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1. Conventions 
This manual is intended for use with MN/Model Phase 4 S-Plus 
functions, dated May 2007. It describes some of the preparation 
necessary to use the S-Plus functions and the functions themselves. 
An outline of model evaluation and an example are provided.  
Conventions are that file names are shown in red, S-Plus output is 
shown in green monospaced font, and S-Plus commands and variable 
names are shown in blue monospaced font. 

2. Organization of files 

There are several kinds of files.   
A. There are MN/Model data files.  These are plain text (ASCII) files 
that are usually created by sampling from the GIS database.  A text 
data file has one column for each variable and one row for each 
location.  There is an additional first row that contains variable names.  
Variable names may contain periods but should not contain spaces or 
other punctuation.  Data values in the file should be separated by 
white space, not commas. 
MN/Model data files should contain variables named Phase3 and 
Phase4. These variables code the nature of each location in the data 
set.  For Phase3 the codes are: 0 not used, 1 site centroid, 2 site 
secondary point, 5 negative survey, 7 site used as survey, 8 random 
point.  For Phase4 the codes are: 0 not used, 1 site centroid, 2 site 
secondary point, 3 line site, 4 polygon site, 5 negative survey, 6 DOT 
survey, 7 site used as survey, 8 random point. 
MN/Model data files may optionally contain variables named X and Y, 
which indicate the Easting and Northing of the locations in UTM 
coordinates.  If these variables are present, they will be used to 
construct the subsets used in spatial cross-validation of the models. 
All MN/Model data files are named REGION_DAT.TXT, where REGION 
is replaced with an abbreviation for the region name, for example, 
BGWD_DAT.TXT would be Big Woods.  The S-Plus functions are 
expecting the _DAT.TXT to be upper case, but some operating systems 
are case insensitive. 
B.  There are files containing S-Plus scripts.  At present, there are 
seven files with names phase4.core.S.txt, phase4.bmalogit.S.txt, 
phase4.tree.S.txt, phase4.bagging.S.txt, phase4.double.S.txt, 
phase4.bumping.S.txt, and phase4.naive.S.txt.  These are plain text 
(ASCII) files which contain definitions of S-Plus functions and a table 
associating informative labels with variable names. 
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C.  There are output/result files.  These files are organized into 
directories named according to the region and a user-specified label.  
For example, a Phase 4 site model for Big Woods could have its output 
files placed in the directory BGWD.mod4.site.summaries , while the 
analogous survey model could use the directory 
BGWD.mod4.surv.summaries. 
This directory will contain text files as well as plot files in pdf format.  
Some of these files summarize the variables in the data set, and 
others summarize the results of model fits.  The contents and 
interpretation of the files will be discussed below. 
D.  There are internal S-Plus files that contain S-Plus variables.  You 
will not ordinarily work directly with these files, but rather access them 
through S-Plus.  S-Plus collects its files/variables into a data directory.  
Given the number of S-Plus files/variables that will accumulate, you 
may find it helpful to organize multiple S-Plus data directories. 

3. Software Architecture 

Phase 4 MN/Model S-Plus functions permit the use of seven different 
prediction methods: logistic regression with BIC variable selection, 
logistic regression with Bayesian model averaging, naïve Bayesian 
classification, tree-structured classification (recursive partitioning), 
bagging (bagged trees), double bagging, and bumping (bumped 
trees).  See Chapter 3 of "Statistical Methods for MN/Model Phase IV" 
for more details.  Users of the Phase 4 MN/Model S-Plus functions do 
not interact directly with the different prediction methods.  Instead, 
there are four “front end” functions that users call.  Two of these do 
not depend on the prediction method used, and the other two have an 
argument that indicates which prediction method to use.  Thus, for 
example, to fit once using logistic regression with BIC model selection 
and once using bagging, the front end function is called twice, once 
with the method argument set to “biclogit” and once with it set to 
“bagging”.   

The file phase4.core.S.txt contains the S-Plus functions that the user 
interacts with directly.  The other S-Plus files contain functions that are 
used “behind the curtain” and are not called directly by the user.  The 
discussion describes the functions called directly by the user, and not 
the method-specific functions that are called internally.  (The method-
specific function files contain comments that document the arguments 
should their direct use be required for some reason.) 
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4. Work flow 

Before discussing specific S-Plus functions that will be used in 
MN/Model, it will be helpful to discuss overall work flow. 

Modeling begins by selecting a directory in which to work. You may 
use a separate directory for each region, or you may put multiple 
regions in a single directory. 

You should copy into this directory the S-Plus script files and the 
MN/Model data file(s).  If you wish to use a separate S-Plus data 
directory for this region, you should create one here from within S-
Plus. 

Within S-Plus, work follows this pattern. 

1. Copy the MN/Model S-Plus script files into the directory where you 
wish to work, and then read the script files into S-Plus.  This need only 
be done once for each S-Plus data directory. 

2. Read the data for the region into S-Plus. 

3. Choose a subset of the data to work on (e.g., centroid site models, 
all site models, survey models, etc). 

4. (Optional) Compute summary statistics and descriptive graphics for 
the variables in the data set and the subset selected. 

5. Fit one or more prediction models using the modeling choices 
available. 

6. Summarize the fit of the model to determine its accuracy. 

7. Export the prediction model in a form suitable for use in GIS (tree 
or bagging). 

8. (Optional) Make predictions from within S-Plus. 
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5. Modeling Steps  

We now go through the eight modeling steps. 

5.1 S-Plus Script Files 

 

Your current directory should contain the files: phase4.core.S.txt, 
phase4.bmalogit.S.txt, phase4.tree.S.txt, phase4.bagging.S.txt, 
phase4.double.S.txt, phase4.bumping.S.txt, and phase4.naive.S.txt. 

