

Mechanistic Load Restriction Decision Platform for Pavement Systems Prone to Moisture Variations "A System Dynamics Simulation Framework"

> Masoud Mousavi, PhD Candidate Majid Ghayoomi (PI) and Eshan Dave (Co-PI)

June 4, 2020

1. Project Overview

Project Objectives

- Develop a mechanistic framework to improve robustness of the load restriction decision process.
- ✓ Improve post-flooding and seasonal pavement capacity assessment.
- Implement a flexible platform that incorporates multi-variant effects with forecasting capability.

System dynamics modeling and analysis

integrating climate forecasting, soil-moisture state, pavement mechanics and traffic spectrum

 ✓ Develop a toolkit validated using field data for load restriction decision, specially for post-flooding load closures and openings.

2. System Dynamics Modeling (1/8)

What is system dynamics modeling?

An approach to study and manage complex systems (*includes multiple structures and components*) that change over time.

2. System Dynamics Modeling (1/8)

What is system dynamics modeling?

An approach to study and manage complex systems (*includes multiple structures and components*) that change over time.

- ✓ Quantitative and qualitative (visual) assessment
- ✓ Identify interactions among system structures
 - ✓ Structures → Subset of a system (e.g., hydrological analysis)
- ✓ Real time coupled modeling (e.g., hydraulic and mechanical behavior)
- ✓ Can be formulated in computer software (e.g., Vensim Pro[®] in this research)

2. System Dynamics Modeling (2/8)

Evaporation Precipitation Basic components Ponded water height ✓ Stock/level Variable **Flow Variable** \checkmark Information Variable \checkmark Rate Rate Outflow Inflow Ponded water height Infiltration Hydraulic conductivity Hydraulic Soil height gradient

2. System Dynamics Modeling (3/8)

Evaporation Precipitation Basic components Ponded water height ✓ Stock/level Variable **Flow Variable** \checkmark Information Variable \checkmark Rate Rate Outflow Inflow Ponded water height Infiltration Hydraulic conductivity Hydraulic Soil height gradient

2. System Dynamics Modeling (4/8)

Evaporation Precipitation Basic components Ponded water height ✓ Stock/level Variable \checkmark **Flow Variable** Information Variable \checkmark Rate Rate Outflow Inflow Ponded water height Infiltration Hydraulic conductivity Hydraulic Soil height gradient

2. System Dynamics Modeling (5/8)

2. System Dynamics Modeling (6/8)

Capabilities of SDM using computer tools:

- 1) Visualize interrelationship between variables
- 2) Diagrams of causes and uses
- 3) Functions (IF THEN ELSE, etc.)

 \odot

2. System Dynamics Modeling (7/8)

2. System Dynamics Modeling (8/8)

- 5) Data Use
- ✓ Different forms of data: time series, data with missing values, subjective data.
- 6) Sensitivity Testing
- ✓ Monte-Carlo multivariate sensitivity simulations

Example:

Sensitivity of ponded water height to effective grain size (D_{10}) and void ratio (multivariant effect)

3. SDM development (1/2)

3. SDM development (2/2)

Conventional flexible pavement example

 ✓ The SDM is discussed using example of a conventional flexible pavement system under moisture variations for 60 hours:

Variable	Value	
AC layer thickness	0.1 m (~4 inch)	
Base layer thickness	0.3 m (~12 inch)	
Subbase layer thickness	0.1 m (~4 inch)	
GWT depth (from subgrade surface)	2 m (~6.6 ft)	
Subgrade sublayers height (10 layers)	0.2 m (~8 inch)	
Bedrock depth	10 m (~32.8 ft)	

4. Hydrological Structure (1/15)

Main components:

- 1. Climate information:
- Ponded water height
- Precipitation and evaporation rate

