Minnesota Local Road Research Board Investigation 864

Recycled Asphalt Pavement:

MnROAD Study of Fractionated RAP

Task 1 Summary Report: Develop Design Specifications

Submitted to the technical advisory panel: September 12, 2008 Revised September 22, 2008

> Ed Johnson Roger Olson Mn/DOT Office of Materials 1400 Gervais Avenue Maplewood, Minnesota 55109

Introduction

This report is intended to convey the activity on a MnROAD fractionated recycled asphalt pavement (RAP) research project up to the construction of test sections.

During the past 30 years the use of RAP has become a common practice in the construction of hot mix asphalt pavements. Preliminary results from Minnesota LRRB Investigation 842 show that roughly 50 percent of agencies using RAP restrict the use to non-wear courses [1]. The use of fractionated RAP represents potential for realizing a cost savings on materials, further optimizing the use of available asphalt and aggregate materials, and an environmentally positive method of recycling. Significant experimental work has been performed in the lab to evaluate the asphalt mixtures modified with RAP materials. However, there are few examples of studies focusing on the performance of pavements built with either RAP or incorporating fractionated materials at the mix plant. Many pavements have been built in Minnesota and around the United States using RAP, but very few have been monitored closely to provide useful performance data.

The University of Minnesota recently completed two studies involving RAP that included investigating the effect of various types and percentages of RAP on asphalt binder and asphalt mixture properties and developing a simple test that could obtain asphalt binder properties required in developing blending charts [2, 3]. Since then other research has compared binder properties with properties performed on extracted binders in order to indicate the relative level of binder mixing present in the RAP HMA. The results of these studies also need to be verified with field sections, which is the reason for this project.

The Minnesota Local Road Research Board (LRRB) is supporting the construction, material testing, and long term monitoring of this project for a total of five years at a value of \$200,000.

Study Objectives

RAP is a widely used component in asphalt concrete. Current national trends promote the use of high-RAP asphalt concrete. The incorporation of fractionated RAP at the asphalt mix plant can potentially improve the quality of existing designs and also to enable higher percentages of RAP to be used in mixtures. The Minnesota Department of Transportation specifies the maximum amount of RAP allowed in a mix based on pavement layer, traffic level, and binder grade. Mn/DOT wishes to determine if the present limits on RAP are justified.

MnROAD will conduct a five-year project to specifically study the performance of RAP under controlled testing conditions. This study will include laboratory, construction, and field monitoring components, and it is intended that the RAP research will be performed on newly built test sections at the Minnesota Road Research Facility (MnROAD).

Scope

Three asphalt concrete test sections will be built at the Minnesota Road Research Facility (MnROAD) having similar structural designs. The three sections will contain 30 percent RAP but vary by binder grade and fractionated RAP content. The project will be coordinated with ongoing RAP research efforts at the Western Research Institute (WRI)

in Laramie, Wyoming. The efforts on this project will proceed following input from the Mn/DOT Bituminous Office. The project includes the following nine tasks:

- 1. Develop Design Specifications
- 2. Test Section Construction
- 3. Year 1 Annual Report
- 4. Lab testing
- 5. Year 2 Annual Report
- 6. Year 3 Annual Report
- 7. Year 4 Annual Report
- 8. Draft Final Report
- 9. Final Report

Literature Search

There is not an extensive quantity of standard literature available on the topic of fractionated RAP. The Asphalt Institute (AI), a respected authority on the topic of bituminous pavement construction, has discussed splitting RAP material into two sizes and treating them as separate aggregate sources. This approach provides the advantage of overall consistency with respect to the RAP component of the mix [4]. AI goes on to suggest the RAP material can be fractionated on either the number 4 sieve (4.75 mm) or the 3/8-in sieve (9.5 mm).

A search of state specifications was performed. The following results focus on language used to identify fractionated RAP as well as required methods of handling, screening, crushing, and incorporating the material at the asphalt mix plant.

The State of Florida Specification 320-2.4 requires that the contractor provide separate cold bins for each fine and coarse aggregate component. A use of a grizzly or grid is required to prevent oversized RAP from entering the mixture. According to section 334-2.3.1 Florida permits the amount of RAP to range from 15 to 50 percent depending binder and traffic level. Additionally, the minimum asphalt content of the RAP material must be 4.0 percent. When fractionated RAP is used Florida requires a minimum asphalt content of 2.5 percent on the fraction retained on the number 4 sieve (4.75-mm) [5].

The State of South Carolina Specification 401.03.F requires that all RAP material shall come from South Carolina department projects. All RAP material must pass a 2-in. screen before entering plant and the allowable percentage of RAP ranges between 10 and 30 percent dependent on mix type and location of use within the pavement structure.

South Carolina Specification 401.2.6 describes the permitted percentages of RAP according to whether the material is milled or plant production returns. The permitted amount varies between 10 and 30 percent by mixture type, plant operation methods, and location of use within the pavement. Increased use is allowed if the RAP material is fractionated plant returns. In several cases limits of 10 to 15 percent were established for use of only the fine fractionated RAP material. RAP is required to be separated by size using a high frequency separation device, and stockpiles are controlled by type [6].

Minnesota Specification

The following language was included as a special provision in the proposal and plans for S. P. 8680-157 [9, 10]:

S-57.3 FRACTIONATED RAP

Fractionated RAP shall be used as a component of the asphalt mixture and subject to the attached **Combined 2360/2350 (Gyratory/Marshall Design) Specification** with the following added requirements:

(A) Provide a separate cold bin for each component of the virgin, fractionated RAP, and nonfractionated RAP fine and coarse aggregates required by the design mix.

