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PROBLEM STATEMENT
IMPACTS OF FREEZE-THAW CYCLES UNDER ROADS

Water in soil freezes and expands

During spring-thaw, melted water and infiltrated water trapped
above the zone of frozen subgrade — strength loss under heavy

loading
Seasonal Load Restrictions — applied to avoid/reduce damages

Prediction of Freeze-Thaw Cycles — Monitoring systems &

Computational Models
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INSTRUMENTATION

" |nstrumented with an array of:
o Soil Moisture
o Temperature

= \Weather Station to measure climate data
o On site
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OBJECTIVES

Develop a Data Driven Model to Predict the Frozen Soil
Depths & Freeze-Thaw Durations

* |Inputs:
* Climate data (precipitation, relative humidity, percent sunshine,
temperature, & wind speed)
e Layer thicknesses
* Material type
* Output
* Number of freeze-thaw cycles at specific depths
* Duration of freezing and thawing
* Frost depth
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Overview of Research Plan

» Task 1 — Initial Memorandum on Expected Research
Benefits and Potential Implementation Steps

» Task 2 — Field Data Collection
» Task 3 — Modelling Analyses
» Task 4 — Final Report
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TASK 2 — FIELD DATA COLLECTION

List of data that will be collected: q

- Cl | mate D ata Installation of weather

station and solar panel

* Air temperature [

 Percent sunshine
* Precipitation
e Wind speed
 Relative humidity
= Soil Data
* Material data

* Temperature
* Water content
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Task 3 — Modelling Analyses

Modeling Objectives:

Develop a tool that can be used to assess/predict the freeze-
thaw behavior of roadways

e Simple
e Stand-alone

* For any location (where soil profile and weather data
are available)

Output needed:
* number of freeze thaw cycles at certain depth
* frost depth isotherms over time
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Modeling Approaches

Two types of modeling approaches to consider:

Physics-based modeling (“white box”)

Data-driven modeling (“black box”)

What is the appropriate approach to consider?
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Different approaches towards modeling:

Physics-Based Modeling

based on physical principles and relationships between variables; described with a set of
mathematical equations with variables that have physical meaning

Inputs: Many input (or assumptions) required; some may or may not be known
Pros: better at extrapolation, limited historical data required

Cons: significant knowledge of all physical properties and interactions; slower
(higher computational intensity)

Data-Driven Modeling

Statistical or machine learning based; uses historical data to develop a quantifiable
relationship between inputs and outputs

Inputs: whatever data is available (and ultimately found to be significant)

Pros: lower computational intensity; no knowledge of physical properties or
interactions required

Cons: worst (typically) at extrapolation outside of bounds of original data; needs

larger training dataset to create and validate
9
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Tool Development Process: Workflow

[ 1. Collect data }

[ 2. Data pre-processing and }
A/OC

3. Develop (new) data- W

driven model(s ‘ Can the
model be
[ 4. Evaluate performance for | improved
different sets of data ) further?

Desired
accuracy
eached?

[ 5. Improve model }
NO

Yes
[ 6. Final tool }
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Step 1. Collect data: Data Needs

Most important requirements for data-driven
modeling are:

- large(r) input datasets, which will be split into:
- In-sample (to create the model)
- out-of-sample (to validate the model)

- diversity of conditions (e.g. hot/cold, wet/dry,
etc..)

Data needed (ideally):

= Weather data (close or near to site)
= Soil profiles/characteristics (thermal/moisture)
= Historical temperature at different depths

= A range of sites/locations of data collection .
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Step 2. Data Pre-Processing:

QA/QC: Types & Handling of Missing Data:
1) Short spans (less than 10 hrs)

- Impute data (fill it in) based on trends in surrounding data
- forward fill method

2) Longspans (more than 10 hrs) in this dataset

—> Remove the time periods with missing data

Division of Data Used to createl/train Used to evaluate the
the model model performance

. e

Training Test
Data Data

Cleaned
Dataset

»
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Step 3. Develop data-driven models: Process

Training Data

-

-

Vs

&

-

-

Soil temp/ W

Historical i
weather data !
Soil profile }—'-T-'

Number of freeze thaw
——— cycles at certain (input)
depth

Data-driven model

- B -

moisture data J

g

Depth of )

