15th Annual TERRA Pavement Conference February 10, 2011

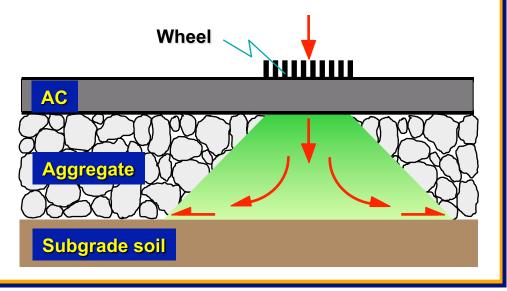
Granular Material Selection for Best Value Pavement Performance

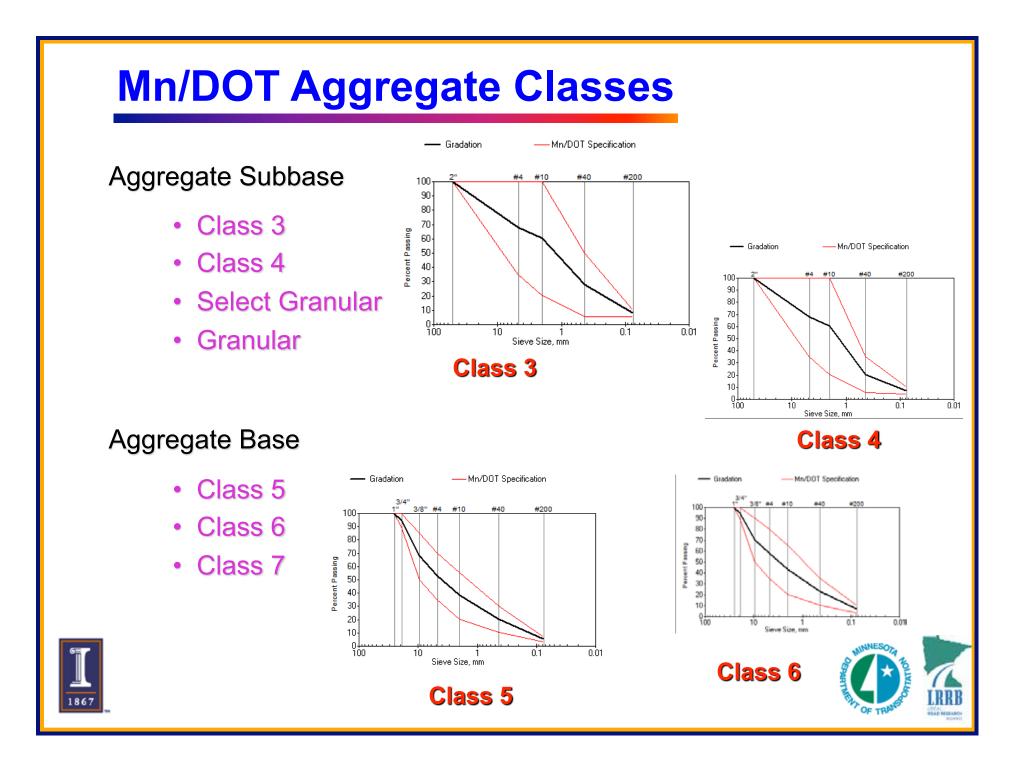
Erol Tutumluer Yuanjie Xiao University of Illinois Urbana-Champaign

LLINOIS

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

John Siekmeier Minnesota Dept of Transportation




T

Introduction

- ü Unbound aggregate base/subbase layers serve the primary purpose of load distribution in flexible pavements
- ü Type and quality of aggregate materials are directly linked to their engineering properties & impact field performances
- ü Economical use of locally available unbound aggregates in pavement layers require mechanistic design inputs of modulus & strength characteristics related to response & performance

Mn/DOT Research Background

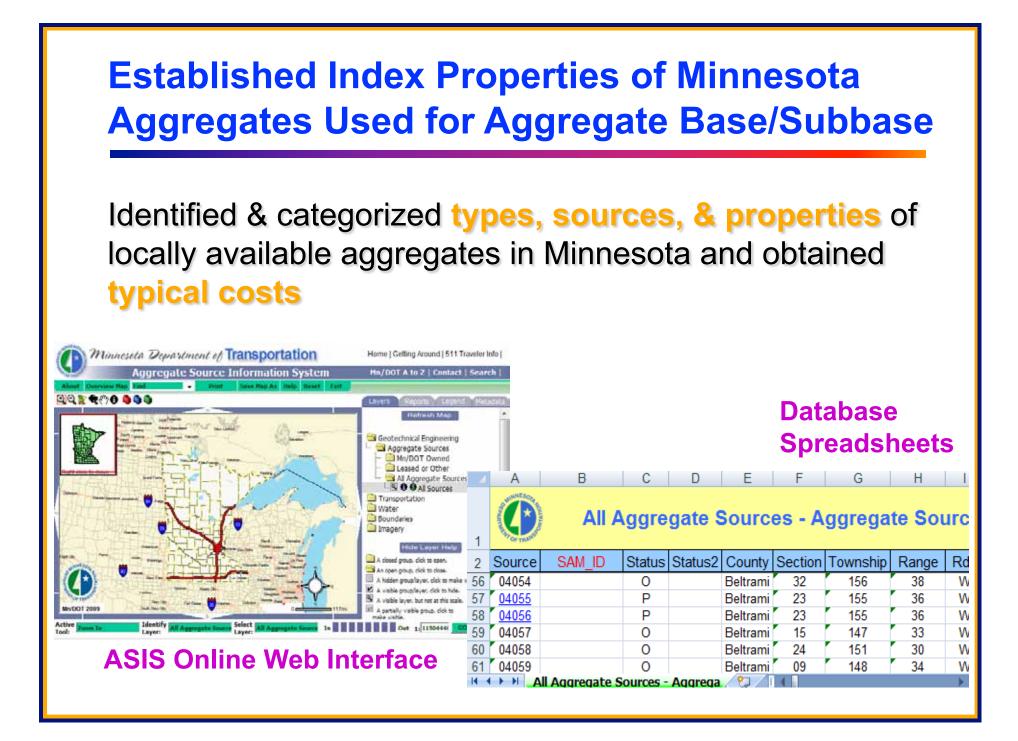
- ü Lukanen (1980) found certain Mn/DOT Class 3 aggregates were even stronger than Class 6 aggregates when placed in pavement granular layers ("Application of AASHO Road Test Results to Design of Flexible Pavements in Minnesota")
- Ü During Mn/ROAD study, similar contradictory trends were also observed in backcalculated base layer moduli from FWD testing of flexible pavements:

