Early Performance of Concrete Pavement Overlays in Minnesota

15th Annual TERRA Pavement Conference February 10, 2011

Tom Burnham, P.E.

Minnesota Department of Transportation

PCC OVERLAYS

- Becoming more popular in Minnesota
 - q Why????
 - \$ More competitive on first cost basis
 - \$ Federal stimulus money
 - \$ Mn/DOT Innovation funding
 - q Good performance
 Standard (thick) unbonded concrete overlays have performed very well
 - q What's new
 How thin can we go?

PCC OVERLAYS

Unbonded

- § Used over distressed PCC pavements requiring additional structural capacity
- § Thickness
 - "Standard" or most common > 7.5"
 - "Thin" < 7"
- § Interlayer
 - To prevent reflective cracking and provide "cushioning" between rigid layers
 - > PASSRC (Permeable Asphalt Stabilized Stress Relief Course)
 - > Dense graded HMA (new)
 - > Milled HMA (existing composite pavement)
 - > Fabric (new to Minnesota)

PCC OVERLAYS

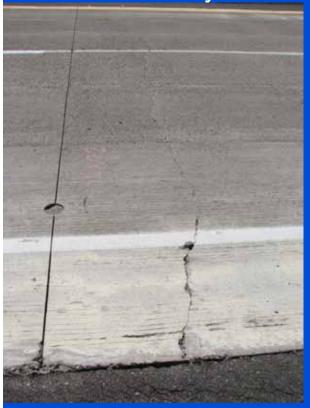
Bonded

- § Used over distressed HMA pavements (aka whitetopping)
- § Thickness
 - "Standard" = 6" or more (bond not critical)
 - "Thin" = 4" to 6" (temporary bond beneficial)
 - "Ultra-thin" = 4" or less (bond is critical)
- § HMA prep
 - Milling (inlays)
 - Pre-overlay repairs for true "overlays"

Early PCC Overlay Performance in Minnesota

- Unbonded Overlays
 - MnROAD Cells 105-405
 - TH53 Twig
 - TH 212 Renville to Danube

MnROAD Cells 105-405, Thin UBOL


Design Details:

- Thickness = 4" and 5"
- Panel size = 15'L x 14'/13' (driving/passing)
- PASSRC interlayer
- Unsealed joints
- I-94 traffic
- 14 year joints vs broken joints

MnROAD Cells 105-205, Thin UBOL

- Early Performance = poor
 - More than 80% of 4" thick panels cracked within 2 years
 - Cause: Excessive curling of thin slabs
 - Distress from impact loads
 - To be replaced in 2011 with 5", 6'L x 6'/7.5'W panels over fabric interlayer

MnROAD Cells 305-405, Thin UBOL

- Early Performance = fair
 - 40% of 5" thick panels cracked within 2 years
 - Less cracked panels over non-broken joints

TH 53 Twig, Thin UBOL

Design Details:

- Southbound lanes constructed 2008, N.B. 2009
- Thickness = 5"
- Panel size = 12'L x 12W' (also section with 6'x6')
- Dense graded HMA interlayer
- Unsealed joints
- Some panels reinforced
- Heavy truck traffic
- 36 year existing "joints"

- Early Performance = fair
 - Numerous transverse cracks within 6 months
 - Corner and longitudinal cracks now progressing

Crack in 6' x 6' panel

Wide joints – Would hot-pour sealant be effective?

- Early Performance = good
 - Some transverse cracks

TH 212 Renville to Danube, UBOL

- Design Details:
 - Constructed 2009
 - Thickness = 8" (Standard)
 - Panel size = 15'L
 - Milled existing HMA interlayer
 - 11 dowels/joint
- Early Performance = Very good

Early PCC Overlay Performance in Minnesota

- Bonded Overlays (whitetopping)
 - MnROAD Cells 114-914
 - I-35 North Branch
 - CSAH 9 Harris
 - CSAH 7 Hutchinson
 - TH 23 Marshall
 - CSAH 46 Albert Lea
 - TH56 West Concord

MnROAD Cells 114-514, Thin Whitetopping

- Design Details:
 - Thickness = 6"
 - 6'L x 6'W panels
 - Remaining HMA (5-6.5")
 - Doweled (2' c. to c. spacing) vs undoweled
 - Unsealed joints
 - I-94 traffic

Study Objective: Effect of remaining HMA thickness

MnROAD Cells 114-514, Thin Whitetopping

- Early Performance = Good
 - A few panels cracked, Cells 114 and 314
 - Insufficient remaining HMA thickness (5") or bad material?