Start S-Plus. At the S-Plus command prompt, enter the following 
commands:  
source(“phase4.core.S.txt”) 
source(“phase4.tree.S.txt”) 
source(“phase4.bagging.S.txt”)  
source(“phase4.double.S.txt”) 
source(“phase4.bumping.S.txt”) 
source(“phase4.naive.S.txt”) 
source(“phase4.bmalogit.S.txt”) 

These commands read the S-Plus script files into S-Plus itself and 
make them available for use.  You need do this only once for each S-
Plus data directory that you use. However, if you change any of the 
script files, you will need to re-execute the source() command to get 
the revised script into S-Plus. 

These six files contain definitions of many S-Plus functions.  You will 
only use a handful of them directly, as most of them are called 
internally and are not used by you at the command line. 

As mentioned above, you need to re-execute the source() command 
when a script file changes.  The principal reason why this should 
happen is that you want to add a new variable description.  The file 
phase4.core.S.txt contains the definition of an object named 
mnmodel.var.names.and.labels.  This is a matrix of variable names 
and longer variable descriptions.  If your dataset contains a new 
variable not in this list, you need to add a new variable name and 
description.  To do this, search in the file phase4.core.S.txt  to find the 
line beginning   mnmodel.var.names.and.labels <- matrix(c(.  
Below this you will find name and description pairs like  
“X”,  
    “Easting”, 
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Simply insert the new name and description into the list, for example 
“X”,  
    “Easting”, 
”newvar”,  
    “Nice long description”, 
As shown here, the variable name and description should be enclosed 
in quotes and separated by commas.  It is not necessary to have the 
short name/description pairs entered in any particular order, although 
you may find it convenient to do so. 

5.2 Read Data into S-Plus 

Data are read into S-Plus using the function mnmodel.readdata().  
The required argument for this function is a character string giving the 
abbreviation for a region, so a typical usage would be  
mnmodel.readdata(“BGWD”) 
(“BGWD” for Big Woods).  The function expects that there is a file in the 
current directory with the name REGIONABBR_DAT.TXT, where the 
region abbreviation replaces REGIONABBR in the name --- 
BGWD_DAT.TXT in the example. 

This function also has two optional arguments: rootvars and cmult.  
If rootvars is NULL (the default), then a standard set of predictors will 
be transformed by taking square roots (more below).  This can be very 
helpful for the logistic regression based methods biclogit and 
bmalogit, but is of no advantage for tree based methods such as 
tree, bagging, and bumping.  Alternatively, you may specify rootvars 
as a vector of character strings giving the names of variables that you 
wish to have transformed, for example, 
mnmodel.readdata(“BGWD”,rootvars=c(”Ded.blk1”,”Ded.cors”)) 
In this example, only variables Ded.blk1 and Ded.cors would be 
square rooted.  If you wish to take square roots of no variables, set 
rootvars equal to some nonexistent variable name: 
mnmodel.readdata(“BGWD”,rootvars=”no.such.variable”) 

If possible, mnmodel.readdata() will form spatial clusters for use in 
spatial cross-validation.  If there is a variable named Clusters in the 
data set, that variable will be used to indicate spatial cluster 
membership.  Those clusters will be randomly divided into 10 groups 
for spatial cross-validation.  If Clusters is not provided in the data, 
mnmodel.readdata() will construct spatial clusters if X and Y (the UTM 
easting and northing) are variables in the data set. The third 
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parameter cmult controls the number of clusters that will be created; 
there will be 10*cmult clusters formed, which are then grouped into 
10 groups for cross-validation.  By default, cmult is 40. 

The principal purpose of  mnmodel.readdata() is to create three S-
Plus objects (variables): REGIONABBR.data.all, REGIONABBR.subsets, 
and REGIONABBR.transformed.vars.  The first of these is an S-Plus 
data frame that contains all of the data that we just read in, plus any 
new variables formed by transformation (see below).  The second of 
these is also an S-Plus data frame, but this frame contains variables 
that indicate the membership of each location of the data in different 
data types (see below).  The last variable is an S-Plus character vector 
giving the names of the variables that were transformed (or NULL if no 
variables were transformed). 

In addition to creating the side-effect variables, this function also 
prints some summary information about the data.  For example: 
 
> mnmodel.readdata("BGWD4NEW") 
Variables in BGWD4NEW.data.all are: 
 [1] "Id"        "X"         "Y"         "Abl"       "Alluv"     "Blg" 
 [7] "Ht90"      "Rdedblk1"  "Rdedcors"  "Rdedpriv"  "Rdisasbi"  "Rdiscon" 
[13] "Rdishdw"   "Rdislkse"  "Rdismin"   "Rdismix"   "Rdisok"    "Rdispibf" 
[19] "Rdispr"    "Rdisrb"    "Rdissug"   "Rel90a"    "Rgh90"     "Rlk1size" 
[25] "Rlkinout"  "Rlkpinou"  "Rmajarea"  "Rplk1siz"  "Rwtpinou"  "Slp" 
[31] "Soilcat"   "Terr"      "Site.type" "Phase3"    "Phase4" 
 
 
Variables in BGWD4NEW.subsets are: 
 [1] "p3.cent"       "p3.sec"        "p3.neg"        "p3.aux" 
 [5] "p4.cent"       "p4.sec"        "p4.line"       "p4.poly" 
 [9] "p4.surv"       "p4.aux"        "all.rand"      "no.rand" 
[13] "all.locations" "all3.sites"    "all4.sites"    "all3.survey" 
[17] "all4.survey"   "mod3.cent"     "mod3.site"     "mod3.surv" 
[21] "mod4.cent"     "mod4.site"     "mod4.surv"     "CVsets" 
[25] "SCVsets" 
 
 
Variables in BGWD4NEW.transformed.vars are: 
NULL 
 
 
Total number of locations: 7626 
 
    Number of Phase 4 centroid sites: 711 
    Number of Phase 4 secondary sites: 111 
    Number of Phase 4 line sites: 0 
    Number of Phase 4 polygon sites: 40 
Total number of Phase 4 sites: 862 
 
