IOWA STATE UNIVERSITY

MICHIGAN STATE UNIVERSITY

Determining Pavement Design Criteria for Recycled Aggregate Base and Large Stone Subbase

Bora Cetin Halil Ceylan William Likos Tuncer Edil Ashley Buss Junxing Zheng

Haluk Sinan Coban

MnDOT Project TPF-5(341)

Monthly Meeting July 16, 2020

AGENCY MEMBERS

- > MnDOT
- ➤ Caltrans
- > MDOT
- > IDOT
- ≻ LRRB
- > MoDOT
- > WisDOT
- > NDDOT
- ≻ Iowa DOT
- ➤ Illinois Tollway

ASSOCIATE MEMBERS

- Aggregate & Ready Mix of MN
- Asphalt Pavement Alliance (APA)
- Braun Intertec
- ➤ Infrasense
- Diamond Surface Inc.
- Flint Hills Resources
- International Grooving & Grinding Association (IGGA)
- Midstate Reclamation & Trucking
- MN Asphalt Pavement Association
- Minnesota State University Mankato
- > National Concrete Pavement Technology Center
- Roadscanners
- University of Minnesota Duluth
- University of New Hampshire
- Mathy Construction Company
- Michigan Tech Transportation Institute (MTTI)
- University of Minnesota
- National Center for Asphalt Technology (NCAT) at Auburn University
- ➢ GSE Environmental
- ➢ Helix Steel
- Ingios Geotechnics
- > WSB
- > Cargill
- > PITT Swanson Engineering
- University of California Pavement Research Center

- Collaborative Aggregates LLC
- American Engineering Testing, Inc.
- Center for Transportation Infrastructure Systems (CTIS)
- Asphalt Recycling & Reclaiming Association (ARRA)
- First State Tire Recycling
- BASF Corporation
- Upper Great Plains Transportation Institute at North Dakota State University
- ► 3M
- Pavia Systems, Inc.
- All States Materials Group
- Payne & Dolan, Inc.
- ➤ Caterpillar
- > The Dow Chemical Company
- The Transtec Group
- Testquip LLC
- ➢ Hardrives, Inc.
- Husky Energy
- Asphalt Materials & Pavements Program (AMPP)
- Concrete Paving Association of MN (CPAM)
- MOBA Mobile Automation
- Geophysical Survey Systems
- Leica Geosystems
- University of St. Thomas
- > Trimble

OUTLINE

- Follow-up
- Test cells & materials
- Task 7
 - Estimation of laboratory test results
 - Estimation of field test results
 - Pavement ME performance models
 - Conclusions & Recommendations
 - Material selection
 - Recycled aggregate base design
 - LSSB design

FOLLOW-UP

- Task 1 Literature review and recommendations
- Task 2 Tech transfer "state of practice"
- Task 3 Construction monitoring and reporting
- Task 4 Laboratory testing
- Task 5 Performance monitoring and reporting
- Task 6 Instrumentation
- Task 7 Pavement design criteria
- Task 8 & 9 Draft/final report

Green – Completed Red – In Progress

TEST CELLS

	Recycled Ag	gregate Base		Large Stor	ne Subbase	Large Stone Subbase with Geosynthetics									
185	186	188	189	127	227	328	428	528	628	728					
3.5 in Superpave	3.5 in Superpave	3.5 in Superpave	3.5 in Superpave	3.5 in Superpave	3.5 in Superpave	3.5 in Superpave	3.5 in Superpave	3.5 in Superpave	3.5 in Superpave	3.5 in Superpave					
12 in	12 in	12 in	12 in	6 in Class 6 Aggregate	6 in Class 6 Aggregate	6 in Class 5Q Aggregate	6 in Class 5Q Aggregate	6 in Class 5Q Aggregate	6 in Class 5Q Aggregate	6 in Class 5Q Aggregate					
Coarse RCA	Fine RCA	Limestone	RCA+RAP			9 in LSSB	9 in LSSB	9 in LSSB	9 in LSSB	9 in LSSB					
3.5 in S. Granular Borrow	3.5 in S. Granular Borrow	3.5 in S. Granular Borrow	3.5 in S. Granular Borrow	18 in LSSB (1 lift)	18 in LSSB (1 lift)	18 in LSSB (1 lift)	18 in LSSB (1 lift)	LSSB (1 lift)	LSSB (1 lift)	18 in LSSB (1 lift)	TX	TX+GT	BX+GT	BX	
Sand	Sand	Clay Loam	Clay Loam			Clay Loam	Clay Loam	Clay Loam	Clay Loam	Clay Loam					
S. Granular B	Borrow = Sel	ect Granular	Borrow			TX = Triaxia BX = Biaxia	al Geogrid Il Geogrid								
				Clay Loam	Clay Loam	GT = Nonwo									

MATERIALS

Iowa State University

University of Wisconsin-Madison

- Estimation of laboratory & field test results
 - Forward stepwise regression to find correlations
 - If p-value < 0.05 (alpha) parameter is statistically significant
 - If significance F < 0.05 correlation is statistically significant
 - When no correlation can be found \rightarrow alpha = 0.1
 - No limitation for the p-value of the intercept

Corrected OMC (%)	Combined Absorption (%)	Fine Apparent G _s				
9.48	6.97	2.61				
11.07	8.65	2.60				
6.28	1.72	2.80				
9.97	4.34	2.42				
8.26	3.86	2.55				
9.63	6.32	2.59				
SUMMARY OUTPUT						
Regression Statistics						
Multiple R	0.981681406	-				
R Square	0.964					
Adjusted R Square	0.939497304					
Standard Error	0.407546868					
Observations	6	-				
ANOVA						_
	df	SS	MS	F	Significance F	
Regression	2	13.22791906	6.613959529	39.82047289	0.006916541	
Residual	3	0.498283349	0.16609445			
Total	5	13.72620241				-
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95% Lower 95.0% Upper 95.0%
Intercept	22.0333	4.224747406	5.215303304	0.013706983	8.588307332	35.478371 8.58830733 35.4783709
Combined Absorption (%)	0.5026	0.07687707	6.537889455	0.00727342	0.257956636	0.7472709 0.25795664 0.74727093
Fine Apparent Gs	-6.0058	1.572277974	-3.819824097	0.031577075	-11.00951552	-1.002135 -11.0095155 -1.00213506

