1

Environmental Impacts on The Performance of Pavement Foundation Layers – Phase I

Principal Investigator: Bora Cetin, Ph.D. Co-Principal Investigator: Tuncer Edil, Ph.D. Kristen Cetin, Ph.D. Research Team: Debrudra Mitra

Department of Civil and Environmental Engineering Michigan State University May 20, 2020

PROBLEM STATEMENT *IMPACTS OF FREEZE-THAW CYCLES UNDER ROADS*

- Water in soil freezes and expands
- During spring-thaw, melted water and infiltrated water trapped above the zone of frozen subgrade – strength loss under heavy loading
- Seasonal Load Restrictions applied to avoid/reduce damages
- Prediction of Freeze-Thaw Cycles Monitoring systems & Computational Models

INSTRUMENTATION

- Instrumented with an array of:
 - Soil Moisture
 - Temperature
- Weather Station to measure climate data
 On site

OBJECTIVES

Develop a Data Driven Model to Predict the Frozen Soil Depths & Freeze-Thaw Durations

- Inputs:
 - Climate data (precipitation, relative humidity, percent sunshine, temperature, & wind speed)
 - Layer thicknesses
 - Material type
- Output
 - Number of freeze-thaw cycles at specific depths
 - Duration of freezing and thawing
 - Frost depth

Overview of Research Plan

- Task 1 Initial Memorandum on Expected Research Benefits and Potential Implementation Steps
- Task 2 Field Data Collection
- Task 3 Modelling Analyses
- **Task 4** Final Report

TASK 2 – FIELD DATA COLLECTION

List of data that will be collected:

- Climate Data
 - Air temperature
 - Percent sunshine
 - Precipitation
 - Wind speed
 - Relative humidity
- Soil Data
 - Material data
 - Temperature
 - Water content

Task 3 – Modelling Analyses

Modeling Objectives:

Develop a **tool** that can be used to assess/predict the freezethaw behavior of roadways

- Simple
- Stand-alone
- For any location (where soil profile and weather data are available)

Output needed:

- number of freeze thaw cycles at certain depth
- frost depth isotherms over time

Modeling Approaches

<u>Two types</u> of modeling approaches to consider:

Physics-based modeling ("white box")

Data-driven modeling ("black box")

What is the appropriate approach to consider?

Different approaches towards modeling:

Physics-Based Modeling

based on physical principles and relationships between variables; described with a set of mathematical equations with variables that have physical meaning

Inputs: Many input (or assumptions) required; some may or may not be known

<u>Pros</u>: better at extrapolation, limited historical data required

<u>Cons</u>: significant knowledge of all physical properties and interactions; slower (higher computational intensity)

Data-Driven Modeling

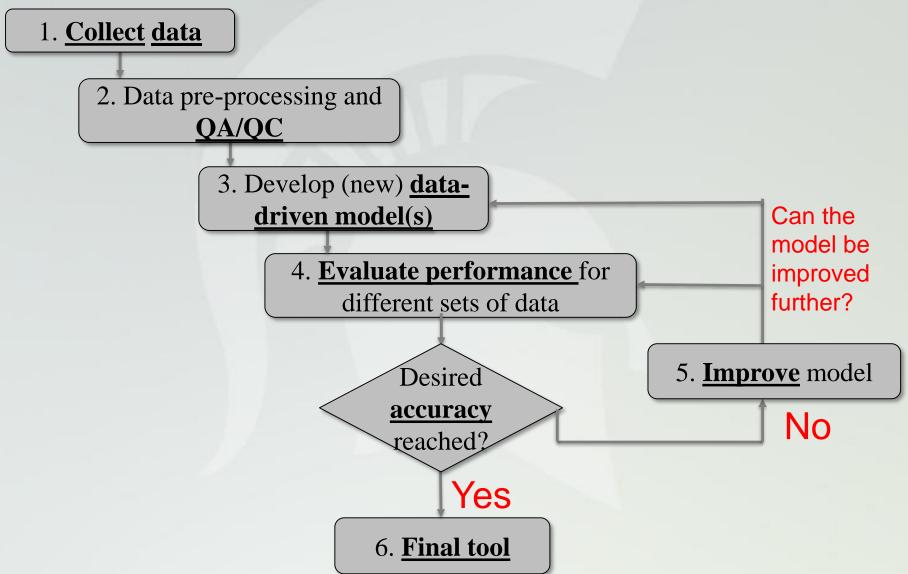
Statistical or machine learning based; uses historical data to develop a quantifiable relationship between inputs and outputs

Inputs: whatever data is available (and ultimately found to be significant)

<u>**Pros</u>**: lower computational intensity; no knowledge of physical properties or interactions required</u>

<u>Cons</u>: worst (typically) at extrapolation outside of bounds of original data; needs larger training dataset to create and validate

Tool Development Process: Workflow



Step 1. Collect data: Data Needs

<u>Most important</u> requirements for data-driven modeling are:

- large(r) input datasets, which will be split into:
 - In-sample (to create the model)
 - out-of-sample (to validate the model)
- diversity of conditions (e.g. hot/cold, wet/dry, etc..)