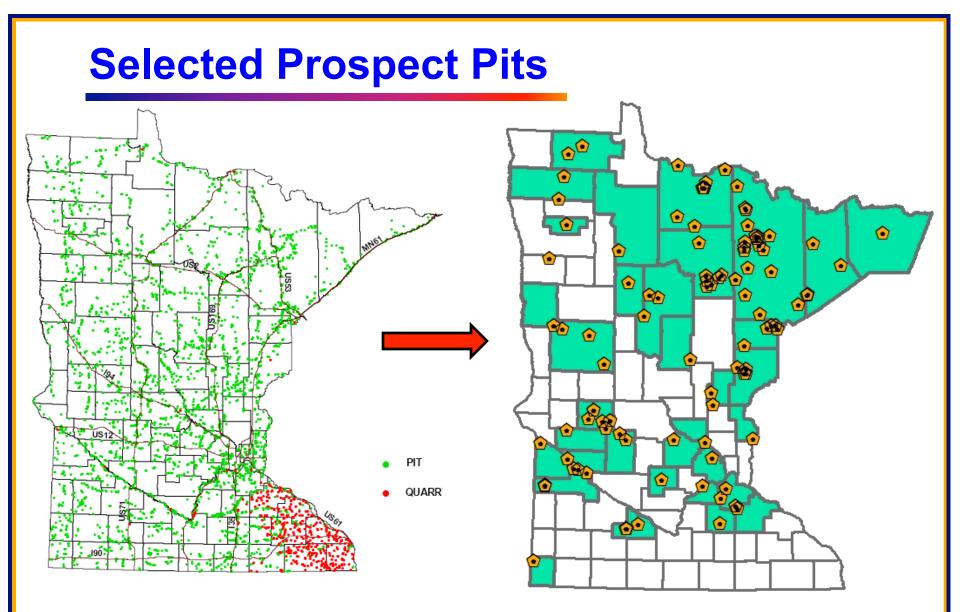
For both thin (<15 cm) and thick (>15 cm) asphalt concrete surfacing, the backcalculated base moduli of Class 3sp materials were often found greater than those of higher classes, i.e., 4sp, 5sp, and 6sp

ü These surprising field evaluation findings indicate it may be challenging how to best utilize different qualities of locally available aggregate materials in road bases/subbases

Research Project Objective

ü Demonstrate that locally available materials can be economically efficient in the implementation of the available mechanistic based design procedures in Minnesota through


MnPAVE Mechanistic-Empirical Pavement Design Method



- ü Develop the components of a new granular material best value software module to be added to the MnPAVE program
- i Provide pavement designers with index aggregate properties linked to modulus & strength characteristics
 and include example pavement designs

 87 prospect pits with most reliable gradation selected for demonstrating the methodology

Established Aggregate Database

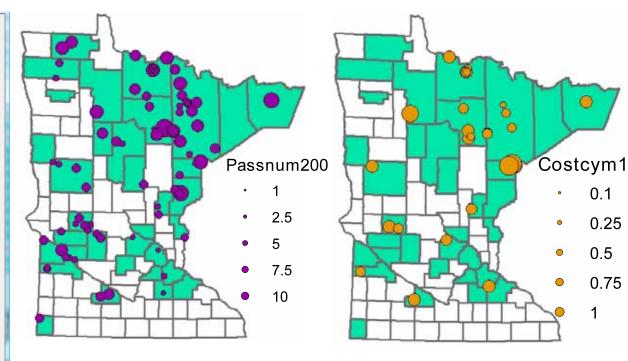
ArcGIS based Database Management System (DBMS) was developed for storing, retrieving and displaying aggregate index properties (87 counties)