Iowa State University

University of Wisconsin-Madison

• Estimation of laboratory test results

Corrected OMC (%)

Equation	R ²	Adjusted R ²	Standard Error	Obser- vations	P- value	Signifi- cance F
0.5026*Combined Absorption (%) - 6.0058 *Fine Apparent G _s + 22.0333	0.964	0.939	0.4075	6	< 0.05	< 0.05
-9.1895*Combined OD G _s + 30.5418	0.924	0.905	0.5102	6	< 0.05	< 0.05
-8.1230*Fine SSD G _s + 28.2286	0.890	0.862	0.6149	6	< 0.05	< 0.05
-5.9208*Fine OD G _s + 22.1405	0.882	0.853	0.6359	6	< 0.05	< 0.05
-11.7635*Combined SSD G _s + 37.9200	0.880	0.850	0.6415	6	< 0.05	< 0.05
0.5912*Combined Absorption (%) + 5.9768	0.787	0.734	0.8547	6	< 0.05	< 0.05

OMC = optimum moisture content

OD G_s = oven-dry specific gravity

SSD G_s = saturated-surface-dry specific gravity

• Estimation of laboratory test results

Corrected MDD (kN/m³)

Equation	D ²	Adjusted	Standard	Obser-	P-	Signifi-
Equation	K-	\mathbf{R}^2	Error	vations	value	cance F
5.4563*Combined OD G _s - 0.4420*Asphalt Binder Content - Ignition (%) + 8.7018	0.994	0.990	0.1156	6	< 0.05	< 0.05
6.4234*Combined OD G _s + 0.0551 *D ₆₀ (mm) + 4.8986	0.989	0.981	0.1561	6	< 0.05	< 0.05
3.2017*Fine OD G _s - 0.7433*Asphalt Binder Content - Ignition (%) + 15.1387	0.989	0.981	0.1585	6	< 0.05	< 0.05
4.2779*Fine OD G _s + 0.1074*D ₆₀ (mm) + 10.0510	0.977	0.961	0.2258	6	< 0.05	< 0.05
3.9122*Fine OD G _s + 0.6678*Gravel-to-Sand Ratio + 10.8568	0.970	0.950	0.2555	6	< 0.05	< 0.05
4.3220*Fine OD G _s + $0.1350*$ D ₅₀ (mm) + 10.0800	0.968	0.947	0.2634	6	< 0.05	< 0.05
8.5169*Combined SSD G _s - 0.5435	0.964	0.954	0.2448	6	< 0.05	< 0.05
6.4424*Combined OD G _s + 5.2901	0.949	0.936	0.2904	6	< 0.05	< 0.05
-0.6590*Corrected OMC (%) + 26.3182	0.907	0.884	0.3909	6	< 0.05	< 0.05
3.9711*Fine OD G _s + 11.5752	0.829	0.786	0.5303	6	< 0.05	< 0.05
12.4780*Coarse SSD G _s - 11.5034	0.664	0.580	0.7427	6	< 0.05	< 0.05

MDD = maximum dry density

OMC = optimum moisture content

OD G_s = oven-dry specific gravity

SSD G_s = saturated-surface-dry specific gravity

- Estimation of laboratory test results
 - K_{sat} (cm/sec)

Equation	R ²	Adjusted R ²	Standard Error	Obser- vations	P- value	Signifi- cance F
0.002991655*Void Ratio - Based on Apparent G _s - 0.000136146*Fine Apparent G _s - 0.000221884	0.999	0.998	7.16E-06	6	< 0.05	< 0.05
0.002534332*Void Ratio - Based on Apparent G _s + 1.77713E-05*Corrected OMC (%) - 0.000611369	0.998	0.996	8.98E-06	6	< 0.05	< 0.05
$\begin{array}{l} -0.000189822* \mbox{Corrected MDD (kN/m^3)} + 0.001357674* \mbox{Combined Apparent } G_s \\ + \ 0.000522604 \end{array}$	0.995	0.992	1.25E-05	6	< 0.05	< 0.05
0.00508301*Porosity - Based on Apparent G _s - 0.00084454	0.988	0.985	1.75E-05	6	< 0.05	< 0.05
0.003073*Void Ratio - Based on Apparent G _s - 0.000598	0.986	0.982	1.90E-05	6	< 0.05	< 0.05
$-0.000182804*Corrected MDD (kN/m3) + 0.000933374*Fine Apparent G_{s} + 0.001538639$	0.975	0.958	2.95E-05	6	< 0.05	< 0.05
$0.016696071 * e^{3}/(1+e) - 4.0528 * E-05$	0.956	0.945	3.36E-05	6	< 0.05	< 0.05
5.5193E-05*Combined Absorption (%) - 4.5053E-05	0.914	0.892	4.71E-05	6	< 0.05	< 0.05
7.80017E-05*Corrected OMC (%) - 0.000463028	0.810	0.763	6.99E-05	6	< 0.05	< 0.05
2.90566E-05*Fine Absorption (%) + 3.46191E-05	0.745	0.682	8.10E-05	6	< 0.05	< 0.05
-0.000106*Corrected MDD (kN/m ³) + 0.002409	0.722	0.653	8.46E-05	6	< 0.05	< 0.05

 K_{sat} = saturated hydraulic conductivity

MDD = maximum dry density

OMC = optimum moisture content

OD G_s = oven-dry specific gravity

SSD G_s = saturated-surface-dry specific gravity

e = void ratio

• Estimation of laboratory test results

- Residual VWC (SWCC)

Equation	R ²	Adjusted R ²	Standard Error	Obser- vations	P- value	Signifi-cance F
-0.0100*Corrected OMC (%) + 0.1127	0.554	0.442	0.0167	6	0.05	0.05

- Saturated VWC (SWCC)

