IOWA STATE UNIVERSITY

MICHIGAN STATE UNIVERSITY

Determining Pavement Design Criteria for Recycled Aggregate Base and Large Stone Subbase

Bora Cetin, PI Tuncer Edil, Co-PI Halil Ceylan, PI William Likos, Co-PI Ashley Buss, Co-PI Junxing Zheng, Co-PI

Haluk Sinan Coban, Research Personnel

MnDOT Project TPF-5(341)

NRRA Monthly Geotechnical Team Meeting December 3, 2020

OUTLINE

- Introduction
- Research motivation
- Objectives
- Research plan
- Test cells and materials
- Tasks
- Conclusions & recommendations

INTRODUCTION

- Flexible pavements
- Load distribution
- Long-term performance
- Aggregate base layer
 - Load-carrying sublayer
 - Adequately stiff & durable
 - Good-quality natural aggregates
- Subbase layer
 - Working platform
 - Filter/separation
 - Conventional-size natural aggregates
 - > Majority of particles $\leq 25 \text{ mm}$

Iowa State University

University of Wisconsin-Madison

INTRODUCTION

- Cost of good-quality virgin aggregates (VAs) ↑
 - High demand
 - Loss of natural sources
 - Federal/local restrictions
- Pavement sustainability
 - Economical
 - Environmentally friendly
 - Long-lasting
- Alternative materials
 - Recycled aggregates
 - Large stones

https://pubs.usgs.gov/of/2011/1119/pdf/OF11-1119_report_508.pdf

University of Wisconsin-Madison

INTRODUCTION

- Recycled concrete aggregate (RCA)
 - Old & failed rigid pavements
 - Demolished structures
- Recycled asphalt pavement (RAP)
 - Old & failed asphalt pavement surfaces
- Large stones
 - Majority of particles > 25 mm

https://atlasconcrete.co.nz/benefits-of-recycling-concrete/

https://arthuge.com/dirt sand gravel limestone fill sand prices

Michigan State University

Iowa State University

University of Wisconsin-Madison

RESEARCH MOTIVATION

Iowa State University

University of Wisconsin-Madison

OBJECTIVES

1st Objective – Determine laboratory & field performance • Index & engineering properties & abrasion Unsaturated & saturated characteristics • Nuclear density, DCP, LWD, IC, FWD, rutting, IRI, distresses Environmental monitoring (temperature & moisture) 2nd Objective – Estimate laboratory & field test results • Simple & multiple linear regression models • Nonlinear models (power, exponential, logarithmic) Correlations 3rd Objective – Prepare a pavement design and construction specification • Field and laboratory performance • Material selection Design recommendations

University of Wisconsin-Madison

RESEARCH PLAN

- Task 1 Literature review and recommendations
- Task 2 Tech transfer "state of practice"
- Task 3 Construction monitoring and reporting
- Task 4 Laboratory testing
- Task 5 Performance monitoring and reporting
- Task 6 Instrumentation
- Task 7 Pavement design criteria
- Task 8 Draft report
- Task 9 Final report

Green – Completed Red – In Progress

TEST CELLS AND MATERIALS

Test Facility

- Minnesota Road Research Project (MnROAD) Low Volume Road (LVR)
 - Two-lane closed loop
 - Inside lane traffic simulation
 - Outside lane environmental monitoring

Iowa State University

University of Wisconsin-Madison

TEST CELLS AND MATERIALS

Test Cells

Recycled Aggregate Base				Large Stone Subbase		Large Stone Subbase with Geosynthetics				
185	186	188	189	127	227	328	428	528	628	728
3.5 in Superpave	3.5 in Superpave	3.5 in Superpave	3.5 in Superpave	3.5 in Superpave	3.5 in Superpave	3.5 in Superpave	3.5 in Superpave	3.5 in Superpave	3.5 in Superpave	3.5 in Superpave
12 in Coarse RCA	12 in Fine RCA	12 in Limestone	12 in RCA+RAP	6 in Class 6 Aggregate	6 in Class 6 Aggregate	6 in Class 5Q Aggregate	6 in Class 5Q Aggregate	6 in Class 5Q Aggregate	6 in Class 5Q Aggregate	6 in Class 5Q Aggregate
				18 in LSSB (1 lift)	18 in LSSB (1 lift)	9 in LSSB	9 in LSSB	9 in LSSB	9 in LSSB	9 in LSSB
3.5 in S. Granular Borrow	3.5 in S. Granular Borrow	3.5 in S. Granular Borrow	3.5 in S. Granular Borrow			TX	TX+GT	BX+GT	BX	1000
Sand	Sand	Clay Loam	Clay Loam			Clay Loam	Clay Loam	Clay Loam	Clay Loam	Clay Loam
S. Granular Borrow = Select Granular Borrow						TX = Triaxial Geogrid BX = Biaxial Geogrid GT = Nonwoven Geotextile				
				Clay Loam	Clay Loam					

