

Determining Pavement Design Criteria for Recycled Aggregate Base and Large Stone Subbase

Bora Cetin

Halil Ceylan

William Likos

Tuncer Edil

Ashley Buss

Junxing Zheng

Haluk Sinan Coban

MnDOT Project TPF-5(341)

Monthly Meeting April 2, 2020

AGENCY MEMBERS

- > MnDOT
- > Caltrans
- > MDOT
- > IDOT
- > LRRB
- > MoDOT
- > WisDOT
- > NDDOT
- > Iowa DOT
- ➤ Illinois Tollway

ASSOCIATE MEMBERS

- Aggregate & Ready Mix of MN
- Asphalt Pavement Alliance (APA)
- ➤ Braun Intertec
- Infrasense
- Diamond Surface Inc.
- ➤ Flint Hills Resources
- ➤ International Grooving & Grinding Association (IGGA)
- Midstate Reclamation & Trucking
- MN Asphalt Pavement Association
- Minnesota State University Mankato
- National Concrete Pavement Technology Center
- Roadscanners
- > University of Minnesota Duluth
- University of New Hampshire
- Mathy Construction Company
- ➤ Michigan Tech Transportation Institute (MTTI)
- ➤ University of Minnesota
- National Center for Asphalt Technology (NCAT) at Auburn University
- ➤ GSE Environmental
- ➤ Helix Steel
- Ingios Geotechnics
- > WSB
- Cargill
- > PITT Swanson Engineering
- University of California Pavement Research Center

- Collaborative Aggregates LLC
- American Engineering Testing, Inc.
- Center for Transportation Infrastructure Systems (CTIS)
- Asphalt Recycling & Reclaiming Association (ARRA)
- ➤ First State Tire Recycling
- BASF Corporation
- Upper Great Plains Transportation Institute at North Dakota State University
- > 3M
- Pavia Systems, Inc.
- All States Materials Group
- Payne & Dolan, Inc.
- > Caterpillar
- > The Dow Chemical Company
- > The Transtec Group
- > Testquip LLC
- > Hardrives, Inc.
- Husky Energy
- Asphalt Materials & Pavements Program (AMPP)
- ➤ Concrete Paving Association of MN (CPAM)
- MOBA Mobile Automation
- Geophysical Survey Systems
- ➤ Leica Geosystems
- University of St. Thomas
- > Trimble

OUTLINE

- Follow-up
- Test cells & materials
- Task 7

FOLLOW-UP

- Task 1 Literature review and recommendations
- Task 2 Tech transfer "state of practice"

- Green Completed Red In Progress
- Task 3 Construction monitoring and reporting
- Task 4 Laboratory testing
- Task 5 Performance monitoring and reporting
- Task 6 Instrumentation
- Task 7 Pavement design criteria
- Task 8 & 9 − Draft/final report

TEST CELLS

Recycled Aggregate Base				Large Stone Subbase		Large Stone Subbase with Geosynthetics				
185	186	188	189	127	227	328	428	528	628	728
3.5 in Superpave	3.5 in Superpave	3.5 in Superpave	3.5 in Superpave	3.5 in Superpave	3.5 in Superpave	3.5 in Superpave	3.5 in Superpave	3.5 in Superpave	3.5 in Superpave	3.5 in Superpave
12 in Coarse RCA	12 in Fine RCA	12 in Limestone	12 in RCA+RAP	6 in Class 6 Aggregate	6 in Class 6 Aggregate	6 in Class 5Q Aggregate	6 in Class 5Q Aggregate	6 in Class 5Q Aggregate	6 in Class 5Q Aggregate	6 in Class 5Q Aggregate
				18 in LSSB (1 lift)	18 in LSSB (1 lift)	9 in LSSB	9 in LSSB	9 in LSSB	9 in LSSB	9 in LSSB
3.5 in S. Granular Borrow	3.5 in S. Granular Borrow	3.5 in S. Granular Borrow	3.5 in S. Granular Borrow			TX	TX+GT	BX+GT	BX	Loop
Sand	Sand	Clay Loam	Clay Loam			Clay Loam	Clay Loam	Clay Loam	Clay Loam	Clay Loam
S. Granular Borrow = Select Granular Borrow						TX = Triaxial Geogrid BX = Biaxial Geogrid GT = Nonwoven Geotextile				
				Clay Loam	Clay Loam					