Equation		Adjusted	Standard	Obser-	P-	Signifi-
Equation	N	\mathbf{R}^2	Error	vations	value	cance F
-0.13823*Combined OD G_s + 0.021261* C_c + 0.567179	0.907	0.845	0.0106	6	< 0.05	< 0.05
0.027149*Coarse Absorption (%) + 0.184503	0.903	0.879	0.0094	6	< 0.05	< 0.05
0.001841*Residual Mortar Content (%) + 0.231506	0.766	0.707	0.0146	6	< 0.05	< 0.05
-0.24131*Coarse OD G _s + 0.871849	0.697	0.621	0.0166	6	< 0.05	< 0.05
-0.0848*Fine OD G _s + 0.463185	0.681	0.602	0.0170	6	< 0.05	< 0.05

VWC = volumetric water content

SWCC = soil-water characteristic curve

OMC = optimum moisture content

OD G_s = oven-dry specific gravity

- Estimation of laboratory test results
 - Air entry pressure (SWCC)

Equation	R ²	Adjusted R ²	Standard Error	Obser- vations	P- value	Signifi- cance F
48.5469*Void Ratio - Based on Apparent G_s - 2.2888*Coarse Absorption (%) - 0.1958*Fines (%) - 1.2909	0.997	0.991	0.149	6	< 0.05	< 0.05
78.8067*Porosity - Based on Apparent G _s - 1.4732*Coarse Absorption (%) - 9.0649	0.966	0.944	0.378	6	< 0.05	< 0.05
46.0499*Void Ratio - Based on Apparent G _s - 1.3624*Coarse Absorption (%) - 5.1737	0.960	0.934	0.409	6	< 0.05	< 0.05
31.5864*Void Ratio - Based on Apparent G _s - 0.6861*D ₃₀ (mm) - 4.7364	0.933	0.889	0.532	6	< 0.05	< 0.05
52.2180*Porosity - Based on Apparent G _s - 0.7107*D ₃₀ (mm) - 7.2297	0.925	0.875	0.564	6	< 0.05	< 0.05

VWC = volumetric water content

SWCC = soil-water characteristic curve

- Estimation of laboratory test results
 - M_R (MPa)

Equation	R ²	Adjusted R ²	Standard Error	Obser- vations	P- value	Signifi- cance F
0.9121*Residual Mortar Content (%) + 95.0309	0.999	0.998	0.5105	4	< 0.05	< 0.05
13.9035*Coarse Absorption (%) + 69.9919	0.993	0.990	1.3203	4	< 0.05	< 0.05
5.4794*OMC (%) + 61.4114	0.981	0.972	2.1925	4	< 0.05	< 0.05
-39.5364*Fine OD G _s + 201.5303	0.970	0.954	2.7988	4	< 0.05	< 0.05
-118.4860*Coarse OD G _s + 409.3854	0.946	0.919	3.7272	4	< 0.05	< 0.05
-8.4659*MDD (kN/m ³) + 284.6113	0.941	0.912	3.8926	4	< 0.05	< 0.05
-143.1262*Coarse SSD G _s + 482.0049	0.917	0.876	4.6148	4	< 0.05	< 0.05
2.4855*Fine Absorption (%) + 95.5617	0.917	0.876	4.6171	4	< 0.05	< 0.05
-56.4223*Combined OD G _s + 246.2814	0.907	0.861	4.8854	4	< 0.05	< 0.05

 M_R = resilient modulus

MDD = maximum dry density

OMC = optimum moisture content

OD G_s = oven-dry specific gravity

SSD G_s = saturated-surface-dry specific gravity

• Estimation of laboratory test results

 $M_{R} = k_{1}P_{a}\left(\frac{\theta}{P_{a}}\right)^{k_{2}}\left(\frac{\tau_{oct}}{P_{a}} + 1\right)^{k_{3}}$

Equation		Adjusted	Standard	Obser-	Р-	Signifi-
Equation	N	\mathbf{R}^2	Error	vations	value	cance F
11.6644*Fine Absorption (%) + 16.1631*D ₃₀ (mm) + 731.5558	1.000	1.000	0.7345	4	< 0.05	< 0.05
83.7374*Coarse Absorption (%) + 153.4469*Fine Apparent G _s + 173.1523	1.000	1.000	0.2597	4	< 0.05	< 0.05
86.6269*Coarse Absorption (%) + 227.7959*Combined Apparent G _s - 39.0482	1.000	1.000	0.2963	4	< 0.05	< 0.05
13.4873*Fine Absorption (%) + 738.4029	0.962	0.944	16.5059	4	< 0.05	< 0.05
70.6962*Coarse Absorption (%) + 614.7812	0.915	0.872	24.8015	4	< 0.05	< 0.05

– k₂

- k₁

Equation		Adjusted	Standard	Obser-	Р-	Signifi-
Equation	N	\mathbf{R}^2	Error	vations	value	cance F
-0.5822*Combined Apparent G_s - 0.0136*Corrected MDD (kN/m ³) + 2.250	1.000	1.000	0.0007	4	< 0.05	< 0.05
-0.5946*Combined Apparent G _s + 0.0092*Corrected OMC (%) + 1.9211	1.000	1.000	0.0007	4	< 0.05	< 0.05
-0.4716*Fine Apparent G_s + 0.0061*Combined Absorption (%) + 1.6280	1.000	1.000	0.0003	4	< 0.05	< 0.05
-0.7294*Combined Apparent G _s + 2.3626	0.980	0.969	0.0142	4	< 0.05	< 0.05
-0.5161*Fine Apparent G _s + 1.7773	0.955	0.933	0.0211	4	< 0.05	< 0.05

Equation	R ²	Adjusted R ²	Standard Error	Obser- vations	P- value	Signifi- cance F
0.2190*Fine Apparent G _s + 0.0048*Combined Absorption (%) - 0.6708	1.000	1.000	0.0002	4	< 0.05	< 0.05
$0.5910*$ Fine Apparent $G_s + 0.7889*k_2 - 1.9552$	1.000	1.000	0.0000	4	< 0.05	< 0.05

- Estimation of laboratory test results
 - Abrasion

University of Wisconsin-Madison

• Estimation of laboratory test results

Abrasion 2.5 2 Breakage Potential (B_p) 1.5 1 0.5 0 Coarse Fine Lime-RCA+ Class 6 Class 5Q RCA RCA stone RAP Aggregate Aggregate Material 0.25 After 100 Gyrations After 300 Gyrations fter 500 Gyratio 0.2 Total Breakage (B,) 0.15 0.1 0.05 0 Coarse Fine RCA+ Class 6 Class 5Q Lime-RCA RAP RCA Aggregate Aggregate stone

