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OUTLINE
• Task 3 – Construction Monitoring and Reporting

– Report

– Effects of Geosynthetics

• Task 4 – Laboratory Testing

– ISU Preliminary Laboratory Testing Plan
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FOLLOW-UP
• Task 1 – Literature Review and Recommendations
• Task 2 – Tech Transfer “State of Practice”

• Task 3 – Construction Monitoring and Reporting
• Task 4 – Laboratory Testing

• Task 5 – Performance Monitoring and Reporting 
• Task 6 – Instrumentation
• Task 7 – Pavement Design Criteria
• Task 8 & 9 – Draft/Final Report
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TASK 3
Report

• Test Cells and Construction

• Performance Monitoring

• Data Collected During and Shortly 
After Construction
– Meteorological Data
– Nuclear Density Gauge Measurements
– Dynamic Cone Penetrometer (DCP) Data
– Lightweight Deflectometer (LWD) Data
– Gas Permeameter Test (GPT) Data
– Intelligent Compaction (IC) Data
– Falling Weight Deflectometer (FWD) Data
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TASK 3
General Overview of Test Cells
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TASK 3
Designs of 9-in thick LSSB layers

• Original design
– Only two cells – cells 128 and 228
– 9-in thick LSSB layers with no geosynthetics

• Problems
– Subgrade soil pumping into LSSB layers
– Rutting of base and surface layers
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TASK 3
Designs of 9-in thick LSSB layers

• Solution
– Removal of cells 128 and 228.
– Reconstruction of cells 328, 428, 528, and 628 with geosynthetics.
– Cell 728  Remnant from cell 228
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TASK 3
Designs of 9-in thick LSSB layers

• Geosynthetics  to prevent subgrade soil pumping
– Cell 328 – Triaxial geogrid (TX)
– Cell 428 – Triaxial geogrid (TX) + non-woven geotextile (GT)
– Cell 528 – Biaxial geogrid (BX) + non-woven geotextile (GT)
– Cell 628 – Biaxial geogrid (BX)
– Cell 728 – No geosynthetic (remnant)
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TASK 3
Nuclear Density Gauge (NDG)

• Cell 128 – Class 6 agg. base

• Other cells – Class 5Q agg. base
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• Special subgrade preparation
– DCPI: 2.5 to 3.5 in/blow

• No significant difference

TASK 3
Dynamic Cone Penetrometer (DCP)
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TASK 3
Lightweight Deflectometer (LWD)

• Cells 328, 428, 628, and 728
– ≥ Cells 128 and 228

• Cell 528  Lowest

• No considerable effects of 
geosynthetics
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TASK 3
Intelligent Compaction (IC)

• Cells 528  Lowest

• Cells 728 > Cell 228
– Stiffer part

• No considerable effects of 
geosynthetics
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TASK 3
Falling Weight Deflectometer (FWD)

• Cells 128 and 228  Lower 
deflections and higher modulus

• Cells 728  Better than cell 228
– Stiffer part

• No considerable effects of 
geosynthetics
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TASK 3
Summary
• Effects of geosynthetics on overall engineering properties of reconstructed 

cells were investigated by LWD, IC, and FWD tests.

• During construction, using geosynthetics between LSSB layers and 
subgrade soils mitigated rutting and subgrade soil pumping.

• Benefits of geosynthetics could not be detected by LWD, IC, and FWD tests 
in terms of stiffness.

• Structures of test cells will be investigated by GPR.

• Drilling a test hole and investigating morphology of pavement layers by 
geo-endoscope method would be desired.

• More analyses will be performed as monitoring continues to observe the 
long-term performance of each cell.
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TASK 4
Task 4 – Laboratory Testing

• Iowa State University
– Soil classification
– Image analysis
– Proctor & gyratory compaction
– Asphalt & cement content determination
– Contact angle measurement

• University of Wisconsin-Madison
– Soil-water characteristic curve (Hanging Column Test)
– Permeability (Constant Head Hydraulic Conductivity)
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TASK 4
Soil Classification

• Gradation of aggregates highly affects (Saeed 2008):
– Hydraulic conductivity
– Shear strength
– Elastic and resilient modulus
– Frost-susceptibility

• Gradations of RCA and RAP are affected by (Cosentino and Kalajian 2001):
– Original aggregate type
– Milling operations
– Crushing methods

• Importance of gradation for RCA
– Fine RCA particles  Higher unhydrated cement content (ACPA 2009)

– Higher unhydrated cement content More cementation
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TASK 4
Soil Classification

• Base materials:
– Coarse RCA (Class 5Q)
– Fine RCA (Class 5)
– Limestone (Class 6)
– RCA+RAP (Class 6)
– Class 6 aggregates
– Class 5Q aggregates

• Subbase materials:
– Select granular borrow
– LSSB material

• Subgrade materials:
– Sandy soil
– A-6 Clay Loam
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TASK 4
Image Analysis

• RCA particles – more angular than RAP particles (Cosentino et al. 2003).

• RCA particles – rougher texture than RAP particles (Cosentino et al. 2003).