III Attributes of Selected Prospect Pits

	PITNUM	County	UTM_X	UTM_Y	Class	Mclass1	Quan1	Costcym1	Yrpricecl1	Avg % Pass 5/8 in	P 🔺
E	04090	Beltrami	341700	527340	С	6	35000	1.99	2006	<null></null>	
E	08014	Brown	366562	490442	С	5	50300	<null></null>	<null></null>	<null></null>	\Box
L	08024	Brown	351343	489889	С	4	500000	<null></null>	<null></null>	<null></null>	
	08054	Brown	350770	489951	С	4	500000	1	<nul></nul>	<null></null>	
	09041	Carlton	510000	514540	С	<null></null>	97000	<null></null>	<null></null>	<null></null>	
1L	09044	Carlton	554084	516699	С	5	81250	1.25	2007	<null></null>	
II.	09048	Carlton	546398	517238	С	6	41800	2.5	2006	<null></null>	<
Ð	09053	Carlton	552421	517174	С	<null></null>	<null></null>	<null></null>	<null></null>	<null></null>	
	09068	Carlton	540725	516892	С	4	800000	2.38	2005	<null></null>	
	11009	Cass	382198	521284	С	3	448000	<null></null>	<null></null>	<null></null>	
	11048	<null></null>	394106	520926	<null></null>	<null></null>	<null></null>	<null></null>	<null></null>	<null></null>	
	12006	Chippewa	297918	497442	С	6	5000	<null></null>	<null></null>	<null></null>	
	12017	Chippewa	272146	499307	С	5	64000	<null></null>	<null></null>	<null></null>	
	12050	Chippewa	286190	497821	С	6	142000	<null></null>	<null></null>	<null></null>	
	13023	Chisago	521528	501971	С	6	100000	<null></null>	<null></null>	<null></null>	
	14045	Clay	253851	517259	С	5	75000	<null></null>	<null></null>	<null></null>	
	16069	Cook	696363	529694	С	<null></null>	<null></null>	1	<null></null>	<null></null>	
	18062	Crow Win	436923	512684	С	5	135000	<null></null>	<nul></nul>	<null></null>	
I	19040	Dakota	478337	493995	С	5	160000	<null></null>	<null></null>	<null></null>	
	19048	<null></null>	498826	492949	<null></null>	<null></null>	<null></null>	<null></null>	<null></null>	<null></null>	<
	25044	Goodhue	500631	492605	С	5	105000	1	2004	<null></null>	<
	27111	Hennepin	467197	499374	С	6	275000	<null></null>	<null></null>	<null></null>	-
											P
Record: I 8 I Show: All Selected Records (0 out of 99 Selected) Options											

DBMS Functions:

• Search


- Store
- Retrieve
- Display

GIS based Aggregate Index Property Database

Aggregate Database Example

Enter a WHERE clause to select records in the table window.									
Method : Create a new selection									
"Prospect_Pits.FID" "Prospect_Pits.PITNUM" "Prospect_Pits.UTM_X" "Prospect_Pits.UTM_X" "Sheet 1\$.Source" "Sheet 1\$.SAM_ID"									
=	<>	Like	'04090' '08014'						
>	>=	And	'08024'						
<	< =	Or	'08054' '09041' '09044'						
_ %	0	Not	09048	-					
ls			Get Unique Values Go To:						
SELECT	SELECT * FROM Prospect_Pits_Sheet1\$ WHERE:								
"Prospe	ect_Pits.I	PITNUM''	' = '04090'	*					
				Ψ.					
Clea	ar	Verify	Help Load	Save					
			Apply	Close					

• Retrieve and graphically display features

Search for features

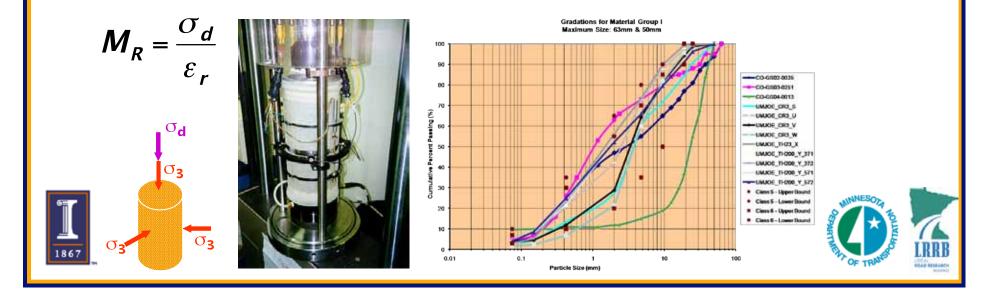
1867

- Spreadsheets & Maps of 87 selected prospect pits
- ASIS database spreadsheets for 87 Minnesota Counties merged with reliable prospect pit gradations

0.1

0.25

0.5


0.75

0

Collected Aggregate Characterization Inputs

Mechanistic pavement analysis & design inputs resilient modulus (M_R) & strength properties, for unbound aggregate base/subbase applications, together w/ corresponding aggregate index properties

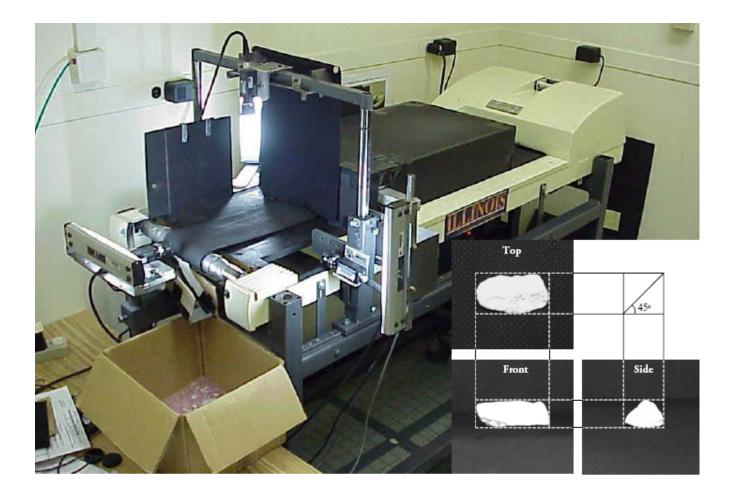
 Databases collected from relevant Mn/DOT, University of Minnesota and University of Illinois research studies