Iowa State University

Material

University of Wisconsin-Madison

• Estimation of laboratory test results

- Relative breakage (B_r) after 100 gyrations

Equation		Adjusted R ²	Standard Error	Obser- vations	P- value	Signifi- cance F
0.0005*Residual Mortar Content (%) + 0.0042*Percent Less Rounded by Number (%) - 0.5 - 0.0281	0.964	0.940	0.0027	6	< 0.05	< 0.05
0.0007*Residual Mortar Content (%) - 0.5216*Median Roundness + 0.3519	0.939	0.898	0.0036	6	0.05	< 0.05
0.0008*Residual Mortar Content (%) + 0.0096	0.762	0.702	0.0061	6	< 0.05	< 0.05
0.0067*Percent Less Rounded by Number (%) - 0.5 - 0.0407	0.685	0.607	0.0070	6	< 0.05	< 0.05

Iowa State University

- Estimation of laboratory test results
 - B_r after 300 gyrations

Equation	D ²	Adjusted Standard		Obser-	P-	Signifi-cance
Equation		\mathbf{R}^2	Error	vations	value	F
0.0009*Residual Mortar Content (%) - 0.9992*Median Roundness + 0.6665	0.980	0.967	0.0028	6	< 0.05	< 0.05
0.0009*Residual Mortar Content (%) + 0.0033*Percent Less Rounded by Number (%) - 0.7 - 0.2066	0.962	0.936	0.0039	6	< 0.05	< 0.05
0.0006*Residual Mortar Content (%) + 0.0066*Percent Less Rounded by Number (%) - 0.5 - 0.0485	0.904	0.840	0.0062	6	0.05 < p < 0.1	< 0.05
0.0095*Percent Less Rounded by Number (%) - 0.5 - 0.0630	0.714	0.643	0.0092	6	< 0.05	< 0.05
0.0010*Residual Mortar Content (%) + 0.0109	0.643	0.554	0.0103	6	0.05	0.05

- B_r after 500 gyrations

Equation		Adjusted R ²	Standard Error	Obser- vations	P- value	Signifi- cance F
0.0009*Residual Mortar Content (%) + 0.0083*Percent Less Rounded by Number (%) - 0.5 - 0.0601	0.945	0.908	0.0064	6	< 0.05	< 0.05
0.0014*Residual Mortar Content (%) - 1.0793*Median Roundness + 0.7221	0.938	0.897	0.0067	6	< 0.05	< 0.05
0.0014*Residual Mortar Content (%) + 0.0035*Percent Less Rounded by Number (%) - 0.7 - 0.2165	0.919	0.864	0.0077	6	0.05 < p < 0.1	< 0.05
0.0014*Residual Mortar Content (%) + 0.0139	0.726	0.657	0.0123	6	< 0.05	< 0.05
0.0128*Percent Less Rounded by Number (%) - 0.5 - 0.0827	0.694	0.618	0.0130	6	< 0.05	< 0.05

- Estimation of field test results
 - Base DCPI (mm/blow)

Equation	\mathbf{R}^2	Adjusted R ²	Standard Error	Obser- vations	P- value	Signifi- cance F
-1.6462*Median NDG Dry Density (kN/m^3) + 11.3118*Combined OD G _s + 13.2990	0.634	0.542	0.9087	11	< 0.05	< 0.05
-0.2650*Median Relative MDD (%) + 33.2674	0.558	0.509	0.9406	11	< 0.05	< 0.05

- Base CBR (%)

Equation		Adjusted	Standard	Obser-	P-	Signifi-
		R ²	Error	vations	value	cance F
0.8407*Median Relative MDD (%) - 51.3895	0.529	0.476	3.1683	11	< 0.05	< 0.05

DCPI = dynamic cone penetration index

NDG = nuclear density gauge

MDD = maximum dry density

OD G_s = oven-dry specific gravity

CBR (%)=
$$\frac{292}{\text{DCP}^{1.12}}$$
 for DCP in mm/blow (ASTM D6951)

- Estimation of field test results
 - Base E_{LWD} (MPa)

Equation	R ²	Adjusted R ²	Standard Error	Obser- vations	P- value	Signifi- cance F
31.7980*Median NDG Dry Density (kN/m ³) - 217.5777*Combined OD G _s - 14.4437	0.808	0.760	11.2475	11	< 0.05	< 0.05
27.6348*Median NDG Dry Density (kN/m ³) - 240.6255*Combined SDD G _s + 145.4250	0.734	0.667	13.2569	11	< 0.05	< 0.05
34.2796*Median NDG Dry Density (kN/m ³) - 144.5733*Fine OD G _s - 251.1844	0.731	0.663	13.3342	11	< 0.05	< 0.05
33.7399*Median NDG Dry Density (kN/m ³) - 198.3377*Fine SSD G _s - 92.1880	0.724	0.654	13.5074	11	< 0.05	< 0.05
5.1192*Median Relative MDD (%) - 398.1386	0.712	0.680	13.0063	11	< 0.05	< 0.05
24.4016*Median NDG Dry Density (kN/m ³) - 9.7645*Combined Absorption (%) - 435.6365	0.639	0.549	15.4377	11	< 0.05	< 0.05
-13.2604*Median DCPI (mm/blow) + 189.5575	0.600	0.556	15.3116	11	< 0.05	< 0.05
4.0215*Median CBR (%) - 32.8065	0.587	0.541	15.5645	11	< 0.05	< 0.05

 E_{LWD} = elastic modulus obtained from light weight deflectometer

NDG = nuclear density gauge

DCPI = dynamic cone penetration index

MDD = maximum dry density

OD G_s = oven-dry specific gravity

SSD G_s = saturated-surface-dry specific gravity

• Estimation of field test results

- Estimation of field test results
 - Base E_{FWD} (MPa)