(B) Equip the cold bins with accurate mechanical means for feeding the aggregates uniformly into the dryer in the proportions required for the material, use a grizzly or grid over the RAP cold bin, in-line roller crusher, screen, or other suitable means to prevent oversized RAP material from showing up in the completed recycled mixture. If oversized RAP material appears in the completed recycled mix, take the appropriate corrective action immediately. If the appropriate corrective actions are not immediately taken, stop plant operations.

(C) Use RAP from Mn/DOT approved stockpiles. Fractionated and nonfractionated RAP stockpiles shall consist solely of bituminous mixture material removed from the MnROAD test facility.

(D) The coarse portion of the fractionated RAP shall be the portion of the RAP retained on the No. 4 sieve. The fine portion of the fractionated RAP shall have 100 percent passing the No. 4 sieve. The Engineer may sample the stockpile(s) to verify that this requirement is met.

(E) For MnROAD cell 20 incorporate 30 percent **non-fractionated RAP** by weight of total aggregate into the SPWEB440B wearing course and the SPNWB440B non-wearing course mixtures.

(F) For MnROAD cell 21 incorporate 30 percent **fractionated RAP** by weight of total aggregate into the SPWEB440B Special wearing course and the SPNWB440B Special non-wearing course mixtures. Proportions of coarse and fine RAP fractions shall be determined from mixture design recommendations.

(G) For MnROAD cell 22 incorporate 30 percent **fractionated RAP** by weight of total aggregate into the SPWEB440C Special 1 wearing course and the SPNWB440C Special 1 non-wearing course mixtures. Proportions of coarse and fine RAP fractions shall be determined from mixture design recommendations.

CELL NO.	Mixture Designation's	RAP %	Binder Grade	Comments/Remarks					
20	SPWEB 440B	30	50 70						
20	SPNWB 440B	(3)	30-20						
21	SPWEB 440B Special	30	50 70	(2)					
21	SPNWB 440B Special (3) (2)								
22	SPWEB 440B Special 1	30	58.24 (2)						
22	$SPNWB 440B Special1 \qquad (3) \qquad \qquad$								
(2) Fractionated	RAP. See Section S-58.3 (HOT MIXED	ASPHALT – PC	ROUS PAVEMENT) o	f these Special Provisions for					
	1	equirements							
	(3) RAP used on Cells 15 thru 23 shall	come from the l	MnROAD Mainline Cel	l millings.					

Table 1 Fractionated RAP Bituminous Mixture Requirements [9, Table 58.1A]

Mixture Design

As part of the 2008 MnROAD reconstruction contract the fractionated RAP mixture designs were performed by the bituminous paving subcontractor. The designs were submitted to the Mn/DOT trial mix laboratory for verification and approved by the Mn/DOT Bituminous Office using Specification 2350/2360 criteria [10].

RAP Material

The MnROAD mainline was originally paved in 1993 using dense graded asphalt mixtures having between 4.9 and 6.0 percent asphalt cement (AC). Design details are shown in table 2.

	Comp	onent aggr	egates		
Sieve, mm	CR Fines 66%	CR Coarse 24%	CA-50 10%	Design gradation	As-built ^(a)
19 (3/4")	100	100	100	100	100
12.5 (1/2")	100	75	80	92	89
9 (3/8")	99	53	37	82	83
4.75 (#4)	94	19	4	67	65
2 (#10)	82	11		57	57
1 (#18)	63	8		44	43
0.45 (40)	39	6		27	26
0.25 (#60)	10	4			9
0.125 (#120)	8	3			
0.075 (#200)	4.9	2.4		4	4.7
Crush faces %	-	61.2	100		
Percent AC	11 110 11 1				Average 5.6 Range 4.9 to 6.0
(a) Averages were weighte	ed by lift thickness	s data.			

 Table 2 MnROAD As-built Gradation, 1997 [7, 8]

The paving contractor moved the MnROAD millings to their plant after completing the mainline milling operation. The millings were sized to 100 percent

passing the 5/8-in. sieve for use as the RAP component in Cell 20 as well as general use in several other cells. The fractionated material was obtained using a 1/4-in. slotted screen. Approximately 19 percent of the original material was retained on the 1/4-in. sieve, and will be hereafter referred to as the "coarse" fraction. The remaining 81 percent will be referred to as the "fine" fraction.

The extracted gradation is shown in table 3 along with the percent recovered asphalt binder for each RAP material.

Sieve, mm	MnROAD	Millings	MnROAD	Fine ^(a)	MnROAD	Coarse ^(b)
16 (5/8")	100	$100^{(d)}$	100		100	100 ^(d)
12.5 (1/2")	99	$98^{(d)}$	100		92	$95^{(d)}$
9.5 (3/8")	93	$94^{(d)}$	100	$100^{(d)}$	78	77 ^(d)
6.3 (1/4")	81 ^(c)					
4.75 (#4)	75	75 ^(d)	88	$88^{(d)}$	58	58 ^(d)
2.36 (#8)	62	$63^{(d)}$	72	74 ^(d)	51	50 ^(d)
1.18 (#16)	52	52 ^(d)	59	<i>61</i> ^(d)	42	$42^{(d)}$
0.6 (#30)	39	$40^{(d)}$	45	$46^{(d)}$	32	<i>33</i> ^(d)
0.3 (#50)	24	$23^{(d)}$	27	$26^{(d)}$	19	19 ^(d)
0.15 (#100)	13	12 ^(d)	15	14 ^(d)	10	10 ^(d)
0.075 (#200)	8.9	$7.7^{(d)}$	10.6	<i>9.1</i> ^(d)	7.0	$6.4^{(d)}$
FAA %	41		41		41	
Crush 1 face %	75.60		69.05		77.85	
Crush 2 face %	75.09		68.30		77.25	
Percent AC	5.86		5.92		5.33	
(a) Material p (b) Material r (c) Interpolat	basses the 1/4-in. scr etained on 1/4-in. se ed value.	een. creen.				

