Michigan’s Unbonded Overlay Experience

2011 Terra Pavement Conference
February 10, 2011

Michael Eacker
Pavement Design Engineer
Michigan Department of Transportation
MDOT Mission

“Providing the highest quality integrated transportation services for economic benefit and improved quality of life.”
Overview

• Introduction
• Performance Curve
• Lessons Learned
• Research Project
• Other Concrete Overlays
• Local Agency Work
Introduction

- Michigan DOT has used unbonded concrete overlays to rehabilitate concrete and composite pavements since 1984.
- 23 projects totaling 240+ centerline miles.
 - Two projects in 1984
 - US-23 near Dundee – reconstructed in 2003
 - I-96 in Ionia County – still in service
 - Remaining 21 projects from 1990 to present
Introduction

• Thickness from 6” to 8”
• Joint spacing has been 27’ and 41’ for JRCP and 12’ for JPCP (1998 to present).
• 1” to variable thick separator layer
 – Started with variable thickness
 – Moved to uniform 1” thickness
 – Moved to drainable HMA in 2003
• 20 year design life
• Life-cycled against rubblize projects
Performance Curve

• Distress Index (DI) is Mich DOT’s condition measure for modeling performance
• DI is an increasing scale of points assigned to surface distresses and then indexed to 0.1 mile segments
• DI of 50 is considered to be the time to rehab or reconstruct the pavement
• Pre-maintenance DI points modeled with logistic growth curve
Performance Curve

• Average age and DI drop is found for all maintenance work
• Initial growth curve is adjusted based on maintenance averages
• Result for unbonded overlays:
 – Service life = 21 years including one maintenance cycle
Performance Curve

Pavement Preservation Strategy
Unbonded Concrete Overlay

Distress Index vs. Pavement Age
Lessons Learned

- Crown correction
 - Existing pavement = parabolic
 - New pavement = 2% cross-slope
- Initially corrected crown with HMA
- HMA separator layer was a fine mix
 - Edge distress due to HMA compaction under traffic
 - Moved to uniform 1” separator layer with crown correction in the concrete
Lessons Learned

• Poor drainage
 – Water sitting on the separator layer eroding the HMA
 – Edge distresses
Lessons Learned
Lessons Learned
Lessons Learned
Lessons Learned

• Changed to a drainable HMA interlayer
Lessons Learned

- Make sure drainage path is clear

Drainage path stopped by existing dense-graded HMA and shoulder gravel

NOT GOOD!
Lessons Learned

• High side of superelevations very thick due to crown correction
Lessons Learned

- Pre-overlay repair work
 - MDOT has traditionally been very aggressive with repairing all distresses in a concrete pavement
 - Found that we don’t need to have that same level of repair work for the overlay – could save money without loss of performance
 - Now only the most severe cracks/joints are repaired prior to the overlay
Research Project

• “Improved Performance of Concrete Overlays”
• Principle Investigator: Dr. Will Hansen, Univ. of Michigan
• Initiated October 2009
• Completion expected May 2012
• Objectives:
 – Forensic study of existing concrete overlay distresses
 – Recommend changes to pavement design and construction practices
Research Project

• Example of forensic study
 – I-75 near West Branch (built 2003)
 – 5 test sections
 • #1: 10’ joint spacing, undoweled, unsealed
 • #2: 10’ joint spacing, undoweled, sealed
 • #3: 12’ joint spacing, undoweled, unsealed
 • #4: 12’ joint spacing, undoweled, sealed
 • #5: 12’ joint spacing, doweled, sealed
 – Sections 3 and 4 exhibiting longitudinal cracking and slightly more faulting
Research Project
Research Project

- FWD testing, Dipstick® profiling device, coring, pavement removal conducted
- Dipstick® found substantially more curl or warp at the joints in Sections 3 and 4
- Coring and pavement removal confirmed wet conditions in the HMA separator layer in those sections, and HMA stripping/erosion
Research Project

- Also placed temperature sensors in various layers of two projects in 2010
Other Concrete Overlays

• Whitetopping
 – One project on mainline pavement built in 1999
 • 6” w/o fibers, 6” w/fibers, 5” w/fibers, 3” ultra-thin over composite pavement
 • No milling or repair work to existing 4” HMA
 • 10’ transverse joint spacing
 • Some longitudinal cracking
 • Very little difference between sections with and without fibers
 • Some materials related distress at joints
Other Concrete Overlays

– M-46 (cont.)

• Ultra-thin performing poorly
• Large number of 1 meter X 1 meter panels replaced in 2004. Primarily over the edge of the old 20’ wide concrete.
Other Concrete Overlays

– M-46 (cont.)
Other Concrete Overlays

- Whitetopping (cont.)
 - A few intersections
 - Rest area parking lot in 2009
Other Concrete Overlays

• Thin Unbonded Overlays
 – M-3 (2005) and M-1 (2010) in Detroit
 – 4” concrete, 1” separator layer, existing composite pavement (milled 5”)
 – M-3 had several test sections
 • Sealed and unsealed joints
 • Two different HMA separator layers
 – Drainable
 – Standard dense-graded HMA
 • 5.5’ X 5.5’ joint spacing
Other Concrete Overlays

– M-3 (cont.)
 • 200+ drainage/utility structures
 • Many intersections – some at extreme angles
 – Joint layout was very difficult
 • Some cracking of panels
 – Many around structures
 – Some shattered areas found to be very thin (<2”)
 • At this point, still less than 1% of panels showing distress
Local Agency Work

• Whitetopping
 – 45+ locations
 – First project (1996, Traverse City) still in service; in good condition
 – 96% are still in service; most in good or very good condition

– Lessons learned:
 • Line up joints in whitetopping with transitions (widening) below
 • Use lower cement content mixtures
 • In summer, spray down milled HMA to cool down and bring to SSD condition

Courtesy: Michigan Concrete Association
Local Agency Work

Whitetopping Overlays
On Streets & Roads
In Michigan

Courtesy:
Michigan Concrete Association
Local Agency Work

- Thin unbonded overlays
 - 14 projects
 - First project (Coolidge in Royal Oak) still in service; rehabbed (approx 1.5% of project received full depth repairs) for first time in 2008 after 25 years
 - Lessons learned:
 - Use durable (ASR-resistant) mixtures
 - Proper use of expansion joints (needed where Exp. joints located in existing pavement)
 - Spring & fall paving – use cold weather protection, heated water, cover with plastic

Courtesy: Michigan Concrete Association
Thanks to:

Ben Krom, MDOT Pavement Selection Engineer
Andy Bennett, MDOT CPM Specialist for Scoping
Steve Waalkes, Michigan Concrete Association

This presentation utilized information from previous presentations given by these individuals.
Questions???

Michael Eacker
eackerm@michigan.gov
(517) 322-3474