Equation	R ²	Adjusted R ²	Standard Error	Obser- vations	P- value	Signifi- cance F
-58.3327*D ₃₀ (mm) + 30.1898*Fine Absorption (%) - 37.5641*Corrected OMC (%) + 329.4163	0.971	0.958	12.5182	11	< 0.05	< 0.05
2.2010*Median E _{LWD} (MPa) + 20.8064*Combined Absorption (%) - 21.8024*Median NDG Moisture Content (%) - 30.8626	0.954	0.935	15.6985	11	< 0.05	< 0.05
-40.4818*D ₃₀ (mm) + 21.5511*Fine Absorption (%) + 31.0942*Median NDG Dry Density (kN/m ³) - 563.7491	0.946	0.923	17.0707	11	< 0.05	< 0.05
$2.2769*$ Median E_{LWD} (MPa) + 11.8182*Combined Absorption (%) - 1.8902*Median Relative OMC (%) + 4.5147	0.944	0.920	17.3700	11	< 0.05	< 0.05
$1.8589*$ Median E_{LWD} (MPa) + 16.4004*Combined Absorption (%) - 165.2143* D_{10} (mm) - 86.5880	0.939	0.913	18.1121	11	< 0.05	< 0.05
2.4732*Median E _{LWD} (MPa) + 9.7178*Combined Absorption (%) - 136.4322	0.889	0.861	22.8708	11	< 0.05	< 0.05
2.3858*Median E _{LWD} (MPa) - 76.4845	0.798	0.776	29.0421	11	< 0.05	< 0.05
16.1040*Median Relative MDD (%) + 10.1868*Fine Absorption (%) - 1461.9277	0.773	0.716	32.7063	11	< 0.05	< 0.05
10.6542*Median CBR (%) - 181.6171	0.578	0.531	42.0154	11	< 0.05	< 0.05
-34.4403*Median DCPI (mm/blow) + 401.2251	0.568	0.520	42.5059	11	< 0.05	< 0.05
11.7122*Median Relative MDD (%) - 980.6099	0.522	0.469	44.6924	11	< 0.05	< 0.05

 E_{FWD} = elastic modulus obtained from falling weight deflectometer

 E_{LWD} = elastic modulus obtained from light weight deflectometer

NDG = nuclear density gauge

DCPI = dynamic cone penetration index

• Estimation of field test results

- Estimation of field test results
 - Base E_{FWD} (MPa)

- Estimation of field test results
 - Base M_R (MPa) under 69 kPa (10 psi) loading

Equation	R ²	Adjusted	Standard Error	Obser-	P-	Signifi-
1.0252*Median E = (MDe) + 60.5626	0.000	R	EFFOF			
1.0238* Median E _{FWD} (MPa) + 69.5080	0.909	0.899	20.9284	11	< 0.05	< 0.05
2.5583*Median E _{LWD} (MPa) - 16.5596	0.793	0.771	31.6165	11	< 0.05	< 0.05
16.8683*Median Relative MDD (%) + 10.4512*Fine Absorption (%) - 1461.9308	0.731	0.663	38.2853	11	< 0.05	< 0.05
-35.2625*Median DCPI (mm/blow) + 480.5413	0.515	0.461	48.4612	11	< 0.05	< 0.05
12.3625*Median Relative MDD (%) - 968.1201	0.503	0.448	49.0357	11	< 0.05	< 0.05
10.5220*Median CBR (%) - 106.4179	0.487	0.430	49.8141	11	< 0.05	< 0.05

 M_R = field resilient modulus obtained from intelligent compaction

 E_{FWD} = elastic modulus obtained from falling weight deflectometer

 E_{LWD} = elastic modulus obtained from light weight deflectometer

DCPI = dynamic cone penetration index

- Estimation of field test results
 - Base M_R (MPa) under 69 kPa (10 psi) loading

- Estimation of field test results
 - Base M_R (MPa) under 69 kPa (10 psi) loading

- Estimation of field test results
 - Base M_R (MPa) under 69 kPa (10 psi) loading

- Pavement ME performance models
 - General information
 - Design life 20 years
 - Construction/traffic open dates actual dates (August 2017/September 2017)
 - Initial IRI 63 in/mile
 - Terminal IRI 170 in/mile
 - AC bottom-up fatigue cracking 25% lane area
 - AC thermal cracking 1000 ft/mile
 - AC top-down fatigue cracking 2000 ft/mile
 - Permanent deformation AC only 0.25 in
 - Permanent deformation total pavement 0.75 in
 - 90% reliability
 - Climatic parameters and regional information
 - Location MnROAD
 - Water table depth 10 ft

Iowa State University

University of Wisconsin-Madison

- Pavement ME performance models
 - Traffic information
 - Operational speed 50 mph
 - Growth factor 3% (linear)
 - TTC4 Level 3 default vehicle distribution
 - Traffic levels
 - 100 AADTT
 - 500 AADTT
 - 1,000 AADTT
 - 7,500 AADTT
 - 25,000 AADTT

Donomotor		Low Traffic		Medium Traffic	High Traffic
rarameter	100 AADTT	500 AADTT	1,000 AADTT	7,500 AADTT	25,000 AADTT
Number of Lanes in Design Direction	1	2	2	3	3
Percent of Trucks in Design Direction (%)	50	50	50	50	50
Percent of Trucks in Design Lane (%)	100	75	75	55	50
Operational Speed (mph)	50	50	50	50	50
				(N	ICHRP 1-47)

TTC = truck traffic classification AADTT = average annual daily truck traffic

Iowa State University

University of Wisconsin-Madison

- Pavement ME performance models
 - Recycled aggregate base group
 - Base layer thickness
 - o 12 in (original thickness)
 - $\circ \ 10 \text{ in}$
 - $\circ 8 in$
 - \circ 6 in
 - \circ 4 in
 - Subgrade types
 - Sand subgrade
 - Clay loam subgrade

Recycled Aggregate Base									
185	186	188	189						
3.5 in	3.5 in	3.5 in	3.5 in						
Asphalt	Asphalt	Asphalt	Asphalt						
12 in Coarse RCA	12 in Fine RCA	12 in Limestone	12 in RCA+RAP						
3.5 in	3.5 in	3.5 in	3.5 in						
S. Granular	S. Granular	S. Granular	S. Granular						
Borrow	Borrow	Borrow	Borrow						
Sand	Sand	Clay Loam	Clay Loam						