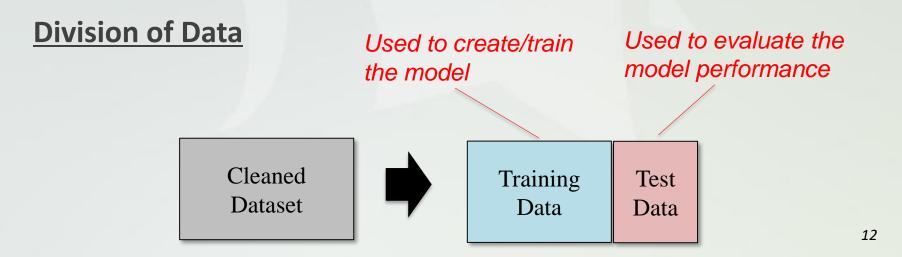
Data needed (ideally):

- Weather data (close or near to site)
- Soil profiles/characteristics (thermal/moisture)
- Historical temperature at different depths
- A range of sites/locations of data collection

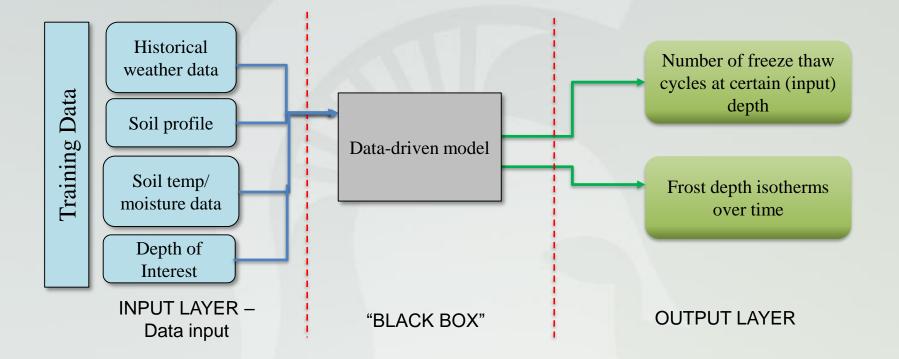
Step 2. Data Pre-Processing:

QA/QC: Types & Handling of Missing Data:

- 1) Short spans (less than 10 hrs)
 - → Impute data (fill it in) based on trends in surrounding data
 - \rightarrow forward fill method
- 2) Long spans (more than 10 hrs) in this dataset
 - \rightarrow Remove the time periods with missing data

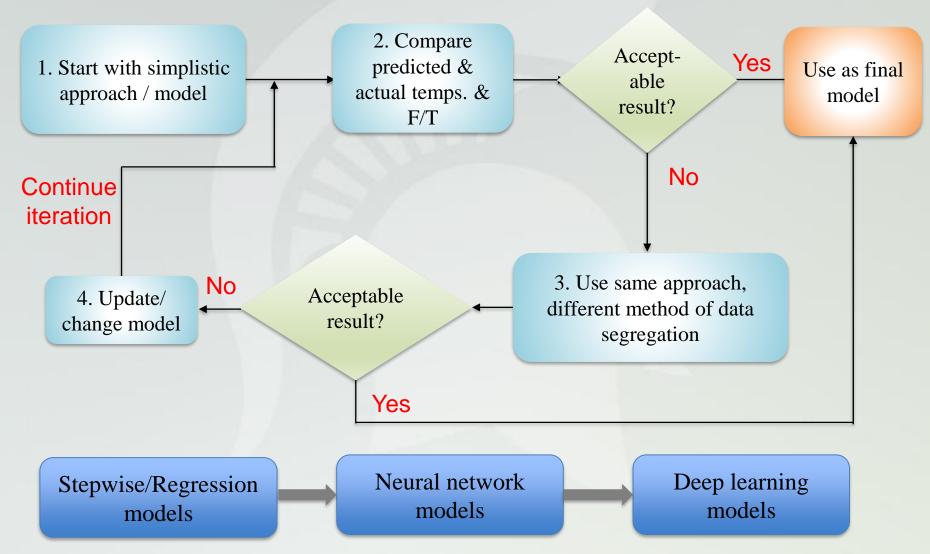


Step 3. Develop data-driven models: Process



Layout of model development process

Step 3-6. Refine Model: Progressive Improvement



Example (other models are considered) sequence from simple to complex modeling to determine relative improvement in performance