(d) Contractor results.

Final Design for 2008 Fractionated RAP Sections

The final design included a 3-in. wear and 2-in. non-wearing course. The surface design is supported by a structure to be composed of 12 in. of Mn/DOT Class 5 aggregate above 12 in. of MnROAD Class 3 Special, above 7 in. of select granular, all above clay subgrade. The approved mixture designs included the following components:

- 30 percent MnROAD millings
 - Non-fractionated mixture includes approximately 24 percent fine plus 6 percent coarse (Cell 20)
 - Fractionated mixture includes 20 percent fine plus 10 percent coarse (Cells 21 and 22)
- 35 percent washed manufactured sand
- 20 percent 0.5-in. chips
- 15 percent unwashed 0.75-in. rock

The final designs of each cell used identical percentages of RAP and aggregate material for the wear and non-wear mixtures. The asphalt cement content of the non-fractionated mixture increased 0.3 percent between wear and non-wear designs, and the asphalt content increased 0.2 percent between mixtures for the fractionated designs.

PARTMEN		CONTRACTOR OF	Phone (FAX: (0mos of Maten 1400 Gervais Av Asplewood, MN 5 (651) 366-5459 (651) 366-5580	als enue 5109	# 0 -2	ate:	7/30/20
THO MUN I	ACOIDIN IN	CI ORT ID NO	TI FALLO GITTLE FLAGT	NU, INDIGATED B	ILOW IS CERTIFIED.	SPEC	2:	360
TO BE PI	LLED IN B	Y CONTRAC	TOR			GPEG YEAR	20	008
ENGIN	EER			FOR		MIX TYPE	SPWE	B440/R
PROJE	CT NUM	IBER 8	680-157 (Mn/RD)					Dirioliu
						1 12 1	D.C.	FR 30
						GRADE	PG	28-25
LACEME	ΓNO.	COMPACTION (32051	*	JOB MIX F	ORMULA		1000
Begin	With Test P	Number	Sieve Size	Composite	JMF	3	For Informa Virgin Fo	tion Only ormula
SP	WE	401	37.5 (1.1/2)	Formula	LIMITS		PP	
OF	AAF	401	25.0 (1)		-		EA	100
1212			19.0 (3/4)	100	100 - 100		C S	88
			9.5 (3/8)	91	85 - 98	-	EI	81
			4.75 (#4)	64	57 - 71	-	TG	59
			2.36 (#8)	48	42 - 54	-		42
			0.075 (#200)	3.4	2.0 - 5.4		NAC.	1.5
			Spec. Voids	4,0	3.0 - 5.0		(NEW)	a.r
			Spec. VMA	14.0	13.7		heinersteinigen	
			% A0	C 5.2	4.8			
			1	(TOTAL)				
≬# se of ar	2008-13 ti-strip ;	0 Indic agent requ	ates a G <u>yratory D</u> a iired: N	ensity of 14	8.9 (Ibs/ft3) at	90 Desi	gn Gyrati	ons
oportio	ns	Pit	Sou	rce of Material				Sp.G
35	% 730	106	MARTIN MARIETT	A ST CLOUD W	ASHED SAND (GR/	ANITE)	10	2.682
20	% 730	56	MARTIN MARIETT	A ST. CLOUD 1	2" WASHED CHIPS	(GRANITE)		2.731
30	% 050		Mn/RD CRUSHED	MILLINGS				2.742
	%		THE STORES	Internition.				2.030
	%							
	%							
	%							
Riv Ann	ronato S	necific Gr	avity at the Listed	Percentages =	2 685			

NON - FRACTIONATED RAP DESIGN

esion Reviewed by:

contractor - HARDRIVES, INC METRO INSPECTION

Figure 1 Cell 20 wear course design.

OF PARTNESS THIS MIX I		PORT IS NO	Minnesota 1 Phone (6 FAX: (6	Department o Office of Mate 400 Gervais A laplewood, MN 551) 365-5459 551) 365-5580 NO INDICATED	f Transportat arials ivenue i 65109 BELOW IS CER	ion 4	# 0-2 c	2008- Date:	194 7/30/200
TO BE E	LED IN BY	CONTRACT	08		becom in acc		SPEC	23	360
10 01 11		- oon noton	541	1		Grea	YEAR	20	008
ENGINE	EER			FOR	_		K TYPE	SPNW	B430(R)
PROJE	CT NUM	BER 85	i80-157 (Mn/RD)						
		_		_		GR	AG ADE	PG	58-28
SP	NW	401	(mm) (in.) (37.5 (1 1/2)) (25.0 (1) (25.0 (1) (2.5 (1/2) (3.4) (2.5 (3.8) (4.75 (3.8) (4.75 (44) 0.075 (4200) Spec. Voide Spec. Vida % AC	Formula 100 91 85 64 48 3.4 3.0 14.0 5.5	100 85 78 57 42 2.0 13.7 5.1	MITS - 100 - 98 - 90 - 71 - 54 - 5.4 - 4.0		P P E A R S C S E I N N T G SAC (NEW)	100 88 81 59 42 1.5 4.0
M# se of an roportio	2008-130 ti-strip a ns % [730	0 Indica gent requi	Ites a G <u>yratory</u> De red: N Sour	(TOTAL) Insity of 1	48.9 (Ibs/f	J t3) at 90	Desi	gn Gyrati	Sp.G
20	% 730	06	ARTIN MARIETT/	A ST. CLOUD	1/2" WASHE	D CHIPS (GRA	ANITE)	-	2.731
15	% 0503	56 L	OKEN 3/4 ROCK		and the second sec				2.742
30	%	N	In/RD CRUSHED	MILLINGS					2.630
	78					-			
	36						-		

Remarks MINUS #4 AGGREGATE SPG AT THE LISTED PERCENTAGES = 2.668 NON - FRACTIONED RAP DESIGN

Aix Design Reviewed by: AZIU Mix ialist sign

ec: Contractor - HARDRIVES, INC METRO INSPECTION

Figure 2 Cell 20 non-wear course design.