Linked Modulus to Aggregate Properties

Established linkages between collected laboratory aggregate M_R and strength data and aggregate physical index properties for identifying mechanistic design moduli ranges

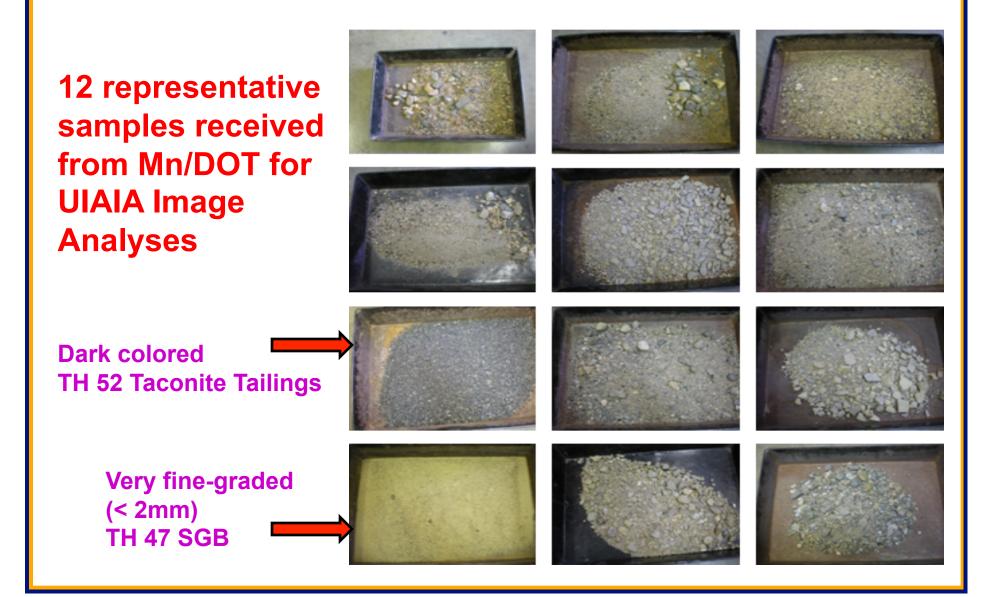
- gradation
- fines content
- Plasticity Index (PI) of fines
- moisture state in relation to optimum moisture content (OMC) or density achieved in relation to maximum Proctor density (MDD)
- Shape properties (flat & elongated ratio, texture and angularity)

Regression Models Developed for Predicting Modulus from Aggregate Source Properties


$$\begin{cases} M_{R} = k_{r}P_{a} \left(\frac{\theta}{P_{a}}\right)^{k_{0}} \left(\frac{\tau_{oct}}{P_{a}} + 1\right)^{k_{0}} \\ k_{r} = 10^{\left(137862 \cdot 0.04124_{logor} \cdot 0.00478_{dv} - 0.29437^{\theta}_{Oopt} + 0.001185ANC}\right)} \\ (R^{2} = 0.1399; Adj. R^{2} = 0.1307; p<0.0001; MSE = 0.05216) \\ k_{2} = 1.60611 - 0.011970 + 0.00569_{d} - 0.0001512^{\frac{y^{2}}{2}}_{P_{40}} - 0.0387C_{u} - 0.42692C_{c} - 0.01108_{3/4^{u}} \quad (Eq. 1) \\ (R^{2} = 0.3177; Adj. R^{2} = 0.3066; p<0.0001; MSE = 0.0252) \\ k_{3} = -9.86685 + 0.00065188^{\frac{y^{2}}{2}}_{P_{40}} + 0.00734_{u} + 0.06722 + 0.01585_{3/4^{u}} + 0.00894P_{40} \\ (R^{2} = 0.3940; Adj. R^{2} = 0.3858; p<0.0001; MSE = 0.1740) \end{cases}$$

Poor Correlations! – No Aggregate Shape Properties

1867



Imaging Based Aggregate Shape Indices

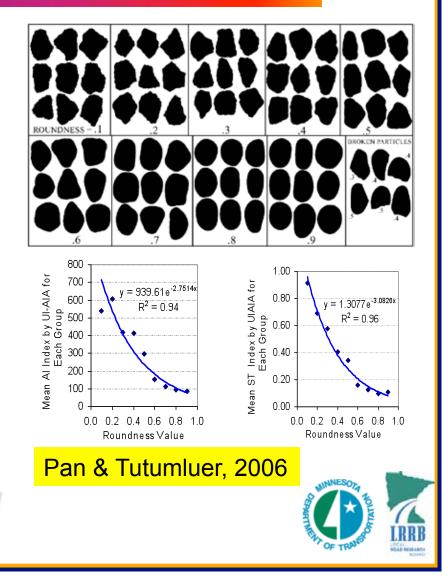
The University of Illinois Aggregate Image Analyzer (UIAIA) System

