Improve Material Inputs into Mechanistic Design Properties for Reclaimed HMA & Recycled Concrete Aggregate (RCA) Roadways

Principal Investigator:

Bora Cetin, Ph.D.

Co-Principal Investigator:

Tuncer Edil, Ph.D.

Research Team:

Ida Gheibi

Department of Civil and Environmental Engineering
Michigan State University

NRRA Members (Agency Partners)

- > MnDOT
- > Caltrans
- > MDOT
- > Illinois DOT
- > LRRB
- > MoDOT
- > WiscDOT
- > Iowa DOT
- Illinois Tollway

NRRA Members (Industry Partners)

- Aggregate and Ready Mix (Association of MN)
- > APA
- Braun Intertec
- > CPAM
- Diamond Surface Inc
- Flint Hills Resources
- > IGGA
- MIDSTATE (Reclamation and Trucking)
- MN Asphalt Pavement Association
- Minnesota State University
- NCP Tech Center
- Road Scanners
- University of Minnesota-Duluth
- University of New Hampshire
- > MATHY
- > 3M
- Paviasystems

- Michigan Tech
- University of Minnesota
- ➤ NCAT
- GSE Environmental
- > HELIX
- Ingios
- > WSB
- > Cargill
- > PITT Swanson Engineering
- > INFRASENSE
- Collaborative Aggregates LLC
- > American Engineering Testing, Inc.
- > CTIS
- > ARRA
- > 1st
- O-BASF
- North Dakota State University
- All States Materials Group

Pavement ME

- Requires several inputs
 - Hourly climate data, materials, location, pavement structure, traffic
- Calculates pavement performance parameters
 - Asphalt IRI, Rutting, and Longitudinal, Thermal, and Alligator Cracking
 - Concrete IRI, Transverse Cracking, Joint Faulting

Figures from:

ttp://www.aashtoware.org/Pages/default.aspx ttp://www.pavementinteractive.org/article/Rutting/ ttp://brc-amps.wikidot.com/brc-road-condition-assessment-m ttp://blackdiamondpaving.com/terms-you-should-know/

MEPDG Analysis Process

MATERIALS INPUT

MATERIALS INPUT

Range of Materials

Strength/Stiffness Parameters:

- Resilient Modulus (M_R)
- California Bearing Ratio (CBR)
- Unconfined Compressive Strength (UCS)

Index Parameters:

- Gradation Characteristics
- Absorption Content
- Binder Content
- Density
- Angularity
- Void Ratio

OBJECTIVES

1st Goal – Collection of Material Input Data

- M_R, CBR, UCS of RAP & RCA
- Index properties
 - Gradation
 - Density
 - Angularity
 - Absorption

2nd Goal – Sensitivity Analyses on Pavement Performance

Overview of Research Plan

- ➤ Task 1 Initial Memorandum on Expected Research
 Benefits and Potential Implementation Steps
- ➤ Task 2 Data Collection
- ➤ Task 3 Sensitivity Analyses
- ➤ Task 4 Final Report

Task 1 - Initial Memorandum on Expected Research

Benefits and Potential Implementation Steps

Benefit category	How?
Construction Savings	Proper Pavement Thickness Design
Operation & maintenance saving	Better Pavement Performance Prediction
Improved life-cycle cost	Proper Use of Recycled Material Use

IMPLEMENTATION

1. Final Report

- Material Database
 - M_R, CBR, UCS
 - Gradation characteristics
 - Construction guidance
- Executive summary

TASK 2 - DATA COLLECTION

List of data that will be collected:

- Index Properties
 - Gradation characteristics
 - Atterberg limits
 - Absorption
 - Binder content
 - Density
 - Void ratio
- Strength/Stiffness Properties
 - CBR
 - UCS
 - M_R
- Construction Specifications

Task 3 – Sensitivity Analyses

Normalized Sensitivity Index (NSI)

$$NSI = \frac{\left(\frac{\Delta Y}{DL}\right)}{\left(\frac{\Delta X}{X}\right)}$$

 ΔY = the change in pavement performance due to change in design input

DL = the design limit for the pavement performance

 ΔX = the change in the design input from the baseline X

X = the base line design input

Task 3 – Sensitivity Analyses

MATERIAL INPUT	TREATMENTS				
M _R of RCA & RAP	25% of the average M_R over the entire M_R database is added/subtracted from each M_R value.				
CBR and/or UCS	25% of the average CBR/UCS over the entire CBR/UCS database is added/subtracted from each CBR/UCS value.				

<u>Task 3 – Sensitivity Analyses</u> <u>Pavement Distresses Analyzed</u>

Pavement Type	Pavement Distress					
AC	IRI (in./mile)					
	Thermal Cracking (ft/mile)					
	AC Rutting (in.)					
	Total Rutting (in.)					
	Alligator Cracking (%)					
	Longitudinal Cracking (ft/mile)					
JPCP	Transverse Cracking (% slabs)					
	Joint Faulting (in.)					
	IRI (in./mile)					

Task 3 – Sensitivity Analyses

Pavement Distresses Analyzed

TR = Total Rutting

TASK 4

Draft/Final Report

SCHEDULE

Task No.	Months									
	1	2	3	4	5	6	7	8	9	10
1										
2										
3								Δ		
4										

PRODUCTS & DELIVERABLES

- Quarterly progress reports as required
- > Draft final report
- > Final report
- > Technology transfer brief
- > A copy of the executive final presentation

AGENCY ASSISTANCE

> Access to related data from agencies database (e.g. research reports and pavement design guidelines)