LRRB 864 TASK 1 Summary Report – Development of Design Specification for MnROAD Study of Fractionated RAP

CEPHITUES .	OF TRU	TOLLY LOOPT IS NO	BITUMINOUS PL Minnesota Di 140 Map Phone (65: FAX: (65: FAX: (85)	ANT MIX DE apartment of ' ffice of Materi 0 Gervais Av lewood, MN 5 1) 366-5459 1) 366-5580	SIGN REPO Transportat ials enue 55109	ion		# 0-2 D	2008- ate:	197 8/1/20
70.85 0	L ED IN	NU DOLUBRIA	TOP	. Morowiec o	CLOW ID CLY	in the second		SPEC	23	360
10.042 (10	CUED IN	BT CONTRONG	ion	1		_		SPEC YEAR	- 20	800
ENGINE	EER			FOR		_	1	MIX TYPE	SPWE	B440/R
PROJE	CT NUI	MBER 8	680-157 (Mn/RD)			_				
						-		AĆ GRADE	PG	58-28
PLACEME PLACEME PLANT Begin V	NT AND	S BEEN REVI COMPACTION	Bieve Size Co	PROPERTIES O BEEN MET.	JC	DB N	nassu	IRE THAT FIE	.0 For Informa Virgin Fr	tion Only
CD	14/1	404	(mm) (in.) F	ermula	U	MITS	-	1		
SP	VVE	401	25.0 (1)		-	11		-	EA	
		-	19.0 (3/4)	100	100	1-1	100	1	RS	100
			12.5 (1/2)	91	85	1-1	98	1	EI	88
·			9.5 (3/8)	-85	78]-[90		NN	61
			4.75 (#4)	65	58]-[72		T G	39
			2.36 (#8)	49	43	1-1	55		1 1	42
			0.075 (#200)	3.5	2.0		5.5		SAC	3.7
			Spec, Voids	4.0	3.0	- 1	5.0	1	(NEW)	0.17
			Spec. VIMA	14.0	1.5.7	4				
			% AC	5.2	4.8	1				
				(TOTAL)		ē., ,				
'M # Ise of an	2008-1 ti-strip	21 India agent requ	ates a G <u>yratory</u> Dens Jired: N	ity of 14	9.7 (lbs/	t3) a	at	90 Desi	gn Gyrati	ions
roportio	nis	Pit	Source	of Material						Sp.G
35	% 73	3006	MARTIN MARIETTA S	ST CLOUD W	ASHED SA	ND	(GRA	NITE)		2.682
20	% 73	3006	MARTIN MARIETTA S	ST. CLOUD 1	/2* WASHE	DC	HIPS	(GRANITE)		2.731
.15	% 05	5056	LOKEN 3/4 ROCK			100	902.015	800 House 11 State		2.742
20	%		Mn/RD FRAP FINES			_				2.595
10	%		Mn/RD FRAP COARS	E		_				2.632
_	70									
_	20					_				
	28.1									

Mix Aggregate Specific Gravity at the Listed Percentages =

Remarks MINUS #4 AGGREGATE SPG AT THE LISTED PERCENTAGES = 2.656 FRACTIONATED RAP DESIGN

Mix Design Revie and 17A Mls

001 Contractor - HARDRIVES, INC METRO INSPECTION

Figure 3 Cell 21 wear course design.

CREPARTINE'S	OF TRANS	PORT IS NOT	Minnesota I 14 Ma Phone (6 FAX: (6 VALID UNTIL PLANT	Department of 1 Office of Materi 400 Gervals Avi plewood, MN 5 51) 386-5459 51) 386-5580 40, INDICATED BI	Fransportati als anue 5109	TIFIED	# 0-2	2008- Date:	8/1/200
TO BE D		CONTRACTO	P			THE REAL PROPERTY.	1 SPEC	23	360
TOBLIT	CLED IN DI	CONTROLOTO	n.		-		SPEG YEAR	20	800
ENGIN	EER			FOR			MIX TYPE	SPNW	B430(R
PROJE	CT NUME	BER 868	80-157 (Mn/RD)						
							AC GRADE	PG	58-28
Begin D Begin D	NO. With Test N	93 umber 401	Sieve Size (mm) (in.) 0 37.5 (1 1/2) 25.0 (1) 19.0 (3/4) 12.5 (1/2) 0.6 (3/4) 12.5 (1/2)	Composite Formula	J0	B MIX FO		For Informa Virgin Fo E A R S C S E I	tion Only simula 100 88 81
			4,75 (#4) 2.36 (#8) 0.075 (#200) Spec. Voids Spec. VMA % AC	65 49 3.5 3.0 14.0 5.5	58 43 2.0 2.0 13.7 5.1	- 72 - 72 - 55 - 5.5 - 4.0		T G	59 42 1.5 3.9
M # se of ar roportic	2008-121 iti-strip a	l Indicat gent requir Pit	es a G <u>yratory Der</u> ed: <u>N</u> Sourc	(TOTAL) Isity of 14 ce of Material	9.7 (Ibs/ff	3) at	90 Desi	ign Gyrati	ons Sp.G
35	% 730	16 M	ARTIN MARIETTA	ST CLOUD W	ASHED SA	ND (GRA	(GRANITE)		2.682
15	% 0503	56 ILC	OKEN 3/4 ROCK	51.00001	z WASHE	CHIPS	(GRANITE)		2.742
20	%	M	NRD FRAP FINES	E					2.595
10	%	0.4	NRD FRAP COAR	SE		~			2.632
	%								
	%							1	
	97								