Image Analyses of Mn/DOT Agg. Samples

Imaging Results of Mn/DOT Agg. Samples

	Average Values						
Bag Sample	F&E Ratio	Angularity Index (Al)	Surface Texture (ST)	Surface Area (SA, in²)			
TH 14/15 CL 5	2.717	306.7	0.898	1.3783			
CO RD 14 CL 5	2.031	343.5	1.002	1.9765			
TH 23 CL 6m	3.705	380.4	1.024	1.9866			
TH 371 CL 6	10.605	464.3	0.808	40.9664			
Olmsted CL 5	2.0535	414.0	1.640	3.1968			
TH 16 CL 6	1.843	452.9	1.531	2.2317			
Olmsted CL 5 M	2.024	430.5	1.638	2.7186			
TH 52 SG	7.403	400.1	0.8211	13.5162			

Regression Models Developed for Predicting Modulus from Aggregate Source Properties


$$\begin{bmatrix} M_{R} = k_{1}P_{a} \left(\frac{\theta}{P_{a}}\right)^{k_{2}} \left(\frac{\tau_{oct}}{P_{a}}+1\right)^{k_{3}} \\ (0.132-0.01 (F_{Rat}) = 0.055T - 0.026_{opt} - 0.628^{(0)}_{opt} + 0.000^{2}_{P_{40}} + 1.197_{e}) \\ (R^{2} = 0.5523; Adj, R^{2} = 0.5313; p<0.0001; MSE = 0.0178) \\ k_{2} = 1.573 + 0.007_{d} - 0.0009^{2}_{P_{40}} - (0.13P_{10} - 0.046P_{200} (Eq. 2)) \\ (R^{2} = 0.5062; Adj, R^{2} = 0.4910; p<0.0001; MSE = 0.0373) \\ k_{3} = -15.914 + 0.04 (F_{E_{Rat}}) + 0.00(4A) + 0.015_{d} + 0.488^{(0)}_{Oopt} - 0.000^{2}_{P_{40}} \\ + 0.246 \frac{P_{200}}{\log C_{u}} + 0.145P_{2'} - 0.057P_{1''} \\ (R^{2} = 0.6633; Adj, R^{2} = 0.6419; p<0.0001; MSE = 0.03328) \\ Improved Correlations with Imaging based Aggregate Shape Properties \\ \end{bmatrix}$$

Aggregate Shape Indices Needed for Predicting Base/Subbase M_R Behavior

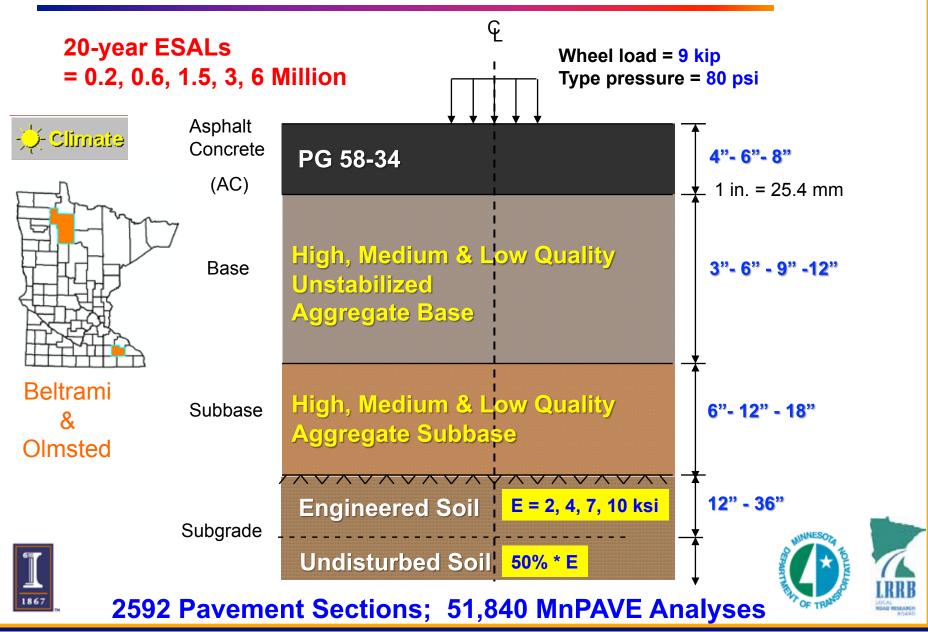
<u>Approaches</u>

1867

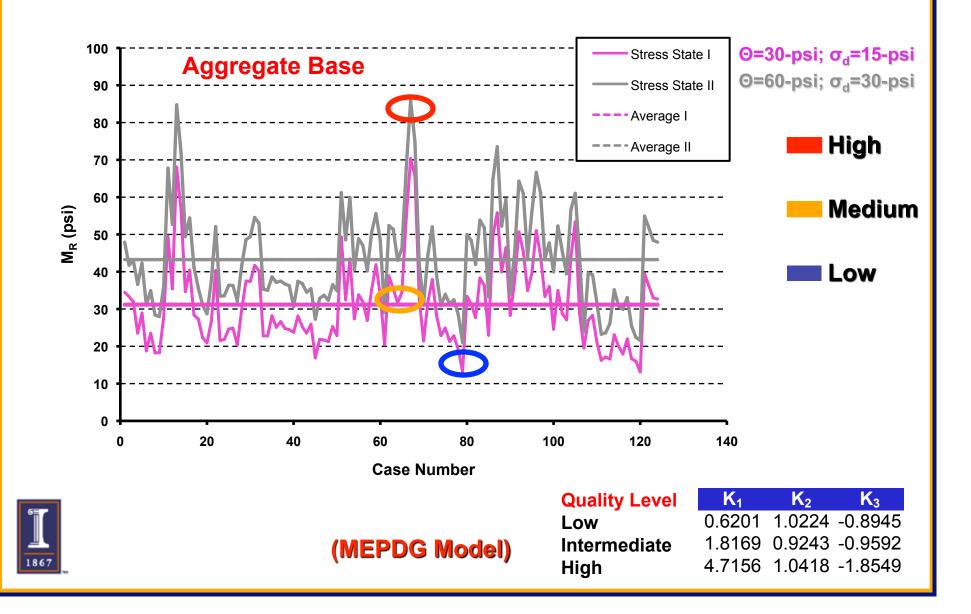
- 1. Guidelines can be developed using current data for entering some visual shape categories and linking them to the imaging based quantifiable shape index variables (FE_Ratio, AI, & ST)
- Determination of aggregate shape indices from field high-resolution images using fragmentation/segmentation technique can be implemented

