FAULTMETER - JOINTS

General Description
An electronic digital faultmeter used to measure transverse joint faults. The transverse contraction joints in concrete pavement eventually wear out with repeated heavy vehicle loading. One symptom of this wear is the presence of “stepping” at the joints, also called “faulting.”

COLLECTION FREQUENCY
Faulting measurements are taken 3 times per year with the Georgia Faultmeter per modified LTPP protocol.

Operation & Data Processing
Data collected manually currently and efforts are being focused to automate the faultmeter device.

STEP BY STEP PROCESS: Measurements are taken at selected joints. The offset from the fogline is recorded. One measurement is made at each location. The representative value of the readings is recorded to the nearest millimeter. Faulting is assumed to be positive.

Specifications
LTPP Protocol

Database Tables
DISTRESS_PCC_FAULTS – Raw Data output from the data collection spreadsheet.

<table>
<thead>
<tr>
<th>Name</th>
<th>Null?</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>CELL</td>
<td>NOT NULL</td>
<td>NUMBER(3)</td>
</tr>
<tr>
<td>CONSTRUCTION_NUMBER</td>
<td>NOT NULL</td>
<td>NUMBER(2)</td>
</tr>
<tr>
<td>LANE</td>
<td>NOT NULL</td>
<td>VARCHAR2(20)</td>
</tr>
<tr>
<td>SAMPLE_DATE</td>
<td>NOT NULL</td>
<td>DATE</td>
</tr>
<tr>
<td>SAMPLE_TIME</td>
<td></td>
<td>NUMBER(4)</td>
</tr>
<tr>
<td>JOINT_NUMBER</td>
<td>NOT NULL</td>
<td>NUMBER(6)</td>
</tr>
<tr>
<td>FAULT_DEPTH</td>
<td></td>
<td>NUMBER(6.2)</td>
</tr>
<tr>
<td>OFFSET_FROM_CENTERLINE</td>
<td>NOT NULL</td>
<td>NUMBER(6.2)</td>
</tr>
<tr>
<td>STATION</td>
<td>NOT NULL</td>
<td>NUMBER(6)</td>
</tr>
<tr>
<td>COMMENTS</td>
<td></td>
<td>VARCHAR2(250)</td>
</tr>
</tbody>
</table>

PCC Joint Faulting Measurements at the MnROAD Project

HISTORY OF THE FAULT MEASUREMENTS AT MnROAD

INTRODUCITON

This document outlines the history of transverse joint fault measurements taken on the PCC cells at the Mn/ROAD project. It will describe both the current testing scheme and the history of changes.

FAULTING OF PCC PAVEMENT JOINTS

Portland cement concrete (PCC) pavements are constructed with transverse contraction joints to relieve stresses in the slabs caused by temperature and moisture. Over time, traffic loading and erosion of the soil layers under PCC slabs results in stepping or “faulting” of the transverse joints. Faulted joints have a direct impact on the ride quality of the pavement.

A review of the literature shows gaps in the availability of long-term field data on joint faulting of PCC pavements. Once long-term field data are available, trends in joint faulting can be established and modeled. This will lead to greatly improved pavement design procedures.

FAULT MEASUREMENTS AT MnROAD

Fault measurements are being taken at the Mn/ROAD project to establish long-term trends that can be used to calibrate models in new mechanistic-empirical design methods. The wide range of variables built into the test sections will result in a fairly comprehensive set of data that can be used to develop new models, or calibrate existing ones.

Fault measurements at the Mn/ROAD project are typically taken three times a year. The schedule depends on available access to the “mainline” test sections. Traffic must be temporarily switched to the old highway section to allow safe access to the test sections.

Fault measurements at the Mn/ROAD project began in the fall of 1994, shortly after traffic was first placed on the test sections. Measurements continue to be taken, and are expected to be continued until each test section fails or is modified.

Measurements are taken using an electronic digital faultmeter. Mn/DOT uses the same model as that developed by the Georgia Department of Transportation [1]. This model is also the standard device used in the data collection for the FHWA LTPP (Long-Term Pavement Performance) project.
Mn/DOT’s faultmeter was originally constructed to Georgia DOT specifications by Mn/DOT’s Maplewood Laboratory shop personnel. Modifications to the device were designed by the author and made by the shop in the winter of 2001-2002, to enhance the repeatability of the measurements. The principle change was the replacement of the four point “long feet” system, with a three point “bolt feet” system. Due to surface irregularities in the concrete pavement slabs, the four point long foot system commonly resulted in the operator having to move the device several times to avoid rocking of the base, which often led to non-repeatable measurements. By installing the three point “bolt head” feet, the device could simply be set down for a quick, stable and repeatable measurement. Figures 1 and 2 show dimensions and layout of the new three point foot system. Also shown in the figures is the addition of an offset rod, used to increase the speed of measurements. The rod can be used as a guide to quickly place the device relative to the outside edge of the fogline painted on the test sections. Allen head anchor screws allow quick and easy adjustment, as well as removal, of the rod.

