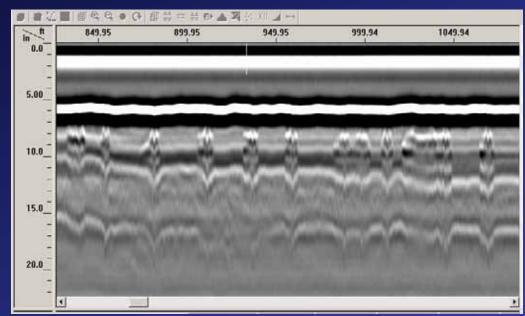
Performance Evaluation of Asphalt Pavements with Full-depth Reclaimed Base

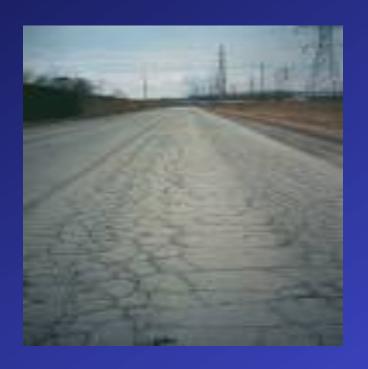
Shongtao Dai, Ph.D, PE
Office of Materials and Road Research

Todd Thomas, PE, Road Science, LLC

Minnesota Pavement Conferences


Office of Materials and Road Research

Feb. 10, 2011


Background

- Full depth reclamation (FDR)
 - A widely used method for pavement rehabilitation
 - Pulverize the entire pavement surface layer and blends it with a portion of granular base/ sub-base material (typically 50-50).

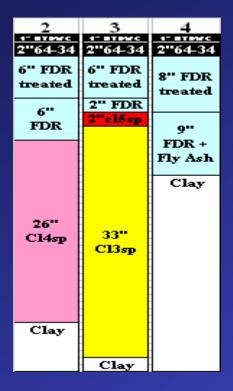
- Eliminate all distress areas.
- Eliminate potential for reflective cracking.

Stabilized FDR (SFDR)

- Counties have started to use
- Add stabilizer to FDR
 - ◆ Engineered emulsion, base I and fly ash.
- Increase stiffness of base --reduce HMA overlay thickness.
 - Significant cost saving

Research Project

Objective


Evaluate performance of stabilized full-depth reclamation materials used for pavement base layer.

Selected Projects

- MnROAD three test sections
 - Cooperative research project between Road Science LLC. and Mn/DOT
 - → I-94 (Feb. 09)

Several county project

				Stabilizer	Construct	Thickness		Stabilized	
County	Road	Project Limits	Stabilizer	Content	ed	(inches)	Stabilized Depth	Aggregate	}ubgrade Soil:
LeSueur	CSAH 2	CSAH 11 to S. Jct. CSAH 5	Clace C fly ach	6%	2008	6"	12"	0.0"	Plastic
		CSAH 13 to 0.5 mile S. of	Emulsion and Class C	3.5% Emulsion,					
LeSueur	CSAH 13	CSAH 12	fly ash	2% fly ash	2008	6"	7"	1-3"	Plastic Class 4
Pope	CSAH 28	CR 79 to TH 55	T15 Base One	.004 gal./yd2/ir	2007	3.5"	4"	4"	(sand- gravel)
	CSAH 29	TH 104 to TH 55	none.	n/a	2004	3.5"	n/a	8"	(sand- gravel)
Goodhue	CSAH 30	TH 56 to CSAH 1	Fortress	4.50%	2008	stabilized 2.5" and 1.5" HMA on	6" w. Fortress,	8"	n/a
Olmsted	CSAH 13	W. County Line to CSAH 3	Fortress	3.85%	2005	4"	6"	5.75"	n/a

Empirical Equation to estimate GE:

$$R = (0.41+0.873*Mr)^1.28$$

$$Log(BB_{80}) = 2.65 - 0.016GE - .56Log(R)$$

- Mn/DOT uses granular equivalence (GE)
 - ◆ Granular material (Class5): GE=1

Some preliminary results

- Olmsted CSAH 13
 - ◆ 4"HMA, 6" SFDR (7.75"HMA+ 2.5"Agg +3.85%Em) Effective GE = 24; GE (SFDR) = 1.9
- Pope CSAH 29 and CSAH 28
 - ◆ CSAH 29: 3.5" HMA; 8" FDR (50-50)
 - ◆ CSAH 28: 3.5" HMA; 4" SFDR (Base One); 4"FDR