Iowa State University

University of Wisconsin-Madison

• Pavement ME performance models

- Relative base layer thickness - IRI

Iowa State University

University of Wisconsin-Madison

Pavement ME performance models - Relative base layer thickness - rutting - 50 Sand Subgrade 8 in 12 in Ĵ. 4 in 1.000 AADTT 6 in 10 in Threshold - -40 Total Rut Depth (mm) 1.5 30 20 0.5 10 70 Sand Subgrade 12 in 4 in 8 in 0 0 1,000 AADTT Coarse RCA Fine RCA RCA+RAP Limestone 6 in 10 in Design Life 60 _ Pavement Age at Failure - Total Rut Depth Base Layer Aggregate 50 40 30 20 10 0 Coarse RCA Fine RCA RCA+RAP Limestone Base Layer Aggregate

Total Rut Depth (in)

University of Wisconsin-Madison

- Pavement ME performance models
 - Relative base layer thickness alligator cracking

- Pavement ME performance models
 - Relative base layer thickness longitudinal cracking

- Pavement ME performance models
 - Relative base layer thickness summary

		Recycled Aggregate Base Layer Thickness Alternative to 12 in Limestone (in)											
	Alternative Material	Based	on IRI	Based on	Nutting	Based on Allig	Based on Longitudinal Cracking						
100 AADTT		Sand Subgrade	Clay Subgrade	Sand Subgrade	Clay Subgrade	Sand Subgrade	Clay Subgrade	Sand Subgrade					
	Coarse RCA	12	10	10	6	4	4	6					
	Fine RCA	10	6	10	4	4	4	6					
	RCA+RAP	10	4	10	4	4	4	8					

		Recycled Aggregate Base Layer Thickness Alternative to 12 in Limestone (in)											
	Alternative Material	Based on IRI		Based on	Rutting	Based on Allig	Based on Longitudinal Cracking						
500 AADTT		Sand Subgrade	Clay Subgrade	Sand Subgrade	Clay Subgrade	Sand Subgrade	Clay Subgrade	Sand Subgrade					
	Coarse RCA	12	8	10	6	4	4	6					
	Fine RCA	8	6	10	4	4	4	6					
	RCA+RAP	8	6	10	4	4	4	8					

		Rec	Recycled Aggregate Base Layer Thickness Alternative to 12 in Limestone (in)						
1.000	Alternative Material	Based	on IRI	Based on	Rutting	Based on Allig	Based on Longitudinal Cracking		
AADTT		Sand Subgrade	Clay Subgrade	Sand Subgrade	Clay Subgrade	Sand Subgrade	Clay Subgrade	Sand Subgrade	
	Coarse RCA	8	6	10	6	4	4	6	
	Fine RCA	6	6	10	4	4	4	6	
	RCA+RAP	6	4	10	4	4	4	8	

Iowa State University

- Pavement ME performance models
 - LSSB groups
 - LSSB thickness
 - 18 in (original thickness)
 - o 15 in
 - 12 in
 - \circ 9 in (original thickness)
 - LSSB M_R
 - o 10,000 psi (69 MPa)
 - o 30,000 psi (207 MPa)
 - o 50,000 psi (345 MPa)
 - Base layer type
 - Class 6 aggregate
 - Class 5Q aggregate
 - Subgrade type
 - Clay loam subgrade

Large Stor	ne Subbase]	Geosynthetics	8		
127	227	328 428		528	628	728
3.5 in	3.5 in	3.5 in	3.5 in	3.5 in	3.5 in	3.5 in
Asphalt	Asphalt	Asphalt	Asphalt	Asphalt	Asphalt	Asphalt
6 in	6 in	6 in	6 in	6 in	6 in	6 in
Class 6	Class 6	Class 5Q	Class 5Q	Class 5Q	Class 5Q	Class 5Q
Aggregate	Aggregate	Aggregate	Aggregate	Aggregate	Aggregate	Aggregate
18 in LSSB (1 lift)	18 in LSSB (1 lift)	9 in LSSB TX	9 in LSSB TX+GT	9 in LSSB BX+GT	9 in LSSB BX	9 in LSSB
		Clay Loam	Clay Loam	Clay Loam	Clay Loam	Clay Loam
Clay Loam	Clay Loam					

University of Wisconsin-Madison

- Pavement ME performance models
 - Large stone subbase groups
 - Problems
 - Lack of information for LSSB (MR, LL, PI, MDD, K_{sat}, OMC)
 - No geosynthetic application in Pavement ME
 - Lower field degree of compaction for aggregate base layers

- Pavement ME performance models
 - Effect of LSSB thickness
 - Thickness \uparrow IRI \leftrightarrow pavement age at alligator failure \leftrightarrow

- Pavement ME performance models
 - Effect of LSSB thickness
 - Thickness ↑ rutting ↓ pavement age at rutting ↑ [not for 10,000 psi (69 MPa)]

- Pavement ME performance models
 - Effect of LSSB thickness
 - Thickness \uparrow alligator cracking \uparrow pavement age at alligator failure \leftrightarrow

- Material selection for aggregate base layers
 - Water absorption capacity
 - Fine RCA > coarse RCA > class 5Q aggregate > RCA+RAP > class 6 aggregate > limestone
 - Water content ↑ frost heave & thaw settlement ↑ F-T durability ↓
 - Mixing RAP with RCA to reduce hydrophilicity
 - Abrasion
 - Granularity ↑ breakage potential ↑
 - Granularity \uparrow + residual mortar content \uparrow + roundness \downarrow total breakage \uparrow
 - Class 5Q aggregate > coarse RCA > fine RCA > class 6 aggregate > RCA+RAP > limestone
 - Abrasion ↑ permeability ↓
 - Abrasion ↑ unhydrated cement content ↑ tufa formation ↑
 - Lower degree of compaction to avoid excessive RCA abrasion
 - Gradation characteristics after laboratory compaction

- Material selection for aggregate base layers
 - Permeability
 - Fine RCA > class 5Q aggregate > coarse RCA > RCA+RAP > class 6 aggregate > limestone
 - Porosity ↑ permeability ↑
 - Laboratory M_R
 - Coarse RCA > fine RCA > RCA+RAP > limestone
 - Longer curing period
 - Standard 7-day curing
 - o Standard 28-day curing
 - Accelerated 7-day curing at 105°F to simulate 28-day curing