    Number of Phase 3 negative surveys: 1273 
    Number of Phase 4 DOT surveys: 3707 
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    Number of Phase 4 sites as surveys: 169 
Total number of Phase 4 non-site survey locations: 5149 
 
Total number of random: 1615 
 
Total number for Phase 4 site-centroid models: 2326 
Total number for Phase 4 site models: 2477 
Total number for Phase 4 survey models: 7626 

Subsetting details.  The principal subsetting variables available are: 
mod3.cent, mod3.site, mod3.surv, mod4.cent, mod4.site, 
mod4.surv.  These are logical (TRUE/FALSE) variables wherein TRUE 
indicates that the location is a member of the subset.  The “mod” 
indicates subsets suitable for modeling (that is, they contain both the 
locations of interest and random locations).  The “3” or “4” indicates 
Phase 3 or Phase 4 archaeological site locations.  The suffixes “cent”, 
“site”, and “surv” indicate subsets for site centroids, centroids plus site 
secondary points, or all surveyed places.   

Somewhat parallel to these are all.rand, no.rand, all3.sites, 
all4.sites, all3.survey, and all4.survey.  These subsets indicate 
the random locations, the non-random locations, and the locations of 
interest (no random locations) for Phase 3 or 4, all site locations or all 
survey locations.  Finally, p3.cent, p3.sec, p3.neg, p3.aux, 
p4.cent, p4.sec, p4.line, p4.poly, p4.surv, and p4.aux 
indicate specific site categories: Phase 3 site centroids, secondary 
points for Phase 3 sites, Phase 3 negative survey points, and Phase 3 
sites used as surveys, and Phase 4 site centroids, Phase 4 site 
secondary points, linear Phase 4 sites, polygon Phase 4 sites, Phase 3 
and DOT negative surveys, and Phase 4 sites used as surveys. 

In addition to the logical subsetting variables, there are three grouping 
variables: Cvsets, SCVsets and clusters.  The first two contain 
integers from 1 through 10 that indicate the groupings that will be 
used for cross-validation and spatial cross-validation respectively.  The 
last contains integers from 1 through the number of clusters giving 
cluster membership used during spatial cross-validation. These are not 
ordinarily accessed by the user. 

Transformation details. Some prediction schemes (in particular, 
those based on logistic regression) may work poorly when the 
predictor variables are skewed.  Many of the landscape-based 
predictors used in MN/Model are skewed to the right, so 
mnmodel.readdata() automatically tries to make some variables less 
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skewed by taking their square roots and adding the square-rooted 
variables to the predictor set.  By default, mnmodel.readdata() will 
take the square roots of variables named D.dra30, Ded.blk1, 
Dedbwet1, Ded.cors, Ded.or30, Ded.priv, Ded.swm, Dint,  
Dis.asbi, Dis.br, Dis.bw, Dis.con, Dis.hdw, Dislksed, Dis.mix, 
Dis.ok, Dis.pibf, Dis.pr, Dis.rb, Lkinout, Lk1.size, Lkpinout, 
Plk1size, Riv.conf, Wtpinout, Dis.pap, Dis.sug, Dis.maj, 
Dis.min, Maj.area, and Min.area.   

All newly square-rooted variables are named sqrt.originalname, for 
example, sqrt.Plk1size or sqrt.Dis.pap. 

Some predictors are directions in compass degrees.  We assume that a 
name beginning with Dir. is a direction variable; for example, Dir.ww 
is the direction to nearest wetland or water.  All direction variables are 
replaced by their sines and cosines, and the new variables are named 
as the old variable with sin. or cos. prepended; for example 
sin.Dir.ww and cos.Dir.ww .  Some of the prediction techniques 
could adapt to compass degrees, but most will work better with these 
transformed variables. 

5.3 Subset Choice Modeling is done either to produce a model for 
surveys or for sites.  The standard choices for subsetting variables are 
mod3.cent, mod3.site, mod3.surv, mod4.cent, mod4.site, 
mod4.surv.  The “3” or “4” indicates Phase 3 or Phase 4 archaeological 
site and/or survey location data.  The suffixes “cent”, “site”, and “surv” 
indicate subsets for site centroids, all cells occupied by a site, or all 
surveyed places. Thus, when functions below call for a subset, the user 
will nearly always use one of these six variables. 

Nearly always is not always, and users may from time to time wish to 
use a subset a bit off of the beaten track.  For example, suppose that 
a user wishes to model DOT survey points (only) against random 
points.  To do this, the user can combine subsetting variables 
described in the preceding section using the logical “or” operation in S-
Plus, which is denoted by the operator | (the vertical bar).  To form a 
subset consisting of locations that are either DOT survey points 
(p4.surv) or random points (all.rand), the subset can be chosen via 
p4.surv | all.rand .  Of course, more than two variables can be 
OR-ed together to combine more than two groups.  For example, 
p4.cent | p4.surv | all.rand  would produce a subset consisting 
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of all locations that are either Phase 4 site centroids, or Phase 4 DOT 
survey points, or random points. For more complex combinations, S-
Plus has a full set of Boolean operations including ! for logical NOT 
(inverse) and & for logical AND. 

5.4 Variable Summaries 

After reading data into S-Plus, you may choose to make some simple 
summaries of the variables.  The summarization process looks at the 
data separately for sites, negative surveys, and random points, so it is 
important that you choose a survey-subset for this step, 
because only the survey subsets have data from all three types.  
(Should the subset you choose not include locations of all three types, 
the function will stop and print an informative message.) 