Model Selection: (a) geotech literature review

Previous literature on data-driven models: *Most to date have attempted to predict average <u>daily</u> or <u>monthly</u> soil temperatures, NOT hourly data, or freezethaw /isotherm information*

- Regression [2,5]
- Artificial Neural Networks [3-5]
- Neuro-fuzzy inference system (ANFIS) [1, 6]
- Multilayer perceptron (MLP) [6]
- Generalize regression, radial basis, and MLP neural network
 [7]
- Support Vector Machine (SVM) [8]

Model selection: (b) general literature review

Literature on modeling multi-variate time series data Our approach: Simple \rightarrow complex Order of Evaluation

- Regression
 - Linear & non-linear
 - Stepwise
- Vector autoregressive (VAR)
 - multivariate time series analysis
- Vector error correction model (VECM)
 - can be useful when there are cointegrated variables
- ANN, MLP, SVM, ANFIS (also in prev. slide)
- Many others...

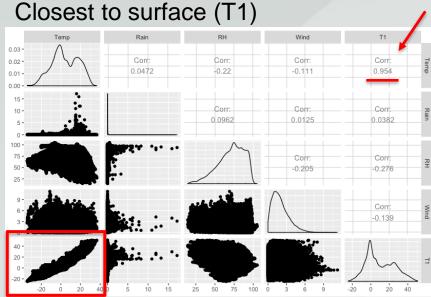
Order of Evaluation / Presentation Discussion

(1,3)

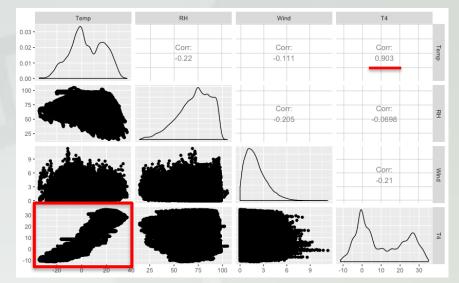
(2)

(4)

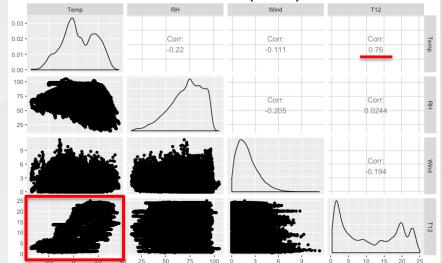
Soil temperature correlation with climate parameters

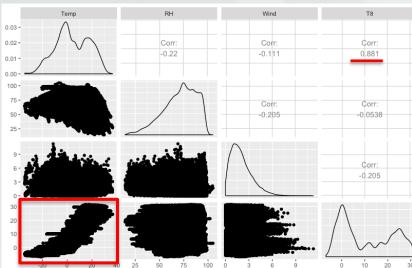


Temperature is strongest predictor



Farthest from surface (T12)





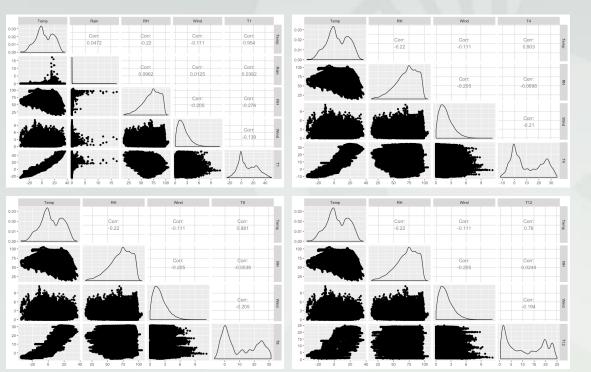
50 75

Temp

쭈

Wind

Soil temperature correlation with climate parameters



- Soil temperature is significantly corelated with <u>air temperature</u>
- Correlation coefficient reduces with the depth of soil
- Wind is negatively correlated with soil temperature
- RH is very weakly correlated with soil temperatures