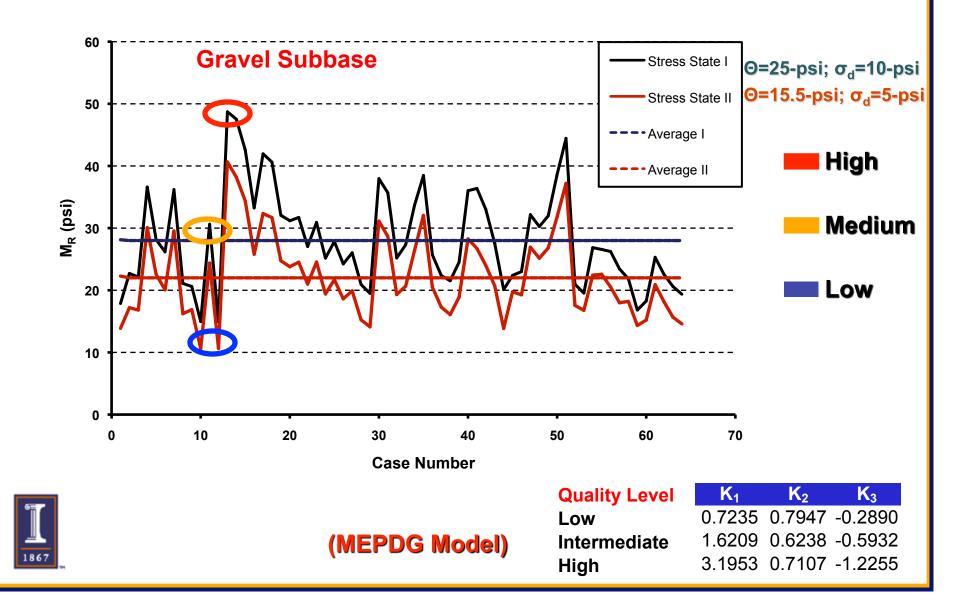
MnPAVE Pavement Designs for Performance

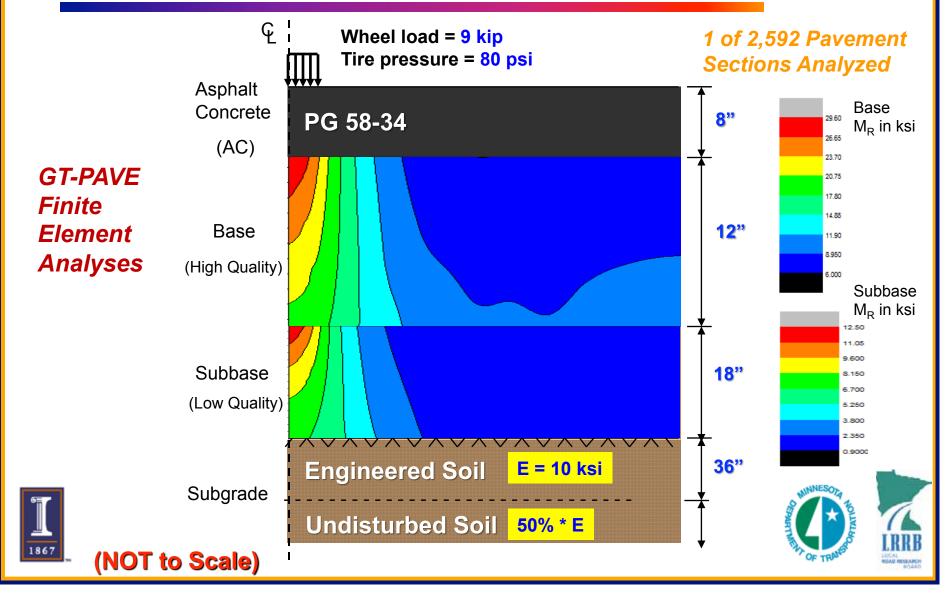
- ü Established a comprehensive matrix of design moduli for various aggregate types and properties used for typical flexible pavement sections throughout Minnesota
- ü Identified sensitivity of the design inputs (mainly design moduli) to pavement life expectancies MnPAVE Mechanistic-Empirical Pavement Design Method