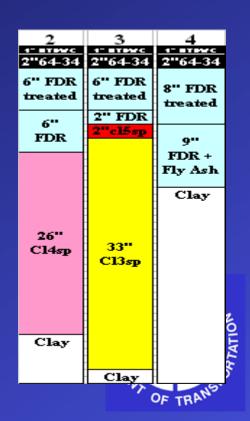
CSAH 29: Eff. GE=17; GE(FDR) = 1.6

CSAH 28: Eff. GE=18; GE(SFDR) = 1.9

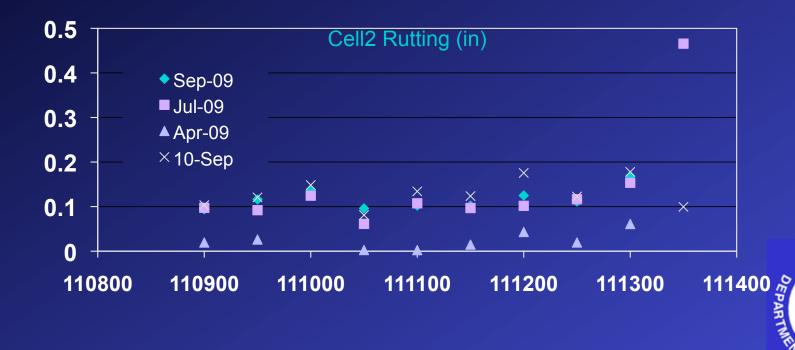
MINESON

■ LeSueur CSAH 2 and CSAH 13

- ◆ CSAH 2: 6" HMA over 12" SFDR (6% Fly ash) over subgrade.
- CSAH 13: 6" HMA over 7" SFDR (3.5% emulsion & 2% fly ash) over 3" non-stabilized agg. base.


GE of CSAH2 SFDR is about 1.8
GE of CSAH 13 SFDR is about 2.1??

MnROAD (Cell 2,3 and 4)


Cell2: FDR - 50-50 (4.25% Em); GE = 1.5

Cell3: FDR - 75-25 (3.5% EM); GE = 1.8

Cell4: FDR - 100RAP (3.25%EM); GE=1.4

- ◆ Interstate traffic (I-94): 1.2 M ESAL
 - → Feb.09 Jan. 11
- No cracks
- Normal consolidation

MINNESON

MnROAD Test Section (Cell 2, 3, 4)

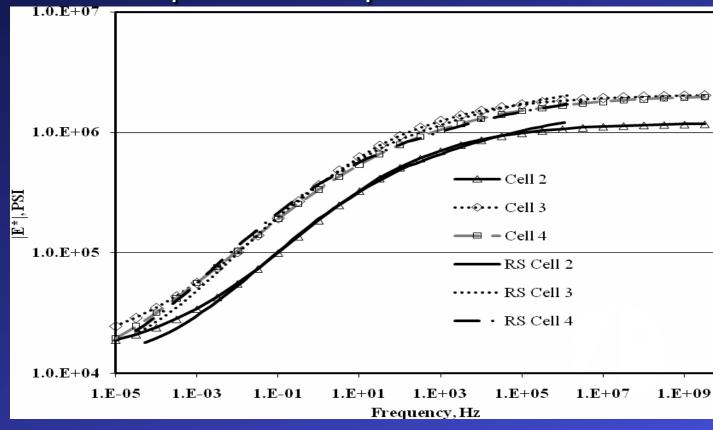
- TERRA Cooperative Research Project
 - Road Science LLC and Mn/DOT
 - * Study how the emulsion-stabilized FDR in the different sections affects pavement performance in an accelerated loading scenario (interstate)
 - Demonstrate viable rehabilitation options for flexible pavements
 - Demonstrate how stabilization is optimized based on quantity of RAP and depth