(1) Regression Models: Methods

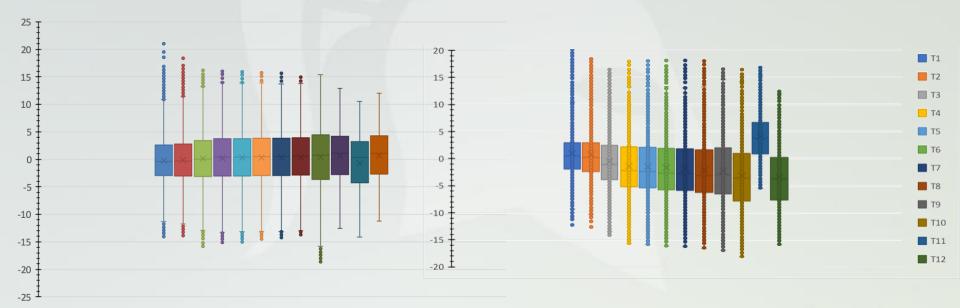
- Initially, a simple model has been selected, and then sequentially proceed towards the complex models.
- (a) Linear regression model (all variables)
- (b) Stepwise regression to evaluate the significant input variables.

Soil		Regression			
temperature	Air Temp	Rain	RH	Wind	intercept
TC_1	1.04	0.19	-0.07	-0.59	12.13
TC_2	1.02	0.18	-0.05	-0.69	10.51
TC_3	0.92	0.02	0.05	-0.86	4.49
TC_4	0.84	0.02	0.08	-0.77	2.42
TC_5	0.83	0.03	0.09	-0.75	2.38
TC_6	0.81	0.06	0.09	-0.72	2.37
TC_7	0.80	0.07	0.09	-0.71	2.41
TC_8	0.76	0.12	0.09	-0.66	2.59
TC_9	0.66	0.14	0.04	-0.41	4.93
TC_10	0.60	0.11	0.09	-0.54	2.88
TC_11	0.39	0.08	0.10	-0.40	5.49
TC_12	0.47	0.04	0.09	-0.41	3.44

(1) Regression Models: Data division

- Training Data: first 50,000 datapoints
- Testing Data: remaining 9,522 datapoints

The <u>error</u> for all temperature values are shown below for both datasets (note all <u>weather variables</u> used as predictors)



Training Data

Test Data (not used to develop the model)

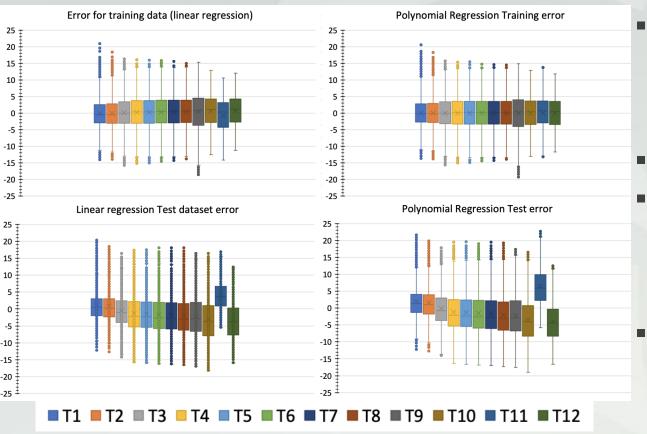
(1) Regression Models: Stepwise

All weather data input were considered; only those variables found to have *significant* influence are provided below, in order of most to least; <u>Air temperature is most important</u>

Temperature node	Significant inputs		
TC_1	Air temperature, Relative humidity, Wind speed, Precipitation		
TC_2	Air temperature, Relative humidity, Wind speed, Precipitation		
TC_3	Air temperature, Relative humidity, Wind speed		
TC_4	Air temperature, Relative humidity, Wind speed		
TC_5	Air temperature, Relative humidity, Wind speed		
TC_6	Air temperature, Relative humidity, Wind speed		
TC_7	Air temperature, Relative humidity, Wind speed		
TC_8	Air temperature, Relative humidity, Wind speed		
TC_9	Air temperature, Relative humidity, Wind speed		
TC_10	Air temperature, Relative humidity, Wind speed		
TC_11	Air temperature, Relative humidity, Wind speed		
TC_12	Air temperature, Relative humidity, Wind speed		

(1) Regression Models: Performance summary

(Using weather variables only as predictors)



- Linear regression and polynomial regression models are used as the starting point
- Simplistic model
- <u>Polynomial</u> regression
 performs better
 compared to <u>linear</u>
 regression
- Overall, there is some amount of error in temperature prediction that can likely be improved

(1 -> 3) Regression Models: Additional considerations

Soil temperature pattern varying depending on several parameters:

- Seasonal patterns
- Daily patterns
- Depth
- Soil characteristics

Next we tried (2) several non-regression methods, then returned to (3) an improved regression method