The command to produce these summaries is 
mnmodel.var.summaries(), and it takes three arguments.  The first 
argument is a region abbreviation, such as “BGWD”.  The second 
argument is a subsetting variable, such as mod4.surv .  (A subsetting 
expression can be used, for example, by OR-ing two or more 
subsetting variables.) The last argument is a character string label 
used in constructing the name of the directory where the output 
should be stored.  When using a single subsetting variable, it may be 
simplest just to label the results with the subsetting variable.  Thus a 
typical usage is 

mnmodel.var.summaries(“BGWD”,mod4.surv,”mod4.surv”) 

and a more unusual usage might be 

mnmodel.var.summaries(“BGWD”,p4.cent | p4.surv | all.rand, 
”centroids.and.DOTneg”) 

The output from this command is stored in a directory named 
REGIONABBR.label.summaries, where the region argument replaces 
REGIONABBR and the label argument replaces label.  In our examples, 
we get directories names BGWD.mod4.surv.summaries and 
BGWD.centroids.and.DOTneg.summaries.  If this directory does not 
exist, the S-Plus function creates it. 

mnmodel.var.summaries() produces summaries for all data in the 
region and subset, except that it first eliminates any previously 
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transformed variables and any variables with names X, Y, Easting, 
Northing, Site.type, Phase3, Phase4, Id, and Centroid (along with 
various capitalizations of those names). 

The first summary is descriptive statistics.  All descriptive statistics are 
placed in a file named variable.summary.txt in the (previously created) 
output directory.  The output to this file begins with means and 
standard deviations of the variables, reported separately for sites, 
negative survey points, and random points.  For example, output for 
the first two variables is: 

Means and standard deviations of variables: 
 
, , Abl 
         Sites Negative Surveys Random Points 
mean 943.43155        927.56963     987.37895 
  sd  91.55414         98.68696      76.14381 
 
, , Alluv 
          Sites Negative Surveys Random Points 
mean 0.07656613       0.09263935     0.0247678 
  sd 0.26605614       0.28995453     0.1554649 

After means and variances come two-sample Wilcoxon rank-sum tests 
for each variable comparing site data to random location data, and 
negative survey data to random location data.   The two-sample 
Wilcoxon test is a nonparametric test of location (center or median). 
That is, it asks whether there is evidence that two groups (that are 
otherwise comparable) are centered at different values, and the test 
does not rely on the shape of the underlying group distributions. Small 
p-values indicate that the groups have different centers.  For both 
comparisons, the Wilcoxon statistic and the p-value are reported.  For 
example, output from the first two variables is: 

Wilcoxon tests of variables: 
 
, , Abl 
         Sites vs Random Surveys vs Random 
Wilcoxon   -1.201355e+01     -2.267643e+01 
 p-value    3.016131e-33     7.655441e-114 
 
, , Alluv 
         Sites vs Random Surveys vs Random 
Wilcoxon    6.066053e+00      8.956191e+00 
 p-value    1.310920e-09      3.360875e-19 

Finally, the Spearman rank correlation matrix of the variables is 
printed.  The Spearman rank correlation coefficient indicates how two 
variables vary together: positive values indicate that they vary 
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directly; negative values indicate that they vary inversely. The further 
the coefficient is from zero, the stronger the relationship. The rank 
correlation coefficient is bounded between one and negative one.  For 
example, output for five variables is (most data sets will have more 
than five variables, so there will be more than five rows and columns): 

Spearman rank correlations: 
            Abl  Alluv    Blg   Ht90 Rdedblk1 
     Abl  1.000 -0.440  0.005  0.017   -0.369 
   Alluv -0.440  1.000  0.070 -0.016    0.356 
     Blg  0.005  0.070  1.000 -0.022    0.027 
    Ht90  0.017 -0.016 -0.022  1.000   -0.033 
Rdedblk1 -0.369  0.356  0.027 -0.033    1.000 
 
After summary statistics, mnmodel.var.summaries() produces a PDF 
graphics file for each variable that is a stack of three histograms 
showing the  distribution of the variable separately for sites, negative 
survey points, and random locations.  The file is named var.1.pdf, 
where “var” is the variable name.  For example, Figure 1 shows 
Abl.1.pdf for one region (elevation, 20 histogram classes).  
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Figure 1.  Sample histograms for elevation separately for sites, 
negative surveys, and random locations. 
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5.5 Fitting a Model 

Now we get to the meat of the modeling exercise, and the user has 
several potential directions to go.  The function that does model fitting 
is mnmodel.fit().  This function has eight arguments, but we usually 
only use four of them and let the others take their default values.  We 
begin with the four standard arguments and discuss the uncommon 
arguments later.    

The first argument is a region abbreviation, such as “BGWD”.  The 
second argument is a subsetting variable, such as mod4.surv .  (A 
subsetting expression can be used, for example, by OR-ing two or 
more subsetting variables.) The third argument is a character string 
label used in constructing the name of the S-Plus variable where the 
results should be stored.  These first three arguments are exactly 
analogous to the first three arguments of  mnmodel.var.summaries(). 

The fourth argument is a character string indicating which modeling 
technique to use.  The available choices are “biclogit”, 
“bmalogit”, “naive”, “tree”, “bumping”, “bagging”, and 
“double”.   

We recommend using “bagging”. 

The method used in Phase 3 of Mn/Model is essentially  “biclogit”.  
Also, “biclogit” and “bmalogit” are equivalent during the fitting 
stage, so you only need to do one of them.  Details of how these 
methods work are given in Chapter 3 of "Statistical Methods for 
MN/Model Phase 4". 

A typical use of mnmodel.fit() is thus 

mnmodel.fit(“BGWD”,mod4.site,”mod4.site”,”bagging”) 

which would use the bagging method on the Big Woods data to fit a 
model to all Phase 4 site data.  Remember: you must have read the 
region's data into S-Plus before attempting to fit a model. 