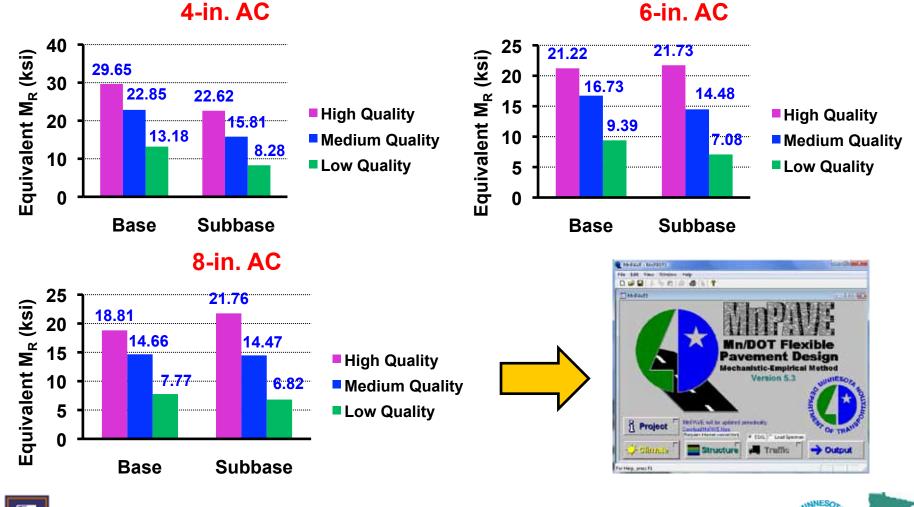

MnPAVE Mechanistic Design Objectives

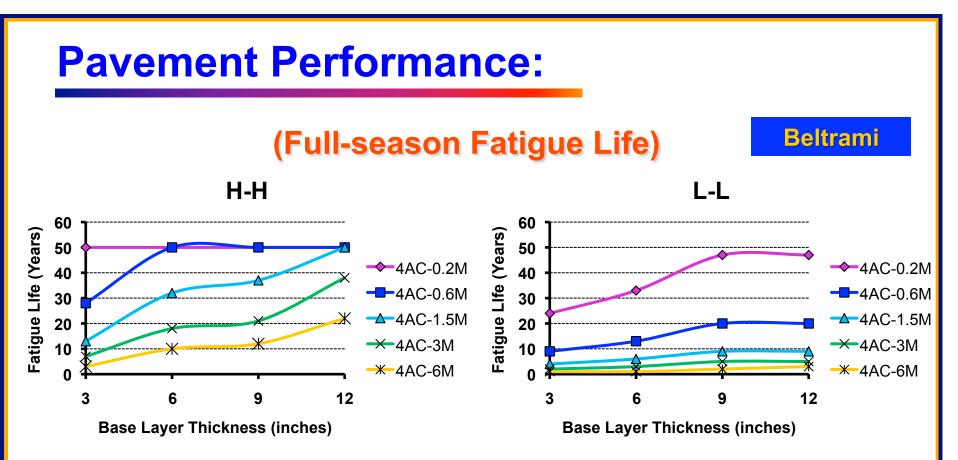
- ü Instead of using unbound aggregates of higher quality, exploit the potential of cost-effectively maintaining satisfactory pavement performance with the use of readily available marginal materials
- ü Investigate where in pavements to place locally available materials of marginal quality
- ü Determine the optimum combination of high and marginal quality aggregate uses with design features and site factors taken into account




MnPAVE Sensitivity Analysis Matrix


Representative Moduli for Base Layer

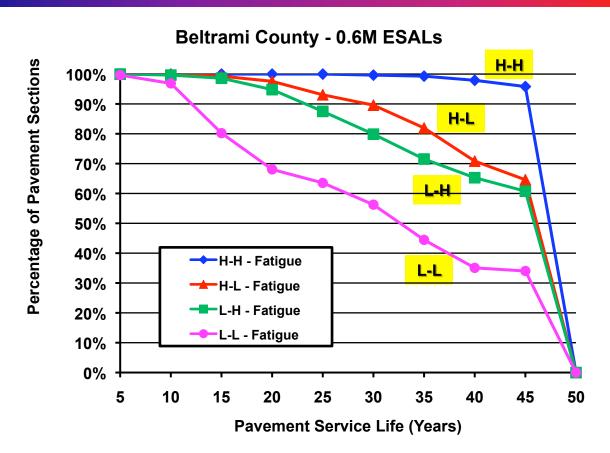

Representative Moduli for Subbase Layer


Typical Nonlinear M_R Distributions Predicted In Base/Subbase Layers

Equivalent Avg M_R Values Linked to Quality

Note that in some cases, the granular subbase materials had higher moduli than the aggregate base materials

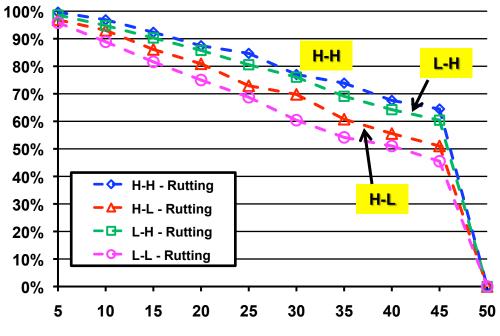
- 1) For the same thicknesses, pavements with high quality base/subbase materials can last for many more ESALs (horizontal line)
- 2) With low quality base materials, increasing base layer thickness does not seem to help much (not enough support under AC)



For low-volume roads, using locally available materials may be more cost-effective

H-H: high M_R levels for both base and subbase L-L: low M_R levels for both base and subbase

Effect of Aggregate Quality on Fatigue



 Decreased aggregate base/subbase quality significantly reduces longterm fatigue performance; high and low quality combinations for base and subbase (H-L and L-H) fall in between (solid lines)

Beltrami – 0.6M to 1.5 M ESALs

Effect of Aggregate Quality on Rutting

Pavement Service Life (Years)

- If high quality subbase materials are used, the quality of base materials seems to have trivial effect on rutting performance
- For low-volume roads, locally available materials may be used in base layer while better quality materials are used for subbase to tradeoff the rutting and fatigue performances – Inverted Pavements ???