'_|—|—> Frost depth isotherms

over time

Interest |

INPUT LAYER —

Data input

“BLACK BOX”" OUTPUT LAYER

Layout of model development process
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Step 3-6. Refine Model: Progressive Improvement

2. Compare
1. Start with simplistic predicted & ' Agg?é“' Yes  yse as final
approach / model 1 actual temps. & ‘ It model
BT result?
A
Continue NO
iteration
No 3. Use same approach,
4. Update/ — — Acceptable «— different method of data
change model result? o
Yes

Stepwise/Regression Neural network Deep learning

Example (other models are considered) sequence from simple to
complex modeling to determine relative improvement in performance

14
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Model Selection: (a) geotech literature review

Previous literature on data-driven models: Most to
date have attempted to predict average daily or
monthly soil temperatures, NOT hourly data, or freeze-

thaw /isotherm information

Regression [2,5]

Artificial Neural Networks [3-5]

Neuro-fuzzy inference system (ANFIS) [1, 6]

Multilayer perceptron (MLP) [6]

Generalize regression, radial basis, and MLP neural network

[7]
Support Vector Machine (SVM) [8]

15
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Model selection: (b) general literature review

Literature on modeling multi-variate time series data

Our approach: Simple = complex Order of Evaluation /
: Presentation Discussion
- Regression
Linear & non-linear (113)

- Stepwise
- Vector autoregressive (VAR)

multivariate time series analysis (2)

- Vector error correction model (VECM)

- can be useful when there are cointegrated variables
- ANN, MLP, SVM, ANFIS (also in prev. slide) (4)
- Many others...

16
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Soil temperature correlation with climate parameters

Closest to surface (T1) /Temperature IS strongest predictor
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Soil temperature correlation with climate parameters
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Soil temperature is significantly
corelated with air temperature

Correlation coefficient reduces
with the depth of saill

Wind is negatively correlated
with soil temperature

RH is very weakly correlated
with soil temperatures
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(1) Regression Models: Methods

= |nitially, a simple model has been selected, and then
sequentially proceed towards the complex models.

= (a) Linear regression model (all variables)
= (b) Stepwise regression to evaluate the significant input

variables.
Soil Regression coefficients Regression
temperature  Air Temp Rain RH Wind intercept
TC_ 1 1.04 0.19 -0.07 -0.59 12.13
TC 2 1.02 0.18 -0.05 -0.69 10.51
TC_3 0.92 0.02 0.05 -0.86 4.49
TC 4 0.84 0.02 0.08 -0.77 2.42
TC 5 0.83 0.03 0.09 -0.75 2.38
TC 6 0.81 0.06 0.09 -0.72 2.37
TC_ 7 0.80 0.07 0.09 -0.71 2.41
TC_ 8 0.76 0.12 0.09 -0.66 2.59
TC 9 0.66 0.14 0.04 -0.41 4.93
TC_10 0.60 0.11 0.09 -0.54 2.88
TC 11 0.39 0.08 0.10 -0.40 5.49

TC_12 0.47 0.04 0.09 -0.41 3.44 19
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(1) Regression Models: Data division

= Training Data: first 50,000 datapoints
= Testing Data: remaining 9,522 datapoints

The error for all temperature values are shown below for both datasets
(note all weather variables used as predictors)
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Test Data (not used to develop the model)
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(1) Regression Models: Stepwise

All weather data input were considered; only those variables
found to have *significant™* influence are provided below, in
order of most to least; Air temperature is most important

Temperature node Significant inputs

TC 1 Air temperature, Relative humidity, Wind speed, Precipitation
TC 2 Air temperature, Relative humidity, Wind speed, Precipitation
TC 3 Air temperature, Relative humidity, Wind speed
TC 4 Air temperature, Relative humidity, Wind speed
TC 5 Air temperature, Relative humidity, Wind speed
TC 6 Air temperature, Relative humidity, Wind speed
TC 7 Air temperature, Relative humidity, Wind speed
TC 8 Air temperature, Relative humidity, Wind speed
TC 9 Air temperature, Relative humidity, Wind speed
TC 10 Air temperature, Relative humidity, Wind speed
TC 11 Air temperature, Relative humidity, Wind speed

TC 12 Air temperature, Relative humidity, Wind speed
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(1) Regression Models: performance summary

(Using weather variables only as predictors)