Forecasted climate data or average hourly rate

- 2. Unsaturated soil flow analysis:
- Initial soil moisture profile using van Genuchten (1980) SWRC and initial ground water depth:
- Moisture-dependent hydraulic conductivity
- Moisture movement analysis by numerical integration of Richard (1931)'s equations in discretized depth

$$K(\theta) = K_{sat} \left(\frac{\theta - \theta_r}{\theta_s - \theta_r}\right)^{0.5} \left[1 - \left(1 - \left(\frac{\theta - \theta_r}{\theta_s - \theta_r}\right)^{\frac{1}{m_{vG}}}\right)^{m_{vG}}\right]^2$$

4. Hydrological Structure (2/15)

Given Provide a content of a c

NH

NH

5. Geotechnical Structure (1/2)

Omega Moisture dependent resilient modulus

- Uses real time moisture profile from hydrological structure •
- Estimates based on available moisture dependent resilient modulus ٠ equations
- Example: MEPDG (Zapata et al. 2007) ۲

5. Geotechnical Structure (2/2)

Given Provide a content of a c

• Assumed material properties

Property/parameter (at optimum moisture content)	value	
Base resilient modulus (M _{R,B-OPT})	200 MPa (~30 ksi)	
Subbase resilient modulus (M _{R,SB-OPT})	137 MPa (~20 ksi)	
Subgrade resilient modulus ($M_{R,Sg-OPT}$)	70 MPa (~10 ksi)	
a	-0.3123	
b	0.3	
K _m	6.8157	

• Typical results from SDM:

6. Pavement Response Structure (1/3)

□ Main components

- ✓ Traffic information: axle load, axle configuration, and tire pressure
- ✓ Structural performance analysis:

Equivalent Thickness Method (ETM)

Linear elastic analysis

$$H_{Eq} = H_n + \sum_{i}^{n} C_i H_i \left[\frac{E_i (1 - v_n^2)}{E_n (1 - v_i^2)} \right]^{1/3}$$
$$\sigma_z = q (1 - \frac{z^3}{(a^2 + z^2)^{1.5}})$$

• Uses M_R profile from geotechnical structure to estimate pavement

6. Pavement Response Structure (2/3)

Generation Flexible pavement example:

Assumed material properties

properties	value			
AC resilient modulus (M _{R,AC})	2500 MPa (~360 ksi)			
AC Poisson ratio (v_{AC})	0.35			
Base Poisson ratio (v_B)	0.3			
Subbase Poisson ratio (v_{Sb})	0.3			
Subgrade Poisson ratio (v_{Sg})	0.4			
Assumed traffic information				
Traffic information	Value			
Tire pressure	550 kPa (80 psi)			
Wheel load	45 kN (10 kips)			

Typical results from SDM

6. Pavement Response Structure (3/3)

39

6. Upcoming Tasks and Discussion

Task4:

Perform full sensitivity analysis to understand the significance of stressors, pavement components, and analysis methods/formulations on overall pavement response

Task5:

develop a user-friendly toolkit that can be readily implemented for pavement load restriction decision process

Task6 and Future Phase:

Validate the toolkit using the field data/physical model testing data

Thank you!

UNIVERSITY of NEW HAMPSHIRE

Durham, NH

©2011 Mike Ross, UNH Photographic Services

Saturated hydraulic conductivity

Reference	Hydraulic conductivity (cm/s)	Notation	Remarks
Hazen [11]	$k_s = cD_{10}^2$	<i>c</i> = constant.	c ≈1, applicable for fairly uniform sand
Chapius [12]	$k_s = 2.46 [D_{10}^2 \frac{e^3}{(1+e)}]^{0.78}$	e= void ratio of soil	Applicable for uniform gravel and sand and non- plastic silty sands
Mbonimpa et al. [13]	$k_s = C_p \frac{\gamma_w}{\mu_w} \frac{e^{3+x}}{(1+e)} \frac{1}{\rho_s^2 w_L^{2\chi}}$	γ_{ω} =unit weight of water (kN/m3) μ_{ω} = Water dynamic viscosity (Pa·s) ρ_s = Density (kg/m ³) of solids W_L = Liquid limit (%) x= 7.7wL ^{-0.15} -3	Applicable for plastic soils, γ_{ω} ≈ 9.8 , $\mu_{\omega} \approx 10^{-3}$, $\chi = 1.5$