Remarks MINUS #4 AGGREGATE SPG AT THE LISTED PERCENTAGES = 2.658 FRACTIONATED RAP DESIGN

Nix Design Reviewed by: Mi:

cc: Contractor - HARDRIVES, INC METRO INSPECTION

Figure 4 Cell 21 non-wear course design.

LRRB 864 TASK 1 Summary Report – Development of Design Specification for MnROAD Study of Fractionated RAP

OFFILE	12	TATTON	0 140	ffice of Materi 00 Gervais Ave	als nue	# 0-2	2008-	198
HIS MIX I	OF TRP	EPORT IS N	Map Phone (65 FAX: (65 OT VALID UNTIL PLANT NO	viewood, MN 5 1) 366-5459 1) 366-5580 0. INDICATED BR	5109 LOW IS CERTIFIED.			
TO BE F	LIEDINE		TOR			SPEC	2	360
FALCING	ren	SPEC YEAR	2	800				
PROJE	CTNUM	IBER	9680-157 (Mn/RD)	FOR		MIX TYPE	SPWE	B440(R
			and the function					
						AC GRADE	PG	58-34
THIS MIX	TURE HAS	BEEN REV	EWED FOR VOLUMETRIC	PROPERTIES O	NLY, IT DOES NOT AS	SURE THAT FIEL	LD	
	T NO	COMPACTIO	032051	SEEN MET.		OPMULA		
LAN	1 110.	-	Sizus Size	omontha	JOB MIX I	ORMOLA	For Informa	tion Only
Begin	With Test	Namber	(mm) (in.)	Formula	LIMITS	_	Virgin F	ormula
SP	WE	401	37.5 (1 1/2)			-	P P E A	
		1	1 19.0 (3(4)	100	100 - 10	0	RS	100
			12.5 (1/2)	91	85 - 98		C S	88
			9.5 (3/B)	85	78 - 90		NN	81
			4 75 (#4)	65	58 - 72		TC	15
			2.36 (#8)	49	43 - 55			42
			0.075 (#200)	3.5	2.0 = 5.5	5	NAC.	2.7
			Spec, Voids	4.0	3.0 - 5.0)	(NEW)	8.1
			Spec. VMA	14.0	13.7			
			% AC	5.2	4.8			
M# se of ar	2006-1: nti-strip	21 Indi agent req	cates a G <u>vratory</u> Dens uired: N	(TOTAL) sity of 14	9.7 (lbs/ft3) at	90 Des	ign Gyrat	lons
roportie	ons	Pit	Source	e of Material				Sp.G
35	% 73	006	MARTIN MARIETTA	ST CLOUD W	ASHED SAND (GR	ANITE)		2.682
20	% 73	006	MARTIN MARIETTA	ST. CLOUD 1	2" WASHED CHIP	S (GRANITE)		2.731
15	% 05	056	LOKEN 3/4 ROCK					2.742
20	- 26		Mn/RD FRAP FINES	-				2.595
10	74		MININO FRAP COARS	bE.				2.632
	79	-						
	96						-+	
	70							
MIX Ago	regate	Specific G	iravity at the Listed Po	ercentages =	2.67			

Aliz Design Reviewed by

cc: Contractor - HARDRIVES, INC METRO INSPECTION

Figure 5 Cell 22 wear course design.

LRRB 864 TASK 1 Summary Report – Development of Design Specification for MnROAD Study of Fractionated RAP