Error for training data (linear regression)

ERERE | |

Linear regression Test dataset error
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Polynomial Regression Training error

(SRR ||

Polynomial Regression Test error

5

Linear regression and
polynomial regression
models are used as the
starting point

Simplistic model
Polynomial regression

performs better
compared to linear
regression

Overall, there is some
amount of error in
temperature prediction
that can likely be
improved
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(1 = 3) Regression Models: Additional considerations

Soil temperature pattern varying depending on several
parameters:

= Seasonal patterns
= Daily patterns

= Depth

= Soil characteristics

Next we tried (2) several non-regression methods, then returned
to (3) an improved regression method

23
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(2) Vector Models: summary
(a) Vector Auto Regressive (VAR)

(b) Vector Error Correction Model (VECM)
(c) Vector Auto Regressive Moving Average (VARMA)

24
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(2) Vector Models: Data division & details

Data:

= Training Data: first 45,000 datapoints (memory limitations)
Aug/2017 — Nov/2018

= Testing Data: remaining 9,522 datapoints

Model:

" Forecast length: 10 days

" Maximum lag criteria: 24; selected based on Bayesian
information criterion (BIC)

= First order differencing used to remove stationarity of data

25
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(2) Vector Models: Results Summary

Error of T1 and T2 (°C)

y = Unable to capture
, hourly or daily
fluctuations but can

variations
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(1 = 3) Regression Models: Additional considerations

Soil temperature pattern varying depending on several
parameters:

= Seasonal/Daily patterns
= Depth

= Soil characteristics

3 new variables considered:
= Day of year (1-365);
= Timestep (1 — 4 step/hour X 24 hours) per day
= Hours (1 — 24 hours/day X 365 days); (i.e. 15 min = 0.25)

27
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(3) Regression Models: updated Methods

" Forward Stepwise regression: select the most
Important parameters

e Selected variables are: Day of Year, Timestep, Air
Temperature, RH, Wind speed, Rain

= Consider:
" Linear and Non-linear (completed in R)
* Polynomial regression (power of 2, 3, 4)

28



G MICHIGAN STATE UNIVERSITY

(3) Regression Models: Data division

= Training Data: first 35,040 datapoints (1 year)
Aug/2017 — Aug/2018

= Testing Data: remaining 10,270 datapoints (23% of
data)

29
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(3) Regression Models: Results Summary

= Non-linear regression (NLR) of 4t" order performs best
" Error reduces with increasing depth
= RSE (below) and R-squared (next slide) used for

evaluation
Training data Testing data
RSE values RSE values
5
4
HHHII“.L “\IHH\III“
TT T2 T3 T4 T5 T6 T7 TI0 TI12 T10 TI12

mPoly4 mPoly3 mPoly2 = Linear mPoly4 mPoly3 mPoly2 wmLinear
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(3) Regression Models: Results Summary

Adjusted R?values are higher than 0.95 for all surfaces

Training data

Adjusted R2 values
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Testing data

Adjusted R2 values
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(3) Regression Models: Error by Depth
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(3) Regression Models: Error by Depth
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(3) Regression Models: summary & Next Steps

For (3):
- Polynomial regression performs better compared to
other methods

- The results of (3) are better than (1) and (2)

Next Steps:
= Neural network
= Multi-layer perceptron model,
= Support Vector Machine,
= Neuro-fuzzy inference system,
= Deep learning algorithms

34
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Calculation of Freeze-Thaw Cycles: Questions

By predicting temperature our ultimate goal is to
predict the # of freeze-thaw (F-T) cycles

Key Questions:

(1) How do we define (calculate) a freeze-
thaw cycle from soil data?

(2) How accurate are the data we are using?

35
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Calculation of Freeze-Thaw Cycles: Method

- Weather and soil temperature: measured at 15
minutes time intervals

- Temperature accuracy: +/- 1 C

What should this width be?