Measurements with the modified faultmeter began in the spring of 2002. During the winter of 2003, a comparison of the data from before and after the modifications revealed significant changes in the faulting trends of the test sections. Brief experimentation on the Mn/ROAD PCC test sections in February 2003 revealed that, while the modified faultmeter is now more stable during measurements, the measurements are more susceptible to variation caused by the surface texture of the concrete. To reduce this variation in the future, the locations of the front two feet of the faultmeter were marked on the slab during the spring 2003 measurements. Once several measurements have been taken at these locations, it is hoped the trends can be fit to the trends established before faultmeter modifications were invoked.

MEASUREMENT LOCATIONS AND QUANTITIES
Fault measurements at the Mn/ROAD project follow the criteria established by the FHWA LTPP project. Measurements are taken at each joint, in the direction opposite traffic flow, at offsets of 1 and 2.5 feet from the outside edge of the fogline (see update note below). This is done for both the driving and passing lanes of the mainline sections, and the 80k and 102k lanes of the low volume road sections.

Since 1994, fault measurements have been taken at every joint (except in transition areas between test sections) in the original PCC test sections. Measurements have also been taken at every joint in the ultrathin whitetopping sections and new PCC test sections 32, 52 and 53 since 2001. The data can be found in the Mn/ROAD database in a table called “MNR_DISTRESS_PCC_FAULTS”.

Due to reduced personnel and resources in 2003, it was determine that fewer joints can be measured in the future. By examining the faulting trends from 1994-2003 at each of the transverse joints in the test sections, approximately 50 percent of the joints were chosen for future monitoring. Tables in Appendix A list the joints to measured for faulting after the fall of 2002. Selection criteria were based on a smooth historical trend and whether the slope of a linear best-fit line through the data was typical for each test section. Most joints do not exhibit a linear trend in faulting during their early age, however most follow a linear type trend later in life.

Update note: In January 2009, several new MnROAD test sections were added to the fault measurement schedule. The location of the measurement points was also revised. The measurement points were moved to standard offset distances of 3 feet and 10 feet from the centerline of the pavement for both lanes. It was believed that enough measurements had been taken at 1 foot and 2.5 feet from the
fogline for comparison, and that more interesting trends may be observed by comparing faulting in the two wheelpaths of each lane. Due to centerline tie-bars, many pavements tend to fault more in the wheelpath nearest the shoulder. These new testing locations should provide valuable data toward characterizing this phenomenon.

---

**Calibration During Operation**

Since the faultmeter can measure down to tenths of a millimeter, it is important to check the calibration of the device each day before use. A calibration and storage base was constructed in conjunction with the faultmeter. It contains a built-in aluminum block 10 millimeters high. By placing the device on the base and hitting the button on top of the handle, the operator should get a reading of 10 millimeters, ± 0.1 millimeters. The device should also be calibrated to a “zero” reading by moving it behind the 10 millimeter block on the base. If adjustment is necessary, the cover of the device can be removed and the internal LVDT can be moved.

It is recommended to monitor wearable parts, like the new “bolt” feet, since it can affect the calibration of the device. The internal batteries also need periodic attention.

---

**Joints Measured for Faulting (Fall 2002 – Fall 2008)**

Note: All PCC test section joints (except in transition areas between sections) were measured for faulting from fall 1994 through fall 2002.* The joints listed below were measured for faulting until 2008. * Measurements for test sections 32, 52-53 and UTW test sections 92-97 began in 2001.