- Material selection for aggregate base layers
 - Based on Tasks 5 & 6, the following material selection was recommended:
 - 1. Fine RCA
 - 2. Coarse RCA
 - 3. RCA+RAP
 - 4. Limestone

	Recycled Ag	gregate Base	
185	186	188	189
3.5 in	3.5 in	3.5 in	3.5 in
Asphalt	Asphalt	Asphalt	Asphalt
12 in Coarse RCA	12 in Fine RCA	12 in Limestone	12 in RCA+RAP
3.5 in	3.5 in	3.5 in	3.5 in
S. Granular	S. Granular	S. Granular	S. Granular
Borrow	Borrow	Borrow	Borrow
Sand	Sand	Clay Loam	Clay Loam

University of Wisconsin-Madison

- Recycled aggregate base design general
 - RCA base layers lower thickness than limestone
 - Drainage improvement for RCA base layers due to high absorption
 - More permeable subbase layer
 - Geosynthetic(s) between base and subbase layers

• Recycled aggregate base design - inputs

Γ	Param	eter	Coarse RCA	Fine RCA	Limestone	RCA+RAP	Class 6 Aggregate	Class 5Q Aggregate
	AASHTO Cla	assification	A-1-a	A-1-a	A-1-b	A-1-a	A-1-a	A-1-a
	Layer Thick	cness (in)	12	12	12	12	6	6
	Poisson's	Ratio	0.35	0.35	0.35	0.35	0.35	0.35
	M _R (p	osi)	18128.98	17760.86	13926.32	16487.71	16478.93 (Estimated)	18651.14 (Estimated)
Γ	LL		NA	32.7	17.9	27.4	27.4	NA
Γ	PI		NP	NP	NP	NP	NP	NP
	Corrected M	IDD (pcf)	128.6	121.7	143.2	125.8	128.5	128
	K _{sat} (ft	/hr)	3.15E-02	5.73E-02	5.74E-03	2.44E-02	2.26E-02	3.44E-02
★	Combined	OD G _s	2.25	2.17	2.66	2.28	2.35	2.28
	Corrected C	DMC (%)	9.48	11.07	6.28	9.97	8.26	9.63
		No. 200	3.42	7.11	15.06	8.55	6.27	3.24
		No. 100	5.28	10.82	20.09	12.41	9.27	4.83
		No. 60	7.59	15.01	23.80	17.17	14.58	6.84
		No. 40	11.36	21.07	27.12	24.23	23.94	10.42
		No. 20	18.15	30.56	30.49	32.57	37.10	15.76
		No. 10	26.69	43.57	35.87	43.55	49.30	22.84
	Percent	No. 4	38.27	61.68	47.72	58.95	64.94	34.11
~	Passing (%)	3/8 in	53.35	81.02	64.66	75.80	79.91	48.38
		3/4 in	75.38	99.65	94.99	99.30	98.33	76.07
		1 in	85.11	100.00	100.00	100.00	100.00	89.32
		1 1/2 in	100.00	100.00	100.00	100.00	100.00	100.00
		2 in	100.00	100.00	100.00	100.00	100.00	100.00
		2.5 in	100.00	100.00	100.00	100.00	100.00	100.00
		3 in	100.00	100.00	100.00	100.00	100.00	100.00

→ Abrasion of RCA may need to be considered. Gradation after laboratory compaction may be required.

► ASTM C127 & C128 (for G_s and absorption)

- Recycled aggregate base design inputs
 - Estimation of M_R (1-day curing) (MPa)

Equation	R ²	Adjusted	Standard Error	Obser-	P-	Signifi-
0.9121*Residual Mortar Content (%) + 95.0309 (may not be practical)	0 999	N	0.5105			
13 9035*Coarse Absorption $(\%) + 69 9919$	0.993	0.990	1 3203	4	< 0.05	< 0.05
5.4794*OMC (%) + 61.4114	0.981	0.972	2.1925	4	< 0.05	< 0.05
-39.5364*Fine OD G _s + 201.5303	0.970	0.954	2.7988	4	< 0.05	< 0.05
-118.4860*Coarse OD G _s + 409.3854	0.946	0.919	3.7272	4	< 0.05	< 0.05
-8.4659*MDD (kN/m ³) + 284.6113	0.941	0.912	3.8926	4	< 0.05	< 0.05
-143.1262*Coarse SSD G _s + 482.0049	0.917	0.876	4.6148	4	< 0.05	< 0.05
2.4855*Fine Absorption (%) + 95.5617	0.917	0.876	4.6171	4	< 0.05	< 0.05
-56.4223*Combined OD G _s + 246.2814	0.907	0.861	4.8854	4	< 0.05	< 0.05

- To consider cementation
 - Longer curing period
 - Standard 7-day curing
 - Standard 28-day curing
 - Accelerated 7-day curing at 105°F to simulate 28-day curing

- Recycled aggregate base design inputs
 - Estimation of corrected MDD (kN/m³)

Equation	R ²	Adjusted R ²	Standard Error	Obser- vations	P- value	Signifi- cance F
5.4563*Combined OD G _s - 0.4420*Asphalt Binder Content - Ignition (%) + 8.7018	0.994	0.990	0.1156	6	< 0.05	< 0.05
6.4234*Combined OD G _s + 0.0551 *D ₆₀ (mm) + 4.8986	0.989	0.981	0.1561	6	< 0.05	< 0.05
3.2017*Fine OD G _s - 0.7433*Asphalt Binder Content - Ignition (%) + 15.1387	0.989	0.981	0.1585	6	< 0.05	< 0.05
4.2779*Fine OD G _s + $0.1074*$ D ₆₀ (mm) + 10.0510	0.977	0.961	0.2258	6	< 0.05	< 0.05
3.9122*Fine OD G _s + 0.6678*Gravel-to-Sand Ratio + 10.8568	0.970	0.950	0.2555	6	< 0.05	< 0.05
4.3220*Fine OD G _s + $0.1350*$ D ₅₀ (mm) + 10.0800	0.968	0.947	0.2634	6	< 0.05	< 0.05
8.5169*Combined SSD G _s - 0.5435	0.964	0.954	0.2448	6	< 0.05	< 0.05
6.4424*Combined OD G _s + 5.2901	0.949	0.936	0.2904	6	< 0.05	< 0.05
-0.6590*Corrected OMC (%) + 26.3182	0.907	0.884	0.3909	6	< 0.05	< 0.05
3.9711*Fine OD G _s + 11.5752	0.829	0.786	0.5303	6	< 0.05	< 0.05
12.4780*Coarse SSD G _s - 11.5034	0.664	0.580	0.7427	6	< 0.05	< 0.05