Mix Design

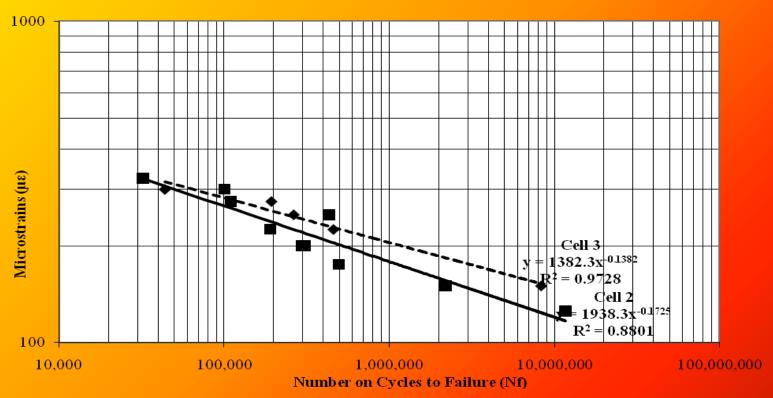
- Increase the probability of a successful project
- Additive type determination and check compatibility
- Determine additive quantities and other requirements such as water
- Is add-rock or a secondary material required?
- Provide QC targets
- Sampling is very important

Mix Design

- Mixing with multiple contents Engineered Emulsion
- High shear mixer for thorough mixing
- Superpave Gyratory Compaction 30 gyrations
- Curing to simulate short-term or long-term strength
- Testing


Mix Design

	Cell 2	Cell 3	Cell 4	Shoulder	Specs
RAP/base blend	50 / 50	75 / 25	100% RAP	50 / 50	
Design emulsion, %	4.0	3.0	0.75	4.5	
Air voids, %	10.2	9.3	13.2	10.0	
Short-term strength	241	276	430	225	175 g/25 mm, min.
ITS at 25°C	52	59	51	59	40 psi, min.
Conditioned ITS at 25°C	25	30	33	25	25 psi, min.
Critical cracking temp.	-32°C	-42°C	-31°C	-46°C	-27°C at 2 inches


Dynamic Modulus (AASHTO TP-62)

- ◆ E* test -- Mn/DOT and Road Science
- Input for all layers to predict deflection when a load is applied – estimation of pavement response

Fatigue – Road Science

Cell 2	Cell 3	Cell 4	Shoulder
1 inch TBWC	1 inch TBWC	1 inch bonded 64-34 HMA	Micro surfacing
2 inches 64-34 HMA	2 inches 64-34 HMA	2 inches 64-34 HMA	4 inches FDR-EE (50/50 blend)
6 inches FDR-EE (50/50 blend)	6 inches FDR-EE (75/25 blend)	8 inches FDR-EE (100% bituminous)	36" base (Cells 2 & 3) 5" base (Cell 4)
6 inches untreated FDR (50/50 blend)	2 inches untreated FDR (75/25 blend)	9 inches Class C fly-ash treated clay	Clay
26" Class 4 base	2" Class 5 base over 33" Class 3 base	Clay	
Clay	Clay		8

Reclaimer used for prepulverization, emulsion addition, and fly ash stabilization of Cell 4 subgrade

- Padfoot compactor for breakdown compaction, followed by motor grader
- Followed by finish rollers
- Normally opened to rolling traffic after finish rolling

- Crushed RAP placement in Cell 4. The HMA surface had been removed for fly ash stabilization.
- After RAP placed back down, it was reclaimed with emulsion

- Placement of HMA on emulsion-stabilized base
- Normally a few days to a week of curing before overlay. Measure inplace moisture.

Micro surfacing being placed on shoulder

Current Performance

- No cracking as of last fall.
- Normal deformation of 0.15 inch
- Currently ~1/2 of design ESALs

Summary and Conclusions

- SFDR seems a good pavement rehabilitation option that can be used in cities, county roads, or state highways.
 - Initial testing shows SFDR is stronger.
- SFDR sections at MnROAD are performing very well so far.

Summary and Conclusions

- Mix design procedures have been developed and have good track record
- Construction needs
 - Project selection
 - Sampling
 - Water content
 - ◆ Emulsion content
 - Compaction
 - ◆ Time to overlay