**MAINLINE TEST SECTIONS**

<table>
<thead>
<tr>
<th>Cell</th>
<th>Joint Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>3, 4, 5, 8, 10, 14, 17, 18, 22, 24, 25</td>
</tr>
<tr>
<td>6</td>
<td>32, 35, 36, 40, 41, 42, 48-51, 54, 57-59, 61, 62</td>
</tr>
<tr>
<td>7</td>
<td>68-70, 73, 77, 78, 81, 82, 84, 86, 87, 89, 91</td>
</tr>
<tr>
<td>8</td>
<td>97-101, 104-106, 109-116, 125</td>
</tr>
<tr>
<td>9</td>
<td>132, 134, 139, 141-143, 145, 147-154, 157, 164</td>
</tr>
<tr>
<td>10</td>
<td>167, 169, 170, 172, 174, 175, 178, 182, 186-190</td>
</tr>
<tr>
<td>11</td>
<td>194-196, 198, 199, 207-211, 214</td>
</tr>
<tr>
<td>12</td>
<td>217, 219, 221-222, 224, 226-227, 232, 234, 236-237, 241-244, 247</td>
</tr>
<tr>
<td>13</td>
<td>251-252, 254, 256, 258-259, 262, 265-266, 269-270, 272-273</td>
</tr>
</tbody>
</table>

**LOW VOLUME ROAD TEST SECTIONS**

<table>
<thead>
<tr>
<th>Cell</th>
<th>Joint Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>1202, 1205, 1209-1210, 1215-1219, 1221-1222, 1228, 1230-1232, 1236-1237, 1239, 1241-1243, 1245</td>
</tr>
<tr>
<td>36</td>
<td>1003, 1005, 1008, 1012, 1015-1016, 1020-1022, 1024, 1026-1028, 1030, 1033</td>
</tr>
</tbody>
</table>
ULTRATHIN WHITETOPPING TEST SECTIONS (MAINLINE)

<table>
<thead>
<tr>
<th>Cell</th>
<th>Joint Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>92</td>
<td>2264-2265, 2267, 2269, 2273-2275, 2278-2280</td>
</tr>
<tr>
<td>94</td>
<td>2089, 2093-2094, 2097, 2101-2102, 2106-2107, 2109, 2112, 2121, 2124, 2132, 2141-2142, 2147</td>
</tr>
<tr>
<td>95</td>
<td>2153, 2158-2159, 2161, 2164, 2167, 2176, 2178, 2181-2182, 2186, 2191, 2195, 2198, 2199, 2202-2203, 2207</td>
</tr>
<tr>
<td>96</td>
<td>2213-2215, 2219, 2225, 2228, 2230-2231, 2237, 2239, 2244-2245</td>
</tr>
<tr>
<td>97</td>
<td>2248-2250, 2254-2255, 2257-2261</td>
</tr>
</tbody>
</table>


Transverse joint faulting measurements are taken at select locations throughout the MnROAD concrete test cells. Beginning in April 2009, measurements will be taken across the selected joints in each of the wheelpaths: Outer wheelpath, Inner wheelpath (10 feet and 3 feet offsets from the centerline in both lanes).

The following table lists the MnROAD cells to be tested in the months of April and July.

<table>
<thead>
<tr>
<th>Concrete Test Cells Measured for Transverse Joint Faulting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mainline: 1 (future), 5, 6, 7, 8, 9, 60, 61, 62, 63, 96, 97, 92, 70 (future), 71 (future), 72 (future), 10, 11, 12, 13, 14</td>
</tr>
<tr>
<td>LVR: 32, 52, 53, 54, 36, 37, 38, 40</td>
</tr>
</tbody>
</table>

FIELD CONDITION SHEETS AT: R:\MnROAD\Data - Collection\Faultmeter\Documents\Faulting Data Collection Sheets.xls

AFTER DATA HAS BEEN COLLECTED, MAKE A COPY OF THE FAULTING DATABASE TEMPLATE AT: R:\MnROAD\Data - Collection\Faultmeter\Data\Joint Faulting Database Template.xls
Faultmeter Modifications (Top View)

- 36" x ¾" Dia. Aluminum Rod
- ¼" Dia. Allen Head Set Screws (both ends of tube and midpoint)
- 5" Long Tube to fit ¾" Dia. Rod. Secure to base with welds or brackets.
- Existing Handle
- ½" Dia Bolt & Nuts (Stainless Steel Bolt)
- ¾" Dia. Bolt & Nuts (Stainless Steel Bolts) (both front legs)

Control Box

Front

Scale: 2 cm = 1 inch

Page 2/2
For more information:

For more information about MnROAD and the Road Research program at Mn/DOT:

Tim Clyne  
Minnesota Road Research  
Office of Materials  
Phone: 651-366-5473  
E-mail: Tim.Clyne@dot.state.mn.us

Ben Worel  
Minnesota Road Research  
Office of Materials  
Phone: 651-366-5522  
Email: Ben.Worel@dot.state.mn.us

www.dot.state.mn.us/mnroad