The mnmodel.fit() function can be quite slow, depending on the 
method (“biclogit” and “bmalogit” are the slowest; “tree” is the 
fastest).  However, it is doing a lot of work during that time.  First, 



16 

mnmodel.fit() prints out some notification about the variables used 
and the numbers of cases being used, for example, 

> mnmodel.fit("BGWD",mod4.site,"mod4.site","tree") 
Constructing BGWD.mod4.site.results 
 
Available predictors: 
 [1] "Id"        "X"         "Y"         "Abl"       "Alluv"     "Blg" 
 [7] "Ht90"      "Rdedblk1"  "Rdedcors"  "Rdedpriv"  "Rdisasbi"  "Rdiscon" 
[13] "Rdishdw"   "Rdislkse"  "Rdismin"   "Rdismix"   "Rdisok"    "Rdispibf" 
[19] "Rdispr"    "Rdisrb"    "Rdissug"   "Rel90a"    "Rgh90"     "Rlk1size" 
[25] "Rlkinout"  "Rlkpinou"  "Rmajarea"  "Rplk1siz"  "Rwtpinou"  "Slp" 
[31] "Soilcat"   "Terr"      "Site.type" "Phase3"    "Phase4" 
 
 
Total number of locations: 7626 
Total number of sites: 862 
Total number of survey points: 0 
Total number of non-random: 862 
Total number of random: 1615 
Eliminating 'Id', 'Easting', 'Northing', 'Phase3', and 'Phase4' from predictors 
 
Eliminating previously transformed variables from predictors: 
NULL 
 
 
 
 
Eliminating collinear and/or nearly constant variables from predictors: 
[1] "Rdismix" 
 
 
 
 
Fitting with these variables: 
 [1] "Abl"      "Alluv"    "Blg"      "Ht90"     "Rdedblk1" "Rdedcors" 
 [7] "Rdedpriv" "Rdisasbi" "Rdiscon"  "Rdishdw"  "Rdislkse" "Rdismin" 
[13] "Rdisok"   "Rdispibf" "Rdispr"   "Rdisrb"   "Rdissug"  "Rel90a" 
[19] "Rgh90"    "Rlk1size" "Rlkinout" "Rlkpinou" "Rmajarea" "Rplk1siz" 
[25] "Rwtpinou" "Slp"      "Soilcat"  "Terr" 

After the notifications, it gets down to the business of fitting.  First, it 
fits the model to the full data set; this is the “base” model.  Then it 
does 10-fold cross-validation.  In this process, the data are randomly 
divided into 10 subsets (this was done when the subsetting variable 
CVsets was formed for this region).  Then we fit the model using only 
9 of the 10 groups, and use the model fit from 90% of the data to 
predict on the one group held back.  Next we cycle through the 
remaining 9 groups, hold each one out, fitting the model based on the 
other 9 groups, and predicting to the held out group.  When finished, 
we have constructed 10 different prediction models beyond the base 
model and a set of predictions that were made without using the data 
being predicted. 
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If the variable SCVsets is available in the subsets for this region, we 
then do spatial cross-validation.  This is similar to cross-validation 
except that the 10 groups consist of small spatial clusters instead of 
individual locations. 

While all this fitting is going on, mnmodel.fit() will print out some 
progress information.  For example, in the following output, a tree 
model has been fit, cross-validation has been completed, and we are 
now working on the sixth spatial cross-validation fit 

Doing tree ... done. 
Cross-validating, please be patient: 1  2  3  4  5  6  7  8  9  10   done. 
Spatially cross-validating, please be patient: 1  2  3  4  5  6 

When the fitting is done, mnmodel.fit() creates an S-Plus object 
(variable) named REGIONABBR.label.method.results.  In the 
example above, this would be BGWD.mod4.site.tree.results.  The S-
Plus variable is an S-Plus list with seven named members.  The first 
member is always a method-specific member containing the fitting 
results (variables, coefficients, etc) for the fitting method that was 
used.  Methods “biclogit” and “bmalogit” both use a member 
named bmaresults; methods “tree” and “bumping” both use a 
member named treeresults; methods “bagging” and “naive” use 
members named baggingresults and naiveresults, respectively.  
Details of these members are rather arcane and will not be detailed 
here.  As we are recommending “bagging”, we simply state that 
baggingresults is an S-Plus list object (usually with 11 elements), 
with each element of the list being an S-Plus tree object.  Details of 
the tree object are documented within S-Plus. 

The other six members of the list are named preds, cvpreds, 
scvpreds, cvsets, scvsets, nonrandzero, and groups.  The 
members cvsets and scvsets correspond to the variables CVsets and 
SCVsets in the subsetting data frame.  The groups member is 0/1 with 
1 indicating a target location (typically a site or survey location), and 0 
indicating a non-target location (usually a random location); this is the 
response in the fitting problem.  The preds member is the vector of 
predicted values using the full model.  The cvpreds member is a 
matrix with 11 columns.  The first 10 columns are the predictions (for 
all locations in the subset) using the 10 models derived during cross-
validation.  The last column is the cross-validated predictions 
combining the “out of sample” predictions in the first 10 columns.  The 
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scvpreds member is analogous but is for spatial cross-validation.  The 
nonrandzero member is a logical vector indicating nonrandom 
locations that are used as non-target locations. 

The predictions (and cross-validated and spatial cross-validated 
predictions) are numbers, not categories, with larger values 
corresponding to locations less likely to be random points.  The user 
must choose a threshold, and then declare locations with predictions 
above that threshold to be sites.  Guidance on choosing the threshold 
is given below in the discussion of the mnmodel.fit.summaries() 
function. 

Additional arguments.  There are four additional arguments to 
mnmodel.fit(): site.prob, use.sampling.wts, verbose, and 
response.  When you fit without specifying site.prob, you get 
predicted values that are larger when the location is more likely to be 
a site and smaller otherwise, but the actual predicted value cannot be 
interpreted.  If you know the a priori probability that a location is a 
site, you may specify that probability using site.prob, for example, 
by including site.prob=.01 in the argument list for mnmodel.fit().  
Specifying the a priori probability reweights the points during fitting so 
that the total fraction of weight given to sites is equal to the a priori 
probability.  In that case, the model predictions can be interpreted as 
the probability of a location being a site.  By default, the proportions of 
sites and non-sites in the sample are assumed to be the same as those 
in the population. 

Using the argument verbose=FALSE will suppress the printed output. 