TO BE FILLED IN BY CONTRACTOR SPEC 2360 ENGINEER FOR MIX TYPE 2008 PROJECT NUMBER 6690-157 (Mn/RD) MIX TYPE PG 58-34 THIS MIXTURE HAS BEEN REVIEWED FOR VOLUMETRIC PROPERTIES ONLY. IT DOES NOT ASSURE THAT FIELD AC GRADE PG 58-34 THIS MIXTURE HAS BEEN REVIEWED FOR VOLUMETRIC PROPERTIES ONLY. IT DOES NOT ASSURE THAT FIELD JOB MIX FORMULA PG 16/0000000 PLACEMENT AND COMPACTION REQUIREMENTS HAVE BEEN MET. JOB MIX FORMULA For Information Only Wrigin Formula JMF SP NW 401 37.5 (11/2) Formula JMF JMF For Information Only Wrigin Formula 30.5 (11/2) 91 90 JMF For Information Only Wrigin Formula 31.5 (11/2) 19.0 (11/2) 100 100 100 100 9.5 (3/8) 85 55 100 13.0 14.0 14.0 19.6 (3/8) 49 0.0 (13.7) 5.1 14.0 13.0 14.0 19.7 (Washed Carl Material Spec. VMA 14.0 14.0 14.0 14.0 100 149.7 (Ibs/H3) at<	HIS MIX DESIGN REPORT IS	Phone FAX: NOT VALID UNTIL PLAN	1400 Gervals Av Maplewood, MN 5 (651) 366-5459 (651) 366-5580 T NO. INDICATED B	enue 15109 ELOW IS CERTIFIED.	Ľ	late: 8/1/20
ENGINEER FOR DPC0 YEAR 2008 PROJECT NUMBER 06800-157 (Mn/RD) AC SPNWB430(F AC AC AC PG 58-34 THIS MIXTURE HAS BEEN REVIEWED FOR VOLUMETRIC PROPERTIES ONLY, IT DOES NOT ASSURE THAT FIELD AC PG 58-34 THIS MIXTURE HAS BEEN REVIEWED FOR VOLUMETRIC PROPERTIES ONLY, IT DOES NOT ASSURE THAT FIELD JOB MIX FORMULA PG 160 mmails PLACEMENT AND COMPACTION REQUIREMENTS HAVE BEEN MET. JOB MIX FORMULA For Information Only Vigin Formula SP NW 401 37.5 (11/2) JOB MIX FORMULA For Information Only Vigin Formula SP NW 401 37.5 (11/2) 91 JOB MIX FORMULA For Information Only Vigin Formula SP NW 401 37.5 (11/2) 91 JOB MIX FORMULA For Information Only Vigin Formula SP NW 401 37.5 (11/2) 91 JOB MIX FORMULA For Information Only Vigin Formula SP NW 401 37.5 (11/2) 91 JOB MIX FORMULA For Information Only Vigin Formula SP Soc VIAA 35.5 55 1000 100 100 J000 FOR 2000 3.5 5.5 100 <td< th=""><th>TO BE FILLED IN BY CONTRA</th><th>ACTOR</th><th></th><th></th><th>SPEC</th><th>2360</th></td<>	TO BE FILLED IN BY CONTRA	ACTOR			SPEC	2360
PROJECT NUMBER 8680-157 (Mn/RD) Mix TYPE SPNWB430(F PROJECT NUMBER 8680-157 (Mn/RD) AC ORADE PG 58-34 THIS MIXTURE MAS BEEN REVIEWED FOR VOLUMETRIC PROPERTIES ONLY, IT DOES NOT ASSURE THAT FIELD AC ORADE PG 58-34 THIS MIXTURE MAS BEEN REVIEWED FOR VOLUMETRIC PROPERTIES ONLY, IT DOES NOT ASSURE THAT FIELD JOB MIX FORMULA PG 18-34 PLACEMENT AND COMPACTION REQUIREMENTS HAVE BEEN MET. JOB MIX FORMULA Imm 10n, 100 JOB MIX FORMULA SP NW 401 Sieve Size, 1120 Composite 100 JWF JWF Imm 300 Cell 19.0 (34) 100 - - - - SP NW 401 32.5, (112) -	ENGINEER		EOR		OPCO YEAR	2008
MC GRADE PG 58-34 Philos Mixture HAS BEEN REVIEWED FOR VOLUMETRIC PROPERTIES ONLY, IT DOES NOT ASSURE THAT FIELD PLACEMENT AND COMPACTION REQUIREMENTS HAVE BEEN MET. PLANT NO. 932051 JOB MIX FORMULA Service Size JOS Size JOT MI	PROJECT NUMBER	8680-157 (Mn/RD)	1.01		MIX TYPE	SPNWB430(R
THIS MIXTURE HAS BEEN REVIEWED FOR VOLUMETRIC PROPERTIES ONLY, IT DOES NOT ASSURE THAT FIELD PLANT NO. 932051 JOB MIX FORMULA For information Only SP NW 401 Job MIX FORMULA Serve Size Composite JM# SP NW 401 Size Composite JM# 0.0 1100 100 100 100 100 100 800 88 100 90 <th< td=""><td></td><td></td><td></td><td></td><td>AC GRADE</td><td>PG 58-34</td></th<>					AC GRADE	PG 58-34
PLANT NO. 932051 - JOB MIX FORMULA Begin With Test Number Silve Size (mm) Composite (nm) JWF For information Only Virgin Formula SP NW 401 37.5 11/2) -	HIS MIXTURE HAS BEEN RE LACEMENT AND COMPACTI	VIEWED FOR VOLUMETS	RIC PROPERTIES O	NLY, IT DOES NOT ASSU	IRE THAT FIEI	.D
Begin With Test Number Silve Size Composite JMF For information Only SP NW 401 37.5 (11/2) -	PLANT NO.	932051	-	JOB MIX FO	ORMULA	
SP NW 401 37.5 (1 1/2) 100 19.0 (3/4) 100	Begin With Test Number	Sieve Size (mm) (In.)	Composite	JMF		for Information Only Virgin Formula
225.0 (1) 100 100 100 19.0 (34) 100 100 100 100 12.5 (1/2) 91 91 96 98 100 9.5 (3/8) 85 58 72 90 100 100 2.36 (#8) 49 43 55 55 55 55 2.36 (#8) 49 43 55 55 55 55 3.0 Spec. Vids 3.0 2.0 55 5.5 5.5 5.4 13.7 3.6 5.5 (ToTAL) 5.1 5.5 5.5 5.6 with # 2008-121 Indicates a Gvratory Density of 149.7 149.7 (Ibs/ft3) at 90 90 Design Gyrations se of anti-strip agent required: N N 5.1 5.1 5.6 5.6 (ToTAL) Source of Material Sp.G 2.0% 73006 MARTIN MARIETTA ST. CLOUD 1/2" WASHED SAND (GRANITE) 2.682 20 % 73006 MARTIN MARIETTA ST. CLOUD 1/2" WASHED CHIPS (GRANITE) 2.742	SP NW 401	37.5 (1 1/2)		-	1	P P
Image: Section of the section of th		25.0 (1)	100	100 - 100	-	R S 100
9.5 (3/8) 85 78 - 90 4.75 /#41 85 78 - 72 - 58 2.36 (#8) 0.075 (#200) 3.5 2.0 - 5.5 - 5.5 0.075 (#200) 3.5 2.0 - 5.5 - 4.0 - 1.5 5.5 0.075 (#200) 3.5 2.0 - 4.0 - 4.0 - 1.5 5.5 5.1 - 1.5 5.5 1.5 1.5 5.1 - 5.1 - 5.1 - 5.1 - 5.1 - 5.1 - 5.1 - 1.5 5.1 - 5.1 - 5.1 - 5.5 - 5.1 - 5.1 - 5.5 - 5.1 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 - 5.5 5.5 5.5		12.5 (1/2)	91	85 - 98	1	C 5 88
