance summary		
Georgia	No information available		
Illinois	Reduced slab migration, joint separation, faulting and increased ride quality		
Kansas	Less faulting, spalling and panel cracks		
Minnesota	Increased LTE in old cells; no strong conclusions on new cells		
Missouri	Restricted faulting, reduced crack width and joint degradation		
South Carolina	Increased service life		
Virginia	Fibers exhibited good resiliency in minimizing cracking and crack width		

Questions?

mbarman@d.umn.edu