The default model-fitting behavior is to assume that the random points 
in the subset are the non-target points and all other points in the 
subset are the target points.  This is usually what we want to do, but 
may not always be what we want to do.  For example, we might wish 
to fit a model with all Phase 4 sites as the targets, but use both the 
random points and the Phase 4 DOT survey points as the non-targets.  
Under the default behavior, the Phase 4 DOT points, being nonrandom, 
would be used as targets.  To change this behavior, we must explicitly 
specify the response by setting the response argument.  The 
response should be a logical vector where TRUE indicates a target 
location and FALSE indicates a non-target location.  Continuing the 
example above, we would choose the subset of data to include in our 
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model via subset=(mod4.site | p4.surv) (all Phase 4 site points, all 
random points, and all Phase 4 DOT survey points), and we would set 
the response via response=mod4.site (only archaeological site points 
used as targets). 

The last argument is sampling.wts, which permits us to re-weight the 
non-random points during fitting.  Classical sampling theory says that 
points should be weighted by the reciprocal of their probability of 
inclusion into the sample when computing summary statistics.  The 
survey models show us that not all locations are equally likely to be 
surveyed for archaeological artifacts, so it might be worthwhile to re-
weight the sites we do have by the reciprocals of their probabilities of 
being surveyed.   

When sampling.wts is NULL, then all data points receive the same 
weight during model fitting.  You may optionally set different weights 
for the non-random locations by setting the sampling.wts argument 
equal to your chosen weights.  (Random locations all get weight 1.  
They were selected by a different mechanism than the survey and site 
locations and are all equally likely regardless of the mechanism that 
produced the survey and site locations.  You may adjust the relative 
weight of the random and non-random locations by setting 
site.prob.)  For example, suppose that we have previously fit a 
survey model to Big Woods data and that we now wish to use the 
sampling probabilities from that model when fitting a site model for 
the Big Woods.  The region abbreviation is “bgwd4”, the survey model 
subset is “mod4.surv” and the site model subset is “mod4.site”.  The 
regional data are in bgwd4.data.all, and the subsetting variables are 
in bgwd4.subsets. We can access a subsetting variable, say 
mod4.site, via bgwd4.subsets$mod4.site.  The first thing we must 
do is extract the data for the non-random locations included in the site 
modeling subset and store it in a new data frame, say 
bgwd4.site.data.   

> bgwd4.site.data <- bgwd4.data.all[bgwd4.subsets$mod4.site & 
bgwd4.subsets$no.rand,] 

In this command, we have selected the rows of bgwd4.data.all 
([rows,cols] indicates element selection) that are used in the site 
model (mod4.site is true) and are nonrandom (no.rand is true).  
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We next use the mnmodel.predict() function (see Section 5.8 below) 
to apply the survey model to the selected data to estimate the survey 
probabilities for these site locations and then store the probabilities in 
bgwd4.sampling.prob.  The output of mnmodel.predict() is a two 
column matrix, with the first column being the estimated probabilities 
of survey and the second column our actual prediction of surveyed or 
not.  We only need the first column, so we select that using [,1] . 

> bgwd4.sampling.prob <- mnmodel.predict("bgwd4","mod4.surv","bagging", 
 bgwd4.site.data)[,1] 

Next we compute the reciprocals and store them in 
bgwd4.sampling.wts 
 
> bgwd4.sampling.wts <- 1/bgwd4.sampling.prob 
 

Finally, we fit the site model using these sampling weights. 
 
> mnmodel.fit("bgwd4",mod4.site,"mod4.site.wtd",method="bagging", 
 sampling.wts=bgwd4.sampling.wts) 

Warning: The usefulness of this approach depends on getting good 
weights.  If we use reciprocal sampling probabilities, then we need 
good sampling probabilities.  Getting those good probabilities can be a 
problem.  Our models will mostly be used to classify locations into low, 
medium, and high probabilities of having a site or having a survey. 
When we are interested in this kind of classification, then only the 
order of our estimated probabilities matters, not their actual 
magnitudes. However, when we are going to use these probabilities to 
form weights, then we need to get the magnitudes correct as well.  
This is more difficult, and in particular requires an accurate value for 
site.prob when the survey model is fit.  (When fitting a survey 
model, site.prob indicates the proportion of the study area that has 
been surveyed.) 

5.6 Fit Summaries 

After fitting a model, you may use the mnmodel.fit.summaries() 
function to obtain several evaluations of fit quality, guidance on 
selecting the cutoff for producing classifications, and information on 
how the actual fit is done (variables, coefficients, and so on).  The 
arguments to mnmodel.fit.summaries() are a region abbreviation, a 
label, a method, and an optional a priori probability for sites.  The 
region, label, and method are character strings used to identify the 
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results to summarize.  The a priori probability is used only to prepare 
the gain curves (as described in the chapter on model evaluation).  
This probability is set separately and independently from the a priori 
probability used to fit the model, which is not carried forward to the 
summary stage.  If you want to use the same a priori probability at 
both the model fitting and model evaluation stages, you must set them 
both to your desired value; you may set them to differing values if you 
desire. (The a priori probability specified during model fitting adjusts 
the overall level of the estimated probabilities up and down; the a 
priori probability specified here affects the gain curves only.)  Thus, a 
typical usage might be   
mnmodel.fit.summaries(“BGWD”,”mod4.site”,”bagging”,.001) . 
This summary would be computed based on information stored in the 
S-Plus variable REGIONABBR.label.method.results, or in our 
example, BGWD.mod4.site.bagging.results. 

Output from mnmodel.fit.summaries() goes into the 
REGIONABBR.label.summaries directory, which in our example is 
BGWD.mod4.site.summaries.  The output consists of a text file named 
method.summary.txt (bagging.summary.txt in the example) and 
either 8 or 13 summary graphics in pdf format, the number depending 
on whether spatially cross-validated predictions are available in the 
results variable (REGIONABBR.label.method.results). 