(2) Vector Models: Summary

- (a) Vector Auto Regressive (VAR)
- (b) Vector Error Correction Model (VECM)
- (c) Vector Auto Regressive Moving Average (VARMA)

(2) Vector Models: Data division & details

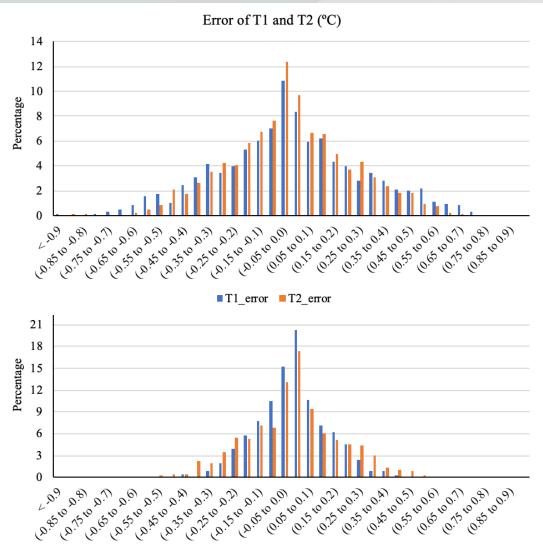
Data:

- Training Data: first 45,000 datapoints (memory limitations) Aug/2017 – Nov/2018
- Testing Data: remaining 9,522 datapoints

Model:

- Forecast length: 10 days
- Maximum lag criteria: 24; selected based on Bayesian information criterion (BIC)
- First order differencing used to remove stationarity of data

(2) Vector Models: Results Summary



- Unable to capture
 hourly or daily
 fluctuations but can
 capture seasonal
 variations
- VECM and VARMA > VAR

Not the best approach for our needs

$(1 \rightarrow \underline{3})$ Regression Models: Additional considerations

Soil temperature pattern varying depending on several parameters:

- Seasonal/Daily patterns
- Depth
- Soil characteristics
- 3 new variables considered:
 - Day of year (1-365);
 - Timestep (1 4 step/hour X 24 hours) per day
 - Hours (1 24 hours/day X 365 days); (i.e. 15 min = 0.25)

(3) Regression Models: Updated Methods

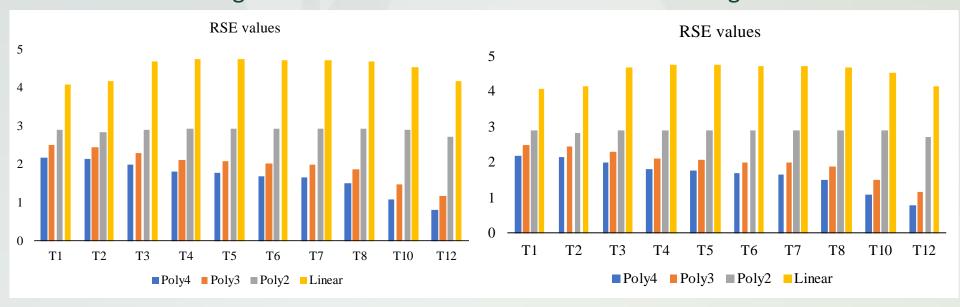
- Forward Stepwise regression: select the most important parameters
 - Selected variables are: Day of Year, Timestep, Air Temperature, RH, Wind speed, Rain
- Consider:
 - Linear and Non-linear (completed in R)
 - Polynomial regression (power of 2, 3, 4)

(3) Regression Models: Data division

- Training Data: first 35,040 datapoints (1 year) Aug/2017 – Aug/2018
- Testing Data: remaining 10,270 datapoints (23% of data)

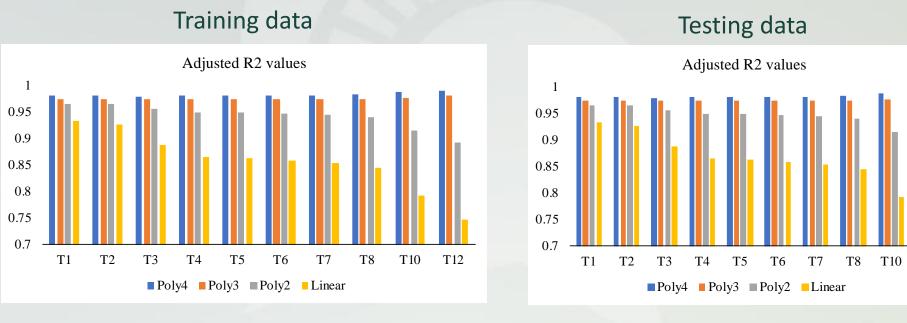
(3) Regression Models: Results Summary

- Non-linear regression (NLR) of 4th order performs best
- Error reduces with increasing depth
- RSE (below) and R-squared (next slide) used for evaluation Training data
 Testing data