TEST CELLS AND MATERIALS

Soils and Aggregates

Iowa State University

University of Wisconsin-Madison

Literature Review and Recommendations

Index properties

- Grain and gradation characteristics
- Compaction characteristics

• Engineering properties

- Hydraulic properties
- Bearing capacity properties
- Shear strength properties
- Stiffness properties
- Permanent deformation properties
- Creep properties
- Freeze-thaw (F-T) and wet-dry (W-D) durability

Environmental properties

- Properties of RAP
 - pH characteristics
 - Heavy metal leaching characteristics
 - Poly-aromatic hydrocarbons (PAHs) leaching characteristics
- Properties of RCA
 - pH characteristics
 - Heavy metal leaching characteristics
- Geosynthetic applications
 - Functions of geosynthetics
 - Effects of using geosynthetics
- Design methods
 - AASHTO 1993 design method
 - Mechanistic-empirical (ME) pavement design method
- Selected practices of state DOTs
 - Caltrans, IDOT, MnDOT, MoDOT, WisDOT, and MDOT

MnDOT Project TPF-5(341)

Task 1 – Literature Review

April 2018

Investigators:

Haluk Sinan Coban – Graduate Research Assistant Bora Cetin – Principal Investigator

Reviewers: Halil Ceylan – Co-Principal Investigator Ashley Buss – Co-Principal Investigator Junxing Zheng – Co-Principal Investigator William J. Likos – Co-Principal Investigator Tuncer B. Edil – Co-Principal Investigator

University of Wisconsin-Madison

Tech Transfer "State of Practice"

- Determining pavement design criteria for recycled aggregate base materials
- Determining pavement design criteria for large stone subbase materials

Iowa State University

University of Wisconsin-Madison

Construction Monitoring and Reporting

- Construction monitoring
- In-situ density and moisture content measurements
- DCP tests
- LWD tests
- IC
- **FWD**

Determining Pavement Design Criteria for Recycled Aggregate Base and Large Stone Subbase

MnDOT Project TPF-5(34)

Task 3 - Construction Monitoring and Reporting

November 2018

Bora Cetin - Principal Investigator uk Sinan Coban - Graduate Research Ass

> Reviewers Halil Ceylan - Co-Principal ? Buss - Co-Pri nxing Zheng - Co-Principal Inv m J. Likos - Co-Principal Inve

(White and Vennapusa 2017)

University of Wisconsin-Madison

Michigan State University

Iowa State University

Construction Monitoring and Reporting - Summary

- Challenging construction for thinner LSSB
- Subgrade soil pumping & rutting
- Geosynthetics between LSSB/subgrade
- Staged construction for thicker LSSB \rightarrow not practical
- Coarse RCA and Fine RCA base \rightarrow good performance
- Thicker LSSB > thinner LSSB

Iowa State University

University of Wisconsin-Madison

Laboratory Testing

- Index properties
 - Classification
 - G_s and absorption
 - Proctor compaction
 - Asphalt binder content
 - Residual mortar content
 - Water repellency
- Saturated & unsaturated properties
 - Permeability (K_{sat}) tests
 - Soil-water characteristic curve (SWCC)
- Stereophotography
 - Particle size & shape analyses
- Gyratory compaction and abrasion
 - Abrasion on particle size & shape

Laboratory Testing - Summary

- Class 6 & Class 5Q Aggregates \rightarrow recycled
 - Class 6 Aggregate \rightarrow similar to RCA+RAP
 - Class 5Q Aggregate \rightarrow similar to Coarse RCA
- K_{sat}
 - Fine RCA > Class 5Q Aggregate > Coarse RCA > RCA+RAP > Class 6 Aggregate > Limestone
 - Porosity \uparrow K_{sat} \uparrow
- Abrasion
 - Class 5Q Aggregate > Coarse RCA > Fine RCA > Class 6 Aggregate > RCA+RAP > Limestone
 - Higher abrasion for recycled aggregates

TASKS 5 & 6

Performance Monitoring and Reporting & Instrumentation

- Meteorological data
- Soil temperature and moisture monitoring
 - Temperature profiles
 - VWC profiles
 - Annual frost penetration depths
 - F-T periods
- FWD tests
- Frost heave & thaw settlement
- Rutting
- IRI
- Pavement distresses

TASKS 5 & 6

Performance Monitoring and Reporting & Instrumentation - Summary

- Successful detection of frost penetration depths & F-T periods
 - Consistency between thermocouple & moisture probe readings
- Field performance
 - Fine RCA > Coarse RCA > RCA+RAP > Limestone
 - Thicker LSSB > thinner LSSB

Pavement Design Criteria

- Estimation of laboratory test results
 - Proctor compaction (MDD & OMC)
 - K_{sat}
 - SWCC (θ_r , θ_s , and air-entry pressure)
 - $M_{R} (SM_{R}, k_{1}, k_{2}, k_{3})$
 - Abrasion
- Estimation of field test results during construction
 - DCP (DCPI and CBR)
 - LWD (E_{LWD})
 - FWD (E_{FWD})
 - IC (M_R)
- Pavement ME performance models
 - Equivalent (or similar) structural capacity

University of Wisconsin-Madison

Pavement Design Criteria - Summary

- Correlation equations
- Common parameters → estimation of more advanced parameters
- Relative breakage
 - Residual mortar content ↑ coarse OD Gs ↓ breakage ↑
 - − Roundness ↑ breakage ↓
- Thinner RAB layers (as thin as 4 in)
- More info needed for LSSB layers