Let us begin with a discussion of the graphs, which are produced for 
the predictions, cross-validated predictions, and, if available, spatially 
cross-validated predictions.  For these kinds of predictions we produce 
cumulative plots, ROC curves, and gain curves.  (See Chapter 2 of 
"Statistical Methods for Mn/Model Phase 4" on model evaluation for an 
explanation of these plots, their construction, and their interpretation.)  
For cross-validated data, we also produce graphs with multiple 
cumulative curves and ROC curves, one for each cross-validation 
subset.  The graphs are stored in the files with the names: 

1. appcumpred.method.pdf, appgain.method.pdf, 
approc.method.pdf. 

2. cvcumpred.method.pdf, cvgain.method.pdf, cvroc.method.pdf, 
cvcumpred.multi.method.pdf, cvroc.multi.method.pdf. 
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3. scvcumpred.method.pdf, scvgain.method.pdf, 
scvroc.method.pdf, scvcumpred.multi.method.pdf, 
scvroc.multi.method.pdf. 

The “app” prefix stands for “apparent” and indicates results for 
predictions constructed using all the data.  The “cv” and “scv” prefixes 
indicate results for cross-validated and spatially cross-validated 
predictions.  The “multi” indicates separate curves for each cross-
validation subset.  In all cases, the “method” is replaced with the 
method of interest, for example, approc.bagging.pdf.  

The cumulative predicted plots allow us to see the actual values 
predicted for different locations and to compare the distributions of 
predictions for sites and non-sites.  An example cumulative predicted 
plot is shown in Figure 2. 

We see two bands of points, the lower band for random points and the 
upper band for sites.  The curves show the cumulative distributions, 
that is, fractions of points with values less than or equal to the current 
value, for random points (dashed) and sites (solid).  For a good 
prediction, the random points should cluster to the left and their 
cumulative should rise steeply and then flattening near 1; and the 
sites should cluster to the right, with their cumulative staying low and 
then rising sharply on the right.  The greater the area between the two 
curves, the better the prediction method is doing.   

The “multi” form of the plot shows the same points, but the cumulative 
curves are plotted separately for the 10 cross-validation subsets.  This 
illustrates the variability in the quality of the prediction.  This is 
illustrated in Figure 3. In this example, the curves are fairly stable 
across the subsets. 
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Figure 2.  Cumulative predicted plot showing separate curves for sites 
(solid) and non-sites (dotted). 
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Figure 3.  Multiple form of cumulative predicted plots, showing 
separate curves for each cross-validation subset. 
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The ROC curve plots the true positive rate (the rate for sites, vertical 
axis) against the false positive rate (rate for random locations, 
horizontal axis) for a large number of potential thresholds.  The curve 
starts in the lower left hand corner and moves to the upper right hand 
corner.  Ideally, the curve should move up to the top very quickly and 
then move along the upper boundary.  This gives us maximum true 
positive rate with minimum false positive rate.  The diagonal line 
corresponds to randomly guessing site versus random.  The false 
positive rates for .7 and .85 true positive rates are highlighted.  While 
our principal figure of merit is the false positive rate at a .85 true 
positive rate, the area under the ROC curve gives an overall summary 
of the quality of the prediction.  Figure 4 shows a sample ROC curve 
based on cross-validated predictions. 

The “multi” form of the graph plots the ROC curve separately for each 
cross-validation subset.  Figure 5 shows an example of these multiple 
ROC curves for the same data shown in Figure 4.  Again we see that 
the ROC curves are fairly stable. 

The final graph is the gain curves.  These curves are already 
somewhat complex, so we only plot them for the full data set, and not 
separately by cross-validation subsets.  The gain curve for the same 
data used above and assuming an a priori probability of .01 is shown 
in Figure 6.
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Figure 4.  ROC curve for cross-validated predictions. 
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Figure 5.  ROC curves separately for each cross-validation subset. 
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Figure 6.  Gain curves for sites and non-sites. 
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In addition to graphical summaries, we also have text/numeric 
summaries of the results in a text file named method.summary.txt 
(bagging.summary.txt in the example).  These files consist of a 
method-specific part and a generic part.  We begin with an example of 
the generic part and describe the contents. 

Apparent false positive rates and cutoffs 
at .70 and .85 true positive rates 
          Cutoff  TPR  FPR 
  HIGH 0.5425123 0.70 0.06 
MEDIUM 0.4015590 0.85 0.13 
 

The output begins with apparent false positive rates, which are based 
on predictions from the full data set.  Here is how to interpret the 
output.  For this prediction (bagging in this example), if we use a 
cutoff of .5424 and declare locations with predictions greater than the 
cutoff to be sites, then we capture 70% of the sites (true positive rate 
of 70%) but only 6% of the random points (false positive rate of 6%).  
Similarly, if we choose a cutoff of .4016, then we capture 85% of the 
sites and 13% of the random points. 
 
If there are non-random locations that are also non-target locations, 
then the FPR will also be computed separately for the random non-
target locations and the non-random, non-target locations. 
 
These rates are called apparent rates, because it appears that those 
are the rates that we will obtain.  However, these rates are based on 
predictions applied to data used to build the predictions, and that leads 
to overly optimistic estimates of the quality of prediction.   
 
To get around that, we use cross-validation.  Our 10-fold cross-
validation fits the model using 90% of the data and then uses that 
model to predict the 10% of the data held out.  We cycle through 10 
different subsets of hold out data until all locations were predicted 
using models fit excluding the points of interest.  Cross-validated 
results are summarized next. 
 