• LSSB materials (Kazmee et al. 2016):
– Large-size aggregates
– Limitations of standard sieve sizes – not practical
– Image analysis is more suitable for characterization.

• Large-size aggregates  Less angular due to single crushing 
operation (Kazmee et al. 2016). 
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TASK 4
Image Analysis

• Particle roundness
– Wadell (1932)  The ratio of the average radius of curvature of the 

corners of a particle (ri where i = corner number) to the radius of the 
maximum inscribed circle (rins).

• Particle sphericity
– Krumbein and Sloss (1951)  The ratio of particle width (d2) to 

particle length (d1).

(Hryciw et al. 2016)
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TASK 4
Image Analysis

(Hryciw et al. 2016)
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TASK 4
Image Analysis

2D Particle Shape Analysis Stereophotography

Fabric Anisotropy Intrinsic Property Based DEM Modeling

http://junxing.public.iastate.edu/research.html
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TASK 4
Image Analysis

• 2D Particle Shape Analysis
– Code based on Matlab to automatically compute

• Sphericity
• Roundness
• Surface Roughness

http://junxing.public.iastate.edu/research.html
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TASK 4
Image Analysis

• Stereophotography
– Traditional images  2D

– Stereophotography 3D

– Only 2 parallel images are 
required for 3D reconstruction. 

http://junxing.public.iastate.edu/research.html
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TASK 4
Image Analysis

• Fabric Anisotropy
– Rotational Haar Wavelet method

– Estimation of orientations of particle 
long axes

– Computation of fabric tensor. 

http://junxing.public.iastate.edu/research.html
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TASK 4
Image Analysis

• Intrinsic Property Based DEM Modeling

http://junxing.public.iastate.edu/research.html

– 2D corner preserving algorithm

• To generate realistic DEM 
geometries from particle images

– DEM particle library

• User defines particle size, sphericity, 
and roundness distributions.

• DEM particle library builds a virtual 
soil specimen.



Slide 29Iowa State University University of Wisconsin-Madison 29

TASK 4
Image Analysis

• Shining 3D – EinScan-SP

https://www.dream3d.co.uk/product/shining-3d-einscan-sp/
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TASK 4
Proctor & Gyratory Compaction

• Proctor tests (Edil et al. 2012; Nokkaew et al. 2012; Sayed et al. 1993)

– RAP and RCA have lower maximum dry unit weight than VA.

o RAP  Lower specific gravity than VA due to asphalt (Guthrie et al. 2007, Locander
2009). 

o RCA  Resistance of particles against the compaction effort due to cementation 
(Hussain and Dash 2010).

– RAP has lower optimum water content than VA  hydrophobicity

– RCA shows a higher optimum moisture content  hydrophilicity
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TASK 4
Proctor & Gyratory Compaction

• Kim et al. (2007)  Gyratory compactor provided better results to 
simulate the in-situ conditions.

(Kim et al. 2007) 
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TASK 4
Proctor & Gyratory Compaction

• Gyratory Abrasion and Image Analysis (GAIA) test method 
(Li et al. 2017)

– Percent crushing of aggregates after the test

• Canon 9000F Mark II high-speed optical scanner – 2D
– Dust and scratch removal image processing feature

(Li et al. 2017)
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TASK 4
Asphalt & Cement Content Determination

• Coarse RCA & Fine RCA – Cement content

• RCA+RAP – Material contents

– Engineering properties of RCA and RAP

– Temperature-sensitivity of RAP due to asphalt (Soleimanbeigi et al. 2015).

– Repositioning of particles in the long-term due to the asphalt (Cosentino et 
al. 2012; Yin et al. 2016)

– Cementation of unhydrated cement

– Fine RCA particles  Contain higher unhydrated cement (ACPA 2009)
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TASK 4
Asphalt & Cement Content Determination

• Asphalt content determination  Ignition method
– AASHTO T 308-16, Standard Method of Test for Determining the 

Asphalt Binder Content of Hot Mix Asphalt (HMA) by the Ignition 
Method

Before Ignition                     After Ignition
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TASK 4
Asphalt & Cement Content Determination

• Cement content determination Acid treatment technique

• Cementation  Heat of hydration

• Linking between particles due to cementation  SEM images

(Coban 2017)Loess                                                     Loess + 4 % PC
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TASK 4
Contact Angle Measurement
• Hydrophobicity of RAP  due to asphalt

• Hydrophilicity of RCA  due to unhydrated cement

• RAP tends to have higher Ksat than RCA  hydrophobicity.

RAP                                                   RCA (Edil et al. 2012)
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TASK 4
Contact Angle Measurement

• Water drop penetration time (WDPT) (Edil et al. 2012)

– Time that takes for a water drop to completely infiltrate the material after 
the water drop is placed at the surface of soil.

• Effective contact angle (Edil et al. 2012)

– Dynamic property depending on energy state of water

• Apparent contact angle (Edil et al. 2012)

– Contact angle at zero energy state of water 
– The higher the contact angle the greater the water repellency
– RAP > 90° and RCA ~ 0°
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Thank You!

QUESTIONS??
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