/\

freeze| | thaw

| |
Freezing point 0°C

Soil temperature \

Assumed 0 C (for now)

36
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Calculation of Freeze-Thaw Cycles: Method

Method Used (for now, focus on flexibility in code)

1. Temperature above 0°C => Liquid (thaw)

2. Temperature below freezing point => Solid (freeze)

3. Temperature within freezing point and 0 °C
=> phase transformation state

37
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Calculation of Freeze-Thaw Cycles: Method

Freezing temperature
considered (9 total):

-0.001 °C (i.e. no temp difference) [ Sensor |Depth (in)
TC 1 3 =
-0.1°C TC 2 4 IS
TC 3 9.5 ps
-0.2°C TC 4 15 2
TC 5 16
-0.25°C TC 6 | 185 -
TC 7 19.5 =
-0.3°C TC 8 24 |
TC 9 36 t
-0.4°C TC 10 48 o
TC 11 60 S
-0.5°C TC 12 72

-0.75°C
-1°C
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Calculation of Freeze-Thaw Cycles: Results

Datasets: 2017 ( July-Dec), 2018 ( Jan-Dec), 2019 (Jan-Apr)

For 2017 data (July-Dec : Start of winter)

180
160
140
120
100
80
60

m0.001 »0.1 »m0.2 =0.25 m0.3 m0.4 m05 m0.75 m1

T10 T12
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Calculation of Freeze-Thaw Cycles: Results

Datasets: 2017 ( July-Dec), 2018 ( Jan-Dec), 2019 (Jan-Apr)

For 2018 data (Jan-Dec : 1 whole year)

500
400
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200
1 ||
0 ||| i Wi D | o B b .
T1 T2 T3 T4 T5 T6 T7 T8 T10 T12
For 2019 data (Jan-Apr : End of winter)
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Calculation of Freeze-Thaw Cycles: Summary

# of F-T: dependent on freezing point temperature

e Shallow soils (0-15 in): more F-T cycles that deep
soils;

* Mid-level soils (16-24 in) (min annual temp. ~ -1 to -
2°C): # of F-T significantly influenced by F-T algorithm

tolerance since more fluctuations near 0 °C range

* Deep soils (36-72 in) : # of F-T ~0 / generally does
not go below 0°C or change states

41
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Calculation of Freeze-Thaw Cycles: Summary

# of F-T: if we choose a tolerance of 1 C
125

100

0 | ‘ || . - — ] . _—
TT T2 T3 T4

5 Te T7 T8 TIO TI12
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N

Number of cycles
=

o
N
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Calculation of Freeze-Thaw Cycles: Summary

# of F-T: if we choose a tolerance of 1 C

G MICHIGAN STATE UNIVERSITY

If we consider multiple locations (Note: sensors T3-T7 in different
locations are at different depths thus cannot be easily compared)

Soil Depth Sept 2017 - August 2018
surfaces (in) cell 186 cell 188 cell 189 cell 127 cell 728
T1 3 56 58 66 71 44
T2 4 28 30 27 64 35
T3 6.5-9.5 1 1 2 11 4
T4 9-15 2017 1 1 1 3 1
T5 10-16 September 1 1 1 2 1
T6 12-18.5 to 2018 2 1 1 2 1
T7 18-19.5 August 2 1 1 2 1
T8 24 3 1 1 2 1
T9 36 30* 1 1 2 1
T10 48 0 1 0 0 0
T11 60 0 0 0 0 0
T12 72 0 0 0 0 0

* Thermocouple error
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Calculation of Freeze-Thaw Cycles: Summary

# of F-T: if we choose a tolerance of 1 C

If we consider multiple locations (Note: sensors T3-T7 in different
locations are at different depths thus cannot be easily compared)

Depth Sept 2018 to August 2019
(in) cell 186 cell 188 cell 189 cell 127 cell 728 ST Gl
3 35 50 44 49 28
2 10 % 17 39 T larger tolerances
6.5-0.5 3 2 3 7 4 above 1 C
9-15 2 1 1 3 4
10-16 2 2 1 4 5 Compare soill
12-18.5 1 1 1 2 1 profiles at
18-19.5 1 1 1 1 1 locations
24 1 1 1 1 1 (potential impact
36 1 1 1 1 1 of F-T variations)
48 0 1 - 1 0
60 0 0 0 0 0
72 0 0 0 0
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Next Steps:

" Compare data of different locations to find the
freezing temperature at different locations

= Compare actual and predicted freeze-thaw cycles
obtained from the regression analysis

" |[mplement and test the performance of different
complex models (ANN, Multi-layer perceptron model,
Support Vector Machine, Neuro-fuzzy inference
system, Deep learning algorithms)
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