Draft Report

- Task 1 Literature review and recommendations
- Task 2 Tech transfer "state of practice"
- Task 3 Construction monitoring and reporting
- Task 4 Laboratory testing
- Task 5 Performance monitoring and reporting
- Task 6 Instrumentation
- Task 7 Pavement design criteria

Task 8

Material Selection for RAB Layers

- Material classification
 - Assessing G_s, absorption, and residual mortar contents
- Water absorption
 - Fine RCA > Coarse RCA > Class 5Q Aggregate > RCA+RAP > Class 6 Aggregate > Limestone
 - RCA \rightarrow higher absorption
 - Absorption \uparrow F-T durability \downarrow
 - Mixing RCA & RAP \rightarrow absorption \downarrow (mix until 4.3% absorption)
 - Absorption of coarser RCA < finer RCA (no more than 7% absorption)
- Hydrophobicity
 - Asphalt binder \rightarrow 3% (ignition) or 1.5% (extraction)
 - − F-T durability ↑
 - Drainage

Material Selection for RAB Layers - cont'd

- Abrasion
 - Class 5Q Aggregate > Coarse RCA > Fine RCA > Class 6 Aggregate > RCA+RAP > Limestone
 - High breakage of RCA \rightarrow fines \uparrow drainage \downarrow durability \downarrow
 - Coarser RCA \rightarrow lower DOC
 - Gradation after compaction
- Permeability
 - Fine RCA > Class 5Q Aggregate > Coarse RCA > RCA+RAP > Class 6 Aggregate > Limestone
 - Porosity \uparrow K_{sat} \uparrow
 - Finer RCA \rightarrow Porosity \uparrow
- Field performance
 - Fine RCA > Coarse RCA > RCA+RAP > Limestone

Material Selection for LSSB Layers

- Large stone \rightarrow poorly graded
- Large voids \rightarrow particle reorientation
- Subgrade soil pumping & rutting
- Well graded \rightarrow less pumping & rutting

RAB Layer Design

- Thickness optimization
 - IRI & rutting
 - Alligator & longitudinal cracking
- RAB layer thickness < Limestone base layer thickness
- As thin as 4 in (instead of 12 in Limestone base)
- Minimize water-related issues
 - High absorption of RCA
 - Highly permeable subbase
 - Geosynthetics
 - > Between base/subbase
 - > Middle of base
- Gradation after compaction
- G_s and absorption \rightarrow estimate other design input parameters

LSSB Layer Design

- LSSB \rightarrow good drainage
 - Intermingling of subgrade/LSSB
 - − Drainage ↓
- LSSB thickness \rightarrow must be adequate
- Geogrid aperture size
 - Interlocking
 - Few geogrids
- Geosynthetic in the middle of LSSB
 - To improve lateral drainage
 - Not practical \rightarrow problem with staged construction
- Geosynthetic on top of LSSB
 - To improve load distribution & stability of LSSB

Thank You! QUESTIONS??

Iowa State University

University of Wisconsin-Madison

AGENCY MEMBERS

- > MnDOT
- ➤ Caltrans
- > MDOT
- > IDOT
- ≻ LRRB
- > MoDOT
- > WisDOT
- > NDDOT
- ≻ Iowa DOT
- ➢ Illinois Tollway

ASSOCIATE MEMBERS

- Aggregate & Ready Mix of MN
- Asphalt Pavement Alliance (APA)
- Braun Intertec
- ➤ Infrasense
- Diamond Surface Inc.
- Flint Hills Resources
- International Grooving & Grinding Association (IGGA)
- Midstate Reclamation & Trucking
- MN Asphalt Pavement Association
- Minnesota State University Mankato
- > National Concrete Pavement Technology Center
- Roadscanners
- University of Minnesota Duluth
- University of New Hampshire
- Mathy Construction Company
- Michigan Tech Transportation Institute (MTTI)
- University of Minnesota
- National Center for Asphalt Technology (NCAT) at Auburn University
- ➢ GSE Environmental
- ➢ Helix Steel
- Ingios Geotechnics
- > WSB
- > Cargill
- PITT Swanson Engineering
- University of California Pavement Research Center

- Collaborative Aggregates LLC
- American Engineering Testing, Inc.
- Center for Transportation Infrastructure Systems (CTIS)
- Asphalt Recycling & Reclaiming Association (ARRA)
- First State Tire Recycling
- BASF Corporation
- Upper Great Plains Transportation Institute at North Dakota State University
- ► 3M
- Pavia Systems, Inc.
- All States Materials Group
- Payne & Dolan, Inc.
- ➤ Caterpillar
- The Dow Chemical Company
- The Transtec Group
- Testquip LLC
- ➢ Hardrives, Inc.
- Husky Energy
- Asphalt Materials & Pavements Program (AMPP)
- Concrete Paving Association of MN (CPAM)
- MOBA Mobile Automation
- Geophysical Survey Systems
- Leica Geosystems
- University of St. Thomas
- ➤ Trimble