- Recycled aggregate base design inputs
 - Estimation of K_{sat} (cm/sec)

Equation	R ²	Adjusted	Standard	Obser-	P-	Signifi-
		K⁻	Error	vations	value	cance F
0.002991655*Void Ratio - Based on Apparent G _s - $0.000136146*$ Fine Apparent G _s - 0.000221884	0.999	0.998	7.16E-06	6	< 0.05	< 0.05
0.002534332*Void Ratio - Based on Apparent G _s + 1.77713E-05*Corrected OMC (%) - 0.000611369	0.998	0.996	8.98E-06	6	< 0.05	< 0.05
$\begin{array}{l} -0.000189822* \textbf{Corrected MDD} \ (kN/m^{3}) + 0.001357674* \textbf{Combined Apparent } G_{s} \\ + \ 0.000522604 \end{array}$	0.995	0.992	1.25E-05	6	< 0.05	< 0.05
0.00508301*Porosity - Based on Apparent G _s - 0.00084454	0.988	0.985	1.75E-05	6	< 0.05	< 0.05
0.003073*Void Ratio - Based on Apparent G _s - 0.000598	0.986	0.982	1.90E-05	6	< 0.05	< 0.05
-0.000182804*Corrected MDD (kN/m^3) + 0.000933374*Fine Apparent G _s + 0.001538639	0.975	0.958	2.95E-05	6	< 0.05	< 0.05
$0.016696071 * e^{3}/(1+e) - 4.0528 * E-05$	0.956	0.945	3.36E-05	6	< 0.05	< 0.05
5.5193E-05*Combined Absorption (%) - 4.5053E-05	0.914	0.892	4.71E-05	6	< 0.05	< 0.05
7.80017E-05*Corrected OMC (%) - 0.000463028	0.810	0.763	6.99E-05	6	< 0.05	< 0.05
2.90566E-05*Fine Absorption (%) + 3.46191E-05	0.745	0.682	8.10E-05	6	< 0.05	< 0.05
-0.000106*Corrected MDD (kN/m ³) + 0.002409	0.722	0.653	8.46E-05	6	< 0.05	< 0.05

• Recycled aggregate base design - inputs

—	Estimation	of	corrected	OMC	(%)
---	------------	----	-----------	-----	-----

Fountien	D ²	Adjusted	Standard	Obser-	P-	Signifi-
Equation	N	\mathbf{R}^2	Error	vations	value	cance F
0.5026*Combined Absorption (%) - 6.0058*Fine Apparent G _s + 22.0333	0.964	0.939	0.4075	6	< 0.05	< 0.05
-9.1895*Combined OD G _s + 30.5418	0.924	0.905	0.5102	б	< 0.05	< 0.05
-8.1230*Fine SSD G _s + 28.2286	0.890	0.862	0.6149	6	< 0.05	< 0.05
-5.9208*Fine OD G _s + 22.1405	0.882	0.853	0.6359	6	< 0.05	< 0.05
-11.7635*Combined SSD G _s + 37.9200	0.880	0.850	0.6415	6	< 0.05	< 0.05
0.5912*Combined Absorption (%) + 5.9768	0.787	0.734	0.8547	6	< 0.05	< 0.05

- LSSB design general
 - Performance of 18 in LSSB > 9 in LSSB
 - Combination of fine RCA base + 18 in LSSB maximum performance
 - 9 in LSSB
 - Subgrade soil pumping during construction
 - Permeability ↓
 - Geosynthetic(s) in the middle of LSSB layers

Large Stor	e Subbase	Large Stone Subbase with Geosynthetics					
127	227	328 428		528	628	728	
3.5 in	3.5 in	3.5 in	3.5 in	3.5 in	3.5 in	3.5 in	
Asphalt	Asphalt	Asphalt	Asphalt	Asphalt	Asphalt	Asphalt	
6 in	6 in	6 in	6 in	6 in	6 in	6 in	
Class 6	Class 6	Class 5Q	Class 5Q	Class 5Q	Class 5Q	Class 5Q	
Aggregate	Aggregate	Aggregate	Aggregate	Aggregate	Aggregate	Aggregate	
18 in LSSB (1 lift)	18 in LSSB (1 lift)	9 in LSSB TX	9 in LSSB TX+GT	9 in LSSB BX+GT	9 in LSSB BX	9 in LSSB	
		Clay Loam	Clay Loam	Clay Loam	Clay Loam	Clay Loam	
Clav Loam	Clav Loam						

Iowa State University

University of Wisconsin-Madison

- LSSB design general
 - 9 in LSSB cont'd
 - Lower field DOC for aggregate base layers
 - Instability of thinner LSSB under loading
 - M_R and K_{sat} of aggregate base layers at lower DOC
 - Geosynthetic(s) between aggregate base and LSSB layers

Iowa State University

University of Wisconsin-Madison

• LSSB design - inputs

Paran	neter	LSSB
AASHTO CI	A-1-a	
Layer Thic	kness (in)	18 or 9
Poisson's	s Ratio	0.35
M_R (j	osi)	
LI		
PI		
Corrected M	IDD (pcf)	
K _{sat} (f	t/hr)	
Combined	l OD G _s	2.60
Corrected (DMC (%)	
	No. 200	0.08
	No. 100	0.14
	No. 60	0.18
	No. 40	0.23
	No. 20	0.29
	No. 10	0.36
Percent	No. 4	0.42
Passing (%)	3/8 in	0.94
	3/4 in	6.28
	1 in	13.15
	1 1/2 in	35.84
	2 in	70.21
	2.5 in	96.89
	3 in	100.00

Lack of information for LSSB Size limitations of lab equipment No standard

Thank You! QUESTIONS??

Iowa State University

University of Wisconsin-Madison