(3) Regression Models: Results Summary

Adjusted R² values are higher than 0.95 for all surfaces

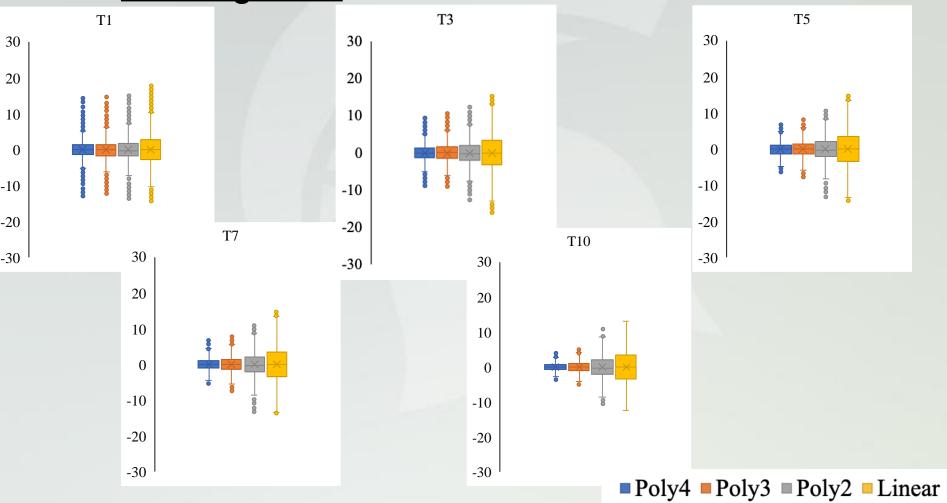


T12

🐔 MICHIGAN STATE UNIVERSITY

(3) Regression Models: Error by Depth

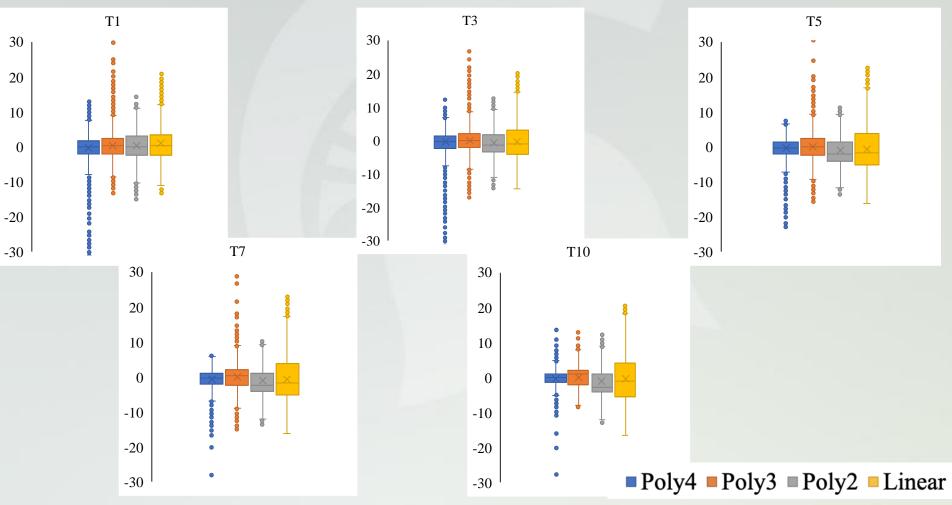
Training Data



🐔 MICHIGAN STATE UNIVERSITY

(3) Regression Models: Error by Depth

Testing Data



(3) Regression Models: Summary & Next Steps

For (3):

- Polynomial regression performs better compared to other methods
- The results of (3) are better than (1) and (2)

Next Steps:

- Neural network
- Multi-layer perceptron model,
- Support Vector Machine,
- Neuro-fuzzy inference system,
- Deep learning algorithms

Calculation of Freeze-Thaw Cycles: Questions

By predicting temperature our ultimate goal is to predict the # of freeze-thaw (F-T) cycles

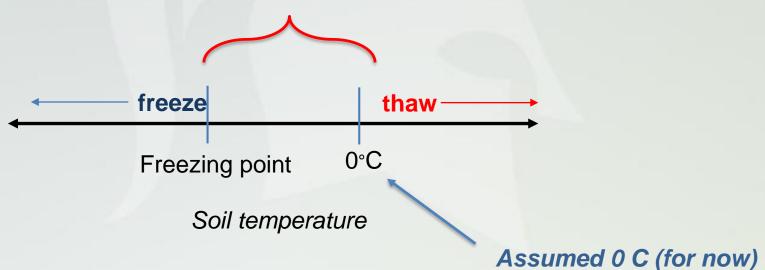
Key Questions:

(1) How do we define (calculate) a freezethaw cycle from soil data?(2) How accurate are the data we are using?