4.75 (#4) 55 58 - 72 2.36 (#8) 0.075 (#200) 3.0 - 55 - 55 - <t< td=""><td></td><td>9.5 (3/8)</td><td>85</td><td>78 - 90</td><td>1</td><td>N N 81</td></t<>		9.5 (3/8)	85	78 - 90	1	N N 81
2.36 #80 0.075 (#200) 49 3.0 43 2.0 - 55 4.0 43 1.5 Spec. Vids 3.0 3.0 2.0 - 4.0 1.5 Spec. Vids 3.0 14.0 13.7 5.1 - - 4.0 W # 2008-121 Indicates a Gyratory Density of se of anti-strip agent required: 149.7 (lbs/ft3) at 90 Design Gyrations roportions Pit Source of Material Sp.G 2.682 2.682 20 % 73006 MARTIN MARIETTA ST CLOUD WASHED SAND (GRANITE) 2.682 2.731 15 % 05056 LOKEN 3/4 ROCK 2.731 2.742 20 % 73006 MARTIN MARIETTA ST. CLOUD 1/2' WASHED CHIPS (GRANITE) 2.742 20 % 05056 LOKEN 3/4 ROCK 2.731 15 % 05056 LOKEN 3/4 ROCK 2.632 %		4.76 (#4)	65	58 - 72		T G 59
Outry 5 (#200) 3.0 2.0 5.5 Spec, VMA 14.0 13.7 % AC 5.5 5.1 (TOTAL) 5.1 5.1 W## 2006-121 Indicates a Gyratory Density of 149.7 149.7 (Ibs/ft3) at 90 Design Gyrations se of anti-strip agent required: N N Source of Material Sp.G 35 % 73006 MARTIN MARIETTA ST CLOUD WASHED SAND (GRANITE) 2.682 20 % 73006 MARTIN MARIETTA ST CLOUD WASHED CHIPS (GRANITE) 2.731 15 % 05056 LOKEN 3/4 ROCK 2.742 20 % Mn/RD FRAP FINES 2.595 10 % Mn/RD FRAP FINES 2.632 %		2.36 (#8)	49	43 - 55	-	15
Spec. VMA 14.0 13.7 14.0 13.7 % AC 5.5 5.1 5.1 5.1 % AC 5.5 (Ibe/R3) at 90 Design Gyrations sc of anti-strip agent required: N 149.7 (Ibe/R3) at 90 Design Gyrations roportions Pit Source of Material Sp.G 35 57 2.682 20 % 73006 MARTIN MARIETTA ST CLOUD WASHED SAND (GRANITE) 2.742 2.742 20 % 73006 MARTIN MARIETTA ST CLOUD WASHED CHIPS (GRANITE) 2.742 20 % 73006 MARTIN MARIETTA ST CLOUD WASHED CHIPS (GRANITE) 2.682 15 % 05056 LOKEN 3/4 ROCK 2.742 20 % Mn/RD FRAP FINES 2.595 10 % Mn/RD FRAP COARSE 2.632 %		Spec Voide	3.0	2.0 - 5.5	-	%AC 3.9
% AC 5.5 (TOTAL) W # 2008-121 Indicates a Gyratory Density of se of anti-strip agent required: 149.7 (Ibs/H3) at second material Sp.G 35 % 73006 MARTIN MARIETTA ST CLOUD WASHED SAND (GRANITE) 2.682 20 % 73006 MARTIN MARIETTA ST CLOUD WASHED SAND (GRANITE) 2.682 20 % 73006 MARTIN MARIETTA ST CLOUD VASHED CHIPS (GRANITE) 2.742 20 % 05056 LOKEN 3/4 ROCK 2.742 20 % Mn/RD FRAP FINES 2.595 10 % MirkD FRAP FINES 2.632 %		Spec. VMA	14.0	13.7	1	(NEW)
(TOTAL) se of anti-strip agent required: N Spice of Material Spice of Material Spice 20.56 MARTIN MARIETTA ST CLOUD WASHED SAND (GRANITE) 2.682 20.56 MARTIN MARIETTA ST. CLOUD 1/2" WASHED CHIPS (GRANITE) 2.682 20.56 MIRD FRAP FINES 2.695 10.56 MIRD FRAP COARSE 2.632 % Mix Aggregate Specific Gravity at the Listed Percentages = 2.677		% A(55	51		
M# 2008-121 Indicates a Gyratory Density of se of anti-strip agent required: 149.7 (Ibs/H3) at 90 Design Gyrations roportions Pit Source of Material Sp.G 35.5 % 73006 MARTIN MARIETTA ST CLOUD WASHED SAND (GRANITE) 2.682 20 % 73006 MARTIN MARIETTA ST CLOUD UASHED SAND (GRANITE) 2.682 20 % 73006 MARTIN MARIETTA ST. CLOUD 1/2" WASHED CHIPS (GRANITE) 2.731 15 % 05056 LOKEN 3/4 ROCK 2.742 2.955 10 % Mn/RD FRAP FINES 2.632 %			(TOTAL)			
Se of anti-strip agent required: N Source of Material Sp.G 35 73006 MARTIN MARIETTA ST CLOUD WASHED SAND (GRANITE) 2.682 20 % 73006 MARTIN MARIETTA ST CLOUD WASHED SAND (GRANITE) 2.781 15 % 05056 LOKEN 3/4 ROCK 2.742 20 % Mn/RD FRAP FINES 2.595 10 % Mn/RD FRAP COARSE 2.632 %	## 2008-121 Ind	icates a G <u>yratory P</u> e	ansity of 14	9.7 (lbs/ft3) at	90 Desi	gn Gyrations
35 % 73006 MARTIN MARIETTA ST CLOUD WASHED SAND (GRANITE) 2.682 20 % 73006 MARTIN MARIETTA ST CLOUD WASHED SAND (GRANITE) 2.682 20 % 73006 MARTIN MARIETTA ST. CLOUD 1/2" WASHED CHIPS (GRANITE) 2.731 15 % 05056 LOKEN 3/4 ROCK 2.742 20 % Mn/RD FRAP FINES 2.595 10 % Mn/RD FRAP COARSE 2.632 % 2632 % % 2.677	se of anti-strip agent re- oportions Pit	quired: N	rce of Material			0-0
20 % 73006 MARTIN MARIETTA ST. CLOUD 1/2" WASHED CHIPS (GRANITE) 2.781 15 % 05056 LOKEN 3/4 ROCK 2.742 20 % Mn/RD FRAP FINES 2.595 10 % Mn/RD FRAP COARSE 2.632 % 2682 % 2632 % 2632 % 2.632 % 2.632 % 2.632 % 2.632 % 2.632	35 % 73005	MARTIN MARIETT	A ST CLOUD W	ASHED SAND (CDA	NITES	Sp.G
15 % 05056 LOKEN 3/4 ROCK 2.742 20 % Mn/RD FRAP FINES 2.595 10 % Mn/RD FRAP FINES 2.632 % 2.632 % 2.632 % 2.632 % 2.632 % 2.637 2.677	20 % 73006	MARTIN MARIETT	A ST. CLOUD 1/	2" WASHED CHIPS	(GRANITE)	2.082
20 % Mn/RD FRAP FINES 2.595 10 % Mn/RD FRAP COARSE 2.632 % 2.632 2.632 % 10 10 % 10	15 % 05056	LOKEN 3/4 ROCK		and the second s		2.742
10 % 2.632 % 2.632 % 2.632 % 2.632 % 2.632	20 %	Mr/RD FRAP FINE	S			2.595
% % % % % % 1ix Aggregate Specific Gravity at the Listed Percentages = 2.677	10 %	Mn/RD FRAP COA	RSE			2.632
%	% 62					
Aix Aggregate Specific Gravity at the Listed Percentages = 2.677						
The second drawny at the blated rendentages = 2.0/7	lix Annrenate Specific (Scaulty at the Listed	Percentages -	0.000		
	ur officiate sharing (stavity at the Listed	rercentages =	2.677		
marks MINUS #4 AGGREGATE SPG AT THE LISTED PERCENTAGES = 3 650			101000000000000000000000000000000000000	121 1010		