MATERIALS

Outline

- Compare preliminary (during construction) and long-term performance (after construction)
 - Falling weight deflectometer (FWD)
 - Rutting

Outline

• Summarize field and laboratory test results and establish correlations between laboratory and field test results

Laboratory Tests

Field Tests

Index properties

- Classification of the materials
- Specific gravity (G_s) and absorption
- Proctor compaction
- Asphalt binder & residual mortar contents
- Water repellency

Saturated and unsaturated properties

- Permeability (K_{sat})
- Soil water characteristic curve (SWCC)

Stereophotography

• Particle size & shape analysis

Gyratory compaction and abrasion

• Abrasion on the particle size & shape

During construction

- Nuclear density gauge
- Dynamic cone penetrometer (DCP)
- Lightweight deflectometer (LWD)
- Gas permeameter (GPT) test
- Intelligent compaction (IC)
- Falling weight deflectometer (FWD)

After construction

- Falling weight deflectometer (FWD)
- Frost heave & thaw settlement
- Rutting
- International roughness index (IRI)
- Pavement distresses

Outline

• Develop methods to estimate stiffness and hydraulic properties

Outline

• Permeability vs. gradation

Outline

• Stiffness vs. particle shape

Outline

- Suction vs. stiffness
 - Base and subgrade materials

(Oh and Vanapalli 2018)

Outline

Materials	Compaction Characteristics	Correlation Equations	\mathbb{R}^2
RCA	Wopt (%)	-0.064 *Cu + 0.763 *Absorption(%) + 7.75	0.65
KCA	$\gamma_{dmax} (kN/m^3)$	$-0.374 *W_{opt}(\%) + 23.6$	0.83
DAD	Wopt (%)	-0.0626 *Cu - 1.349 *Absorption(%) + 9.84	0.92
RAP	$\gamma_{dmax} (kN/m^3)$	-0.289* W _{opt} (%) + 22.42	0.83

(Edil et al. 2012)

Materials	Summary Resilient Modulus (SRM) (Mpa)	Correlation Equations	R^2
RCA	SMR _{EXT}	171.646-(3.482*D ₃₀) + (22.378*Impurities %)	
	SMR _{INT}	14683.478 - (36.764*D ₃₀) - (72.719*Wopt)	0.89
RAP	SMR _{EXT}	(117.493 * D ₃₀) + (19.472 *γ _{dmax} + (27.128 * Asphalt Content(%)) - (18.510 * Absorption(%)) -427.329	
	SMR _{INT}	(-2268.783)-(285.884*Fines %)+(628.742*Asphalt content (%))+ (201.107*D ₆₀)-(483.158*G _s)-(58.243*Absorption (%))	0.99

(Edil et al. 2012)

Outline

• Analyze the effects of frost depth & number of F-T cycles

Outline

- Recommend construction specifications
 - Gradation of RCA
 - Residual mortar content
 - Unhydrated cement content
 - Absorption and hydrophilicity
 - Abrasion
 - Degree of compaction
 - Drainage properties
 - Asphalt content & hydrophobicity
 - Stress-hardening & stress-softening behaviors
 - Stresses at layer interfaces (asphalt/base & base+subbase/subgrade)
 - Thermal properties & frost penetration depth
 - Effects of geosynthetics

Outline

- AASHTOWare Pavement ME Design
 - Different thicknesses
 - Different subgrade layers (sand & clay loam)
- Recommend pavement design input values for each NRRA state per their pavement design methods

Thank You! QUESTIONS??