Calculation of Freeze-Thaw Cycles: *Method*

- Weather and soil temperature: measured at 15 minutes time intervals
- Temperature accuracy: +/- 1 C

What should this width be?



Calculation of Freeze-Thaw Cycles: Method

Method Used (for now, focus on flexibility in code)

- 1. Temperature above 0 °C => Liquid (thaw)
- 2. Temperature below freezing point => Solid (freeze)
- 3. Temperature within freezing point and 0 °C=> phase transformation state

Calculation of Freeze-Thaw Cycles: Method

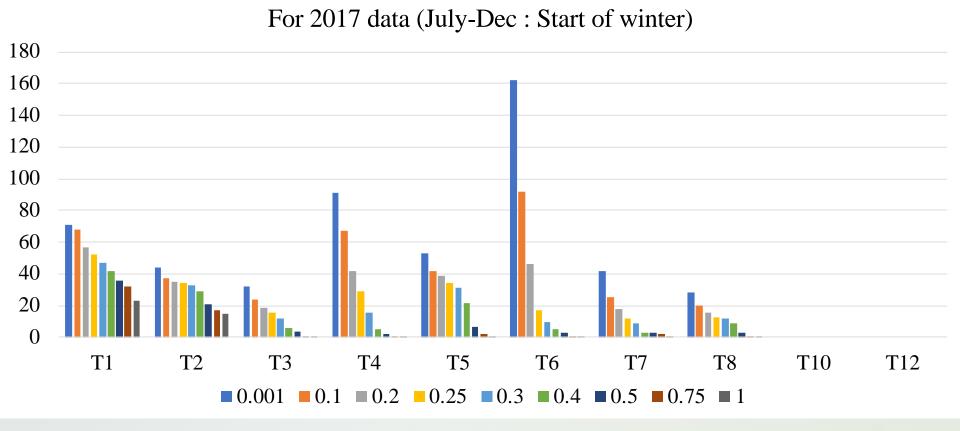
Freezing temperature considered (9 total):

-0.001 °C (i.e. no temp difference)
-0.1 °C
-0.2 °C
-0.25 °C
-0.3 °C
-0.4 °C
-0.5 °C
-0.75 °C
-1 °C

Sensor	Depth (in)	_	
<i>TC_1</i>	3		≥
<i>TC_2</i>	4		Shallow
<i>TC_3</i>	9.5		ha
<i>TC_4</i>	15		S
TC_5	16	1	
TC_6	18.5		Mid
TC_7	19.5		Σ
TC_8	24		
TC_9	36		
TC_10	48		e D
TC_11	60	- 19	Deep
TC_12	72		

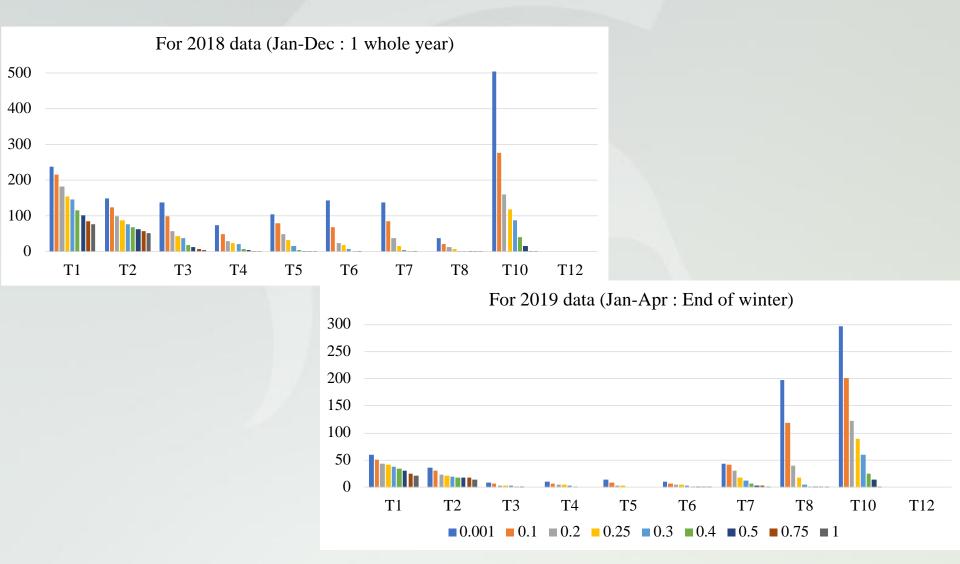
Calculation of Freeze-Thaw Cycles: *Results*