METRO INSPECTION

Figure 6 Cell 22 non-wear course design.

Task 2 Preview

The topic of the upcoming Task 2 report will be test section construction. The report will convey the activity on this research project for the period of time between development of specifications and through construction of test sections.

Task 2 objectives are:

Monitoring:

- RAP stockpiles
- incorporation of RAP at the plant
- MnROAD paving operations

Material sampling:

- mixture component materials
- RAP mixtures from
 - o Plant
 - MnROAD cores

References

- 1. Johnson, Eddie and R.C. Olson, "LRRB Investigation 826 Task 1 Summary Report: Literature Review and Agency Survey." Mn/DOT Office of Materials, Maplewood, Minnesota, 2005.
- 2. Zofka, Adam, M. O. Marasteanu, T. R. Clyne, X. Li, and O. Hoffmann, "Development of Simple Asphalt Test for Determination of RAP Blending Charts." Minnesota Department of Transportation, St. Paul, Minnesota, 2004.
- Li, Xinjun, T. R. Clyne, and M. O. Marasteanu, "Recycled Asphalt Pavement (RAP) Effects on Binder and Mixture Quality." Minnesota Department of Transportation, St. Paul, Minnesota, 2004.
- 4. The Asphalt Institute, "Construction of Hot Mix Asphalt Pavements (MS-22), 2nd Edition". The Asphalt Institute, Lexington, Kentucky, 2001 reprinting.
- 5. "Standard Specifications for Road and Bridge Construction." Florida Department of Transportation, Tallahassee, Florida, 2007.
- 6. "Standard Specifications for Highway Construction." South Carolina Department of Transportation, Columbia, South Carolina, 2007.
- Stroup-Gardiner, Mary, D. E. Newcomb, A. Drescher, and W. Zhang, "Influence of Test Method Variables on Mn/ROAD Hot Mix Asphalt Mixture Test Results." Minnesota Department of Transportation, St. Paul, Minnesota, 1997.
- 8. Stroup-Gardiner, Mary, and D. E. Newcomb, "Investigation of Hot Mix Asphalt Mixtures at Mn/ROAD." Minnesota Department of Transportation, St. Paul, Minnesota, 1997.
- 9. Proposal for State Project 8680-157 (T.H. 94 = 392), Minnesota Department of Transportation, 2007.
- 10. "Standard Specifications for Construction," Minnesota Department of Transportation, St. Paul, Minnesota, 2008.