Beltrami – 0.6M to 1.5 M ESALs

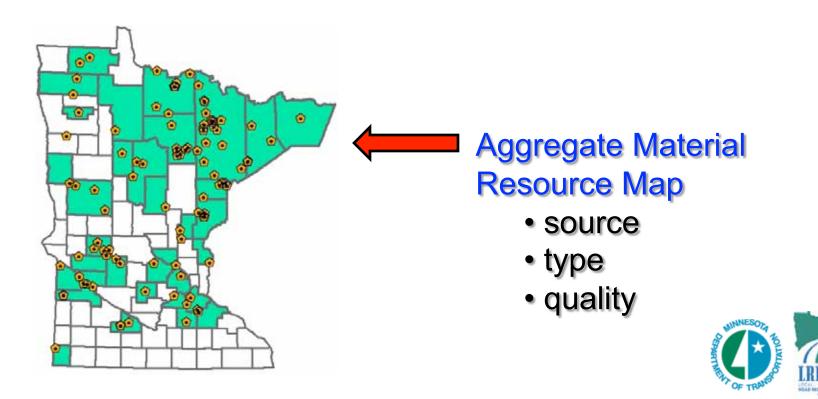
Effect of Aggregate Quality – High Traffic

 For high traffic volume – 6M ESALs, rutting performance seems to be insensitive to unbound aggregate material quality (dotted lines) due to thicker HMA; but fatigue performance is very sensitive (solid lines)

Beltrami – 6 Million ESALs

Validation of MnPAVE Findings for Strength

Collect additional **aggregate strength data** from the available M_R tests and other existing Mn/DOT laboratory and field (*MnROAD*) studies to evaluate established trends in the M_R database. This is an essential task for:


- Verifying and accurately interpreting the sensitivity analysis results (primarily assumed different M_R modulus levels could be linked to high, medium, and low material quality standards, in relation to strength properties)
- Ensuring <u>performance</u> through the established M_R-strength relationships for different Mn/DOT aggregate classes from field FWD-backcalculation and strength data

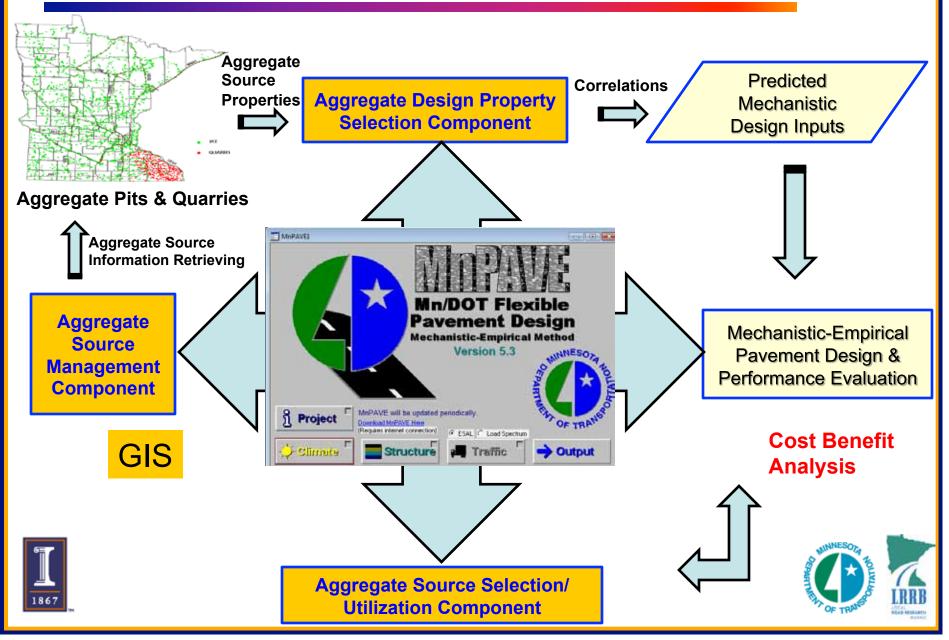
Best Value Granular Material Selection

Develop best value software tool components to incorporate into the MnPAVE program and implement mechanistic pavement design concepts in aggregate selection/utilization

1867

Implementation of Best Value Granular Material Tool Components into MnPAVE

This is an essential task for implementing research findings and coding developed modules/components into MnPAVE


- GIS-based Aggregate Source Management Component provides candidate aggregate source locations & properties
- Aggregate Property Selection Component for Design determines modulus and strength input properties for mechanistic pavement analysis and design concepts
- Aggregate Source Selection/Utilization Component evaluates/optimizes aggregate cost and performance benefit and used in decision making for design

Prepare Example Pavements & Case Studies

Flowchart for Designing Components

Expected Benefits

- (i) Proper material selection & utilization according to aggregate properties
- (iii) Aggregate layer thickness optimizations during the design process based on cost and mechanistic material properties related to performance, and as a result;
- (iv) More economical use of the locally available aggregate materials in Minnesota

The benefits & costs of implementing new mechanistic design procedures & material testing techniques would be demonstrated by these designs