MnROAD Cell 614, Thin Whitetopping

- Design Details:
 - Thickness = 6"
 - 12'L x 6'W panels
 - Remaining HMA thickness = 7"
 - Flat dowels (1' c. to c. spacing)
 - Unsealed joints
 - I-94 traffic

MnROAD Cell 614, Thin Whitetopping

- Early Performance = Good
 - One longitudinal crack
 - Cause: Refill of core hole?

MnROAD Cells 714-914, Thin Whitetopping

Design Details:

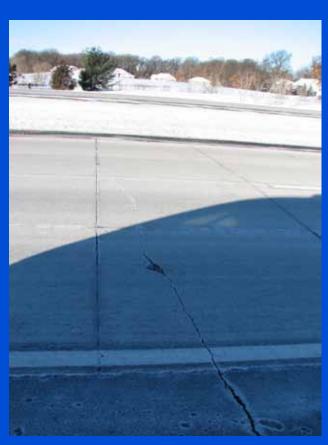
- Thickness = 6"
- 6'L x 6'W panels
- Remaining HMA thickness = 8"
- Doweled (2' c. to c. spacing) vs undoweled
- Unsealed joints
- I-94 traffic

Study Objective:

Effect of remaining HMA thickness

MnROAD Cells 714-914, Thin Whitetopping

- Early Performance = Very Good
 - No distresses (other than popouts)
 - Sufficient remaining HMA thickness = 8"?


I-35 North Branch, Thin Whitetopping

Design Details:

- Constructed 2009
- 7.1 miles
- Thickness = 6"
- Milled HMA (4" inlay)
- Remaining HMA = 8"
- 6'L x 6'W panels
- Undoweled
- Ties between panels and lanes
- Sealed joints
- I-35 traffic

I-35 North Branch, Thin Whitetopping

- Early Performance: Good
 - Multiple transverse cracks with first 6 months
 - Cause: Reflective cracking from underlying bonded HMA
 - Feb 2011: Little change in distresses

I-35 North Branch, Thin Whitetopping

Cracks in shoulder do not always reflect

CSAH 9 Harris, Whitetopping

- Design Details:
 - Constructed 2010
 - 1.1 mile
 - Thickness = 7"
 - Milled HMA (7" inlay)
 - 15'L x 12/14'W panels
 - 3 dowels in OWP only
 - Sealed joints
 - Heavy local truck traffic

CSAH 9 Harris, Whitetopping

- Early Performance = Very good
 - No visible cracks

CSAH 7 Hutchinson, Thin Whitetopping

Design Details:

- Constructed 2009
- 2.5 miles
- Thickness = 5"
- Average milling depth = 3.6"
- Remaining HMA = 8" (var.)
- 6'L x 6'W panels
- Undoweled
- Unsealed joints
- Local traffic (ADT=2200)

CSAH 7 Hutchinson, Thin Whitetopping

- Early Performance: Good
 - One reflective crack near driveway

No reflective cracking into inlay

Reflective cracking into PCC from HMA driveway entrance?

TH23 Marshall, Whitetopping

- Design Details:
 - Constructed 2009/2010
 - 8.3 miles
 - Thickness = 7.5"/8.5"
 - Average milling depth = 3"
 - 15'L x 13/14'W panels
 - 11 dowels across joints
 - Sealed joints
 - Heavy truck traffic
- Early Performance = Very good?
 (Could not safely evaluate due to weather conditions)


TH23 Marshall, Whitetopping

CSAH 46 Alden to Albert Lea, Thin Whitetopping

Design Details:

- Constructed 2009
- Thickness = 6"
- Milled HMA (2")
- 15'L x 13.5'W panels
- 3 dowels in OWP only
- Unsealed joints(?)
- Traffic?

CSAH 46 Albert Lea, Thin Whitetopping

- Early Performance: Very Good
 - No visible distresses

TH 56 West Concord, Thin Whitetopping

- Design Details:
 - Constructed 2010
 - 6.2 miles
 - Thickness = 6"
 - Milled HMA (2")
 - Remaining HMA = 8.5" (very poor condition)
 - 15'L x 13.5'W panels
 - 11 Dowels
 - Sealed joints
 - Heavy truck traffic

TH 56 West Concord, Thin Whitetopping

Early Performance: Very Good

Some construction issues at joints

Summary

UBOLs

- § Good performance on standard "thick" UBOLs
- § More frequent occurrence of distresses in thin UBOLs
- § Definite limits on acceptable panel size

Whitetoppings

- § Mixed application of large and small panel sizes
- § Overall good performance for thin sections
- § Demonstrating susceptibility to reflective cracking
- § Evidence of lower limit on remaining HMA thickness after milling

Questions?