Datasets: 2017 (July-Dec), 2018 (Jan-Dec), 2019 (Jan-Apr)



Calculation of Freeze-Thaw Cycles: *Results*

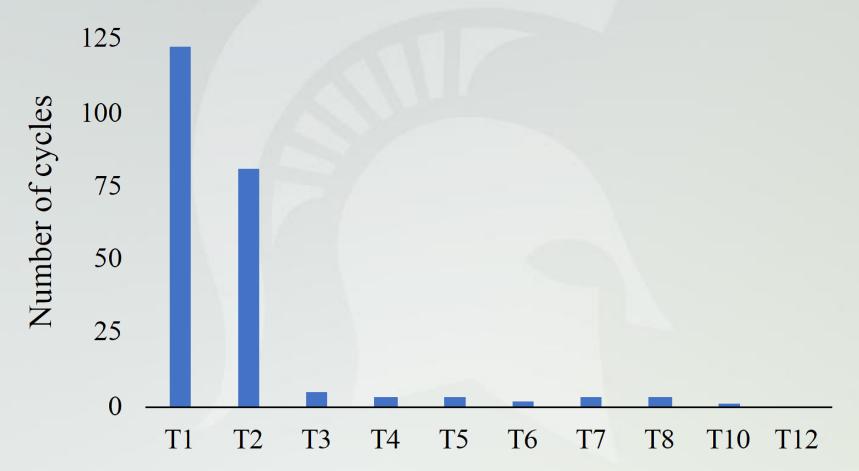
Datasets: 2017 (July-Dec), 2018 (Jan-Dec), 2019 (Jan-Apr)



of F-T: dependent on freezing point temperature

- Shallow soils (0-15 in): more F-T cycles that deep soils;
- Mid-level soils (16-24 in) (min annual temp. ~ -1 to -2°C): # of F-T significantly influenced by F-T algorithm tolerance since more fluctuations near 0°C range
- Deep soils (36-72 in) : # of F-T ~0 / generally does not go below 0 °C or change states

of F-T: if we choose a tolerance of 1 C



of F-T: if we choose a tolerance of 1 C

If we consider <u>multiple locations</u> (Note: sensors T3-T7 in different locations are at different depths thus cannot be easily compared)

Soil	Depth		Sept 2017 - August 2018				
surfaces	(in)		cell 186	cell 188	cell 189	cell 127	cell 728
T1	3		56	58	66	71	44
T2	4		28	30	27	64	35
T3	6.5-9.5		1	1	2	11	4
T4	9-15	2017	1	1	1	3	1
T5	10-16	September	1	1	1	2	1
T6	12-18.5	to 2018	2	1	1	2	1
T7	18-19.5	August	2	1	1	2	1
T8	24		3	1	1	2	1
Т9	36		30*	1	1	2	1
T10	48		0	1	0	0	0
T11	60		0	0	0	0	0
T12	72		0	0	0	0	0

* Thermocouple error

of F-T: if we choose a tolerance of 1 C

If we consider <u>multiple locations</u> (Note: sensors T3-T7 in different locations are at different depths thus cannot be easily compared)

Depth	Sept 2018 to August 2019				
(in)	cell 186	cell 188	cell 189	cell 127	cell 728
3	35	50	44	49	28
4	10	22	17	39	17
6.5-9.5	3	2	3	7	4
9-15	2	1	1	3	4
10-16	2	2	1	4	5
12-18.5	1	1	1	2	1
18-19.5	1	1	1	1	1
24	1	1	1	1	1
36	1	1	1	1	1
48	0	1		1	0
60	0	0	0	0	0
72	0	0	0	0	0

Review other larger tolerances above 1 C

Compare soil profiles at locations (potential impact of F-T variations)

Next Steps:

- Compare data of different locations to find the freezing temperature at different locations
- Compare actual and predicted freeze-thaw cycles obtained from the regression analysis
- Implement and test the performance of different complex models (ANN, Multi-layer perceptron model, Support Vector Machine, Neuro-fuzzy inference system, Deep learning algorithms)