Cross-validated true and false positive rates and 
cutoffs at nominal .70 and .85 true positive rates 
 
, , HIGH 
            Cutoff   TPR   FPR 
       1 0.5631354 0.620 0.120 
       2 0.5608065 0.660 0.150 
       3 0.5445611 0.610 0.110 
       4 0.5719469 0.650 0.090 
       5 0.5702637 0.520 0.100 
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       6 0.5490074 0.650 0.080 
       7 0.5730262 0.530 0.100 
       8 0.5436854 0.520 0.110 
       9 0.5745496 0.560 0.100 
      10 0.5516697 0.600 0.110 
 Average 0.5602652 0.592 0.107 
Combined 0.4685972 0.700 0.150 
 
, , MEDIUM 
            Cutoff   TPR   FPR 
       1 0.4419980 0.700 0.180 
       2 0.4047221 0.750 0.190 
       3 0.3844049 0.710 0.190 
       4 0.4217128 0.850 0.190 
       5 0.4093691 0.710 0.170 
       6 0.4227110 0.800 0.160 
       7 0.4164569 0.720 0.170 
       8 0.3916342 0.740 0.230 
       9 0.4150209 0.690 0.210 
      10 0.4208373 0.770 0.160 
 Average 0.4128867 0.744 0.185 
Combined 0.2901404 0.850 0.290 
 

 
Begin with the “High” results, which are supposed to capture 70% of 
the sites, and consider group 1.  Here we fit a model to the other 90% 
of the data and find the cutoff that gives us 70% true positive rate in 
the data used to fit the model.  Here the cutoff is .5631.  We now 
apply this model and cutoff to the 10% of the data held back.  When 
we do this, we find that we actually obtain a 62% true positive rate 
(instead of the nominal 70%) and a 12% false positive rate.  Similarly, 
when we hold back group 10, we select a cutoff of .5517 and obtain a 
TPR of 60% and a FPR of 11%.  Averaging across the 10 groups (the 
line labeled “Average”), the cutoff is .5603, the TPR is 59%, and the 
FPR is 11%.  The average cutoff of .5603 is pretty close to the 
apparent cutoff from above (.5425), so that is reassuring, but the TPR 
that we actually attain is well below the 70% that we wanted.  To get 
70% TPR, we must reduce the cutoff to .4686 (the line labeled 
“Combined”), which gives us a FPR of 15%.  Thus the apparent cutoffs 
are too optimistic, and we really should use a lower cutoff to attain 
70% TPR when predicting to new data. 
 
The “Medium” results tell a similar story.  They should have a TPR of 
85%, but when cross-validated the TPR only averages about 74%.  We 
need to lower the threshold to .2901 to capture 85% of the sites when 
predicting to new data. 
 
 

Results from spatial cross-validation are even more pessimistic, but 
that is because they simulate a much more challenging modeling 
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situation.  In cross-validation, we predict using models fit without 
benefit of the data we are trying to predict.  However, since the 10 
subsets are chosen randomly, there is a good chance that landscapes 
similar to where we are trying to predict are included in the modeling 
subset.  In spatial cross-validation, we exclude data in small spatial 
clusters rather than one point at a time.  Spatial cross-validation 
simulates predicting into landscapes where we've never had any data 
before!  We have to expect that our predictions will work more poorly, 
and, unfortunately, our expectations are met. 
 
Spatial cross-validation results are reported just like the cross-
validation results.  For example, when trying to capture 85% of the 
sites, our average threshold is .412 and we achieve an average TPR of 
67% with a FPR of 20%.  To get our desired TPR of 85%, we must 
lower the threshold to .235, which also gives us a FPR of 36%.  These 
results should be compared with .290 and FPR of 29% for simple 
cross-validation.  
 
Spatial cross-validated true and false positive rates and 
cutoffs at nominal .70 and .85 true positive rates 
 
, , HIGH 
            Cutoff  TPR   FPR 
       1 0.5596008 0.44 0.080 
       2 0.5643144 0.49 0.130 
       3 0.5588316 0.59 0.140 
       4 0.5548809 0.55 0.100 
       5 0.5436384 0.44 0.070 
       6 0.5487280 0.62 0.170 
       7 0.5603275 0.33 0.080 
       8 0.5615844 0.53 0.100 
       9 0.5505675 0.50 0.040 
      10 0.5500290 0.51 0.130 
 Average 0.5552503 0.50 0.104 
Combined 0.3914553 0.70 0.210 
 
, , MEDIUM 
            Cutoff   TPR   FPR 
       1 0.4405121 0.480 0.160 
       2 0.4155323 0.660 0.270 
       3 0.4074808 0.760 0.240 
       4 0.4073247 0.760 0.210 
       5 0.4140435 0.590 0.130 
       6 0.4046139 0.790 0.250 
       7 0.3948178 0.440 0.180 
       8 0.4083685 0.740 0.200 
       9 0.4052451 0.760 0.140 
      10 0.4205485 0.700 0.200 
 Average 0.4118487 0.668 0.198 
Combined 0.2351554 0.850 0.360 

Overall, we recommend using the cross-validated cutoffs. 
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If you know that you are predicting into a landscape unlike the rest of 
your data set, you could consider the more pessimistic spatial cross-
validated threshold. 

Method-specific output.  There are three basic types of output 
reflecting the three basic types of predictions: logistic regression, tree 
structured regression, and naïve Bayes classification. 

Summaries for “bmalogit” and “biclogit” are nearly identical.  
Internally, they search for different subsets of predictor variables that 
will form good models.  Usually, there are several plausible models, 
with some models more likely and others less likely.  The “biclogit” 
technique chooses the single most likely model, and the “bmalogit” 
technique takes a weighted average of the coefficients of the most 
likely models (weighted by the probability of the model).  

The summary output begins with information about the most likely 
models: their probability, the number of predictors, and their BIC.  BIC 
is the Bayesian Information Criterion, and models with lower BIC are 
generally preferred. 

Basic model comparison: 
   Post. Prob.       BIC Size of model 
 1  0.26493293 -16912.09            12 
 2  0.16364680 -16911.13            13 
 3  0.08981361 -16909.93            13 
 4  0.05780320 -16909.04            13 
 5  0.04630060 -16908.60            14 
 6  0.04212704 -16908.41            13 
 7  0.03932683 -16908.27            13 
 8  0.03921897 -16908.27            14 
 9  0.03542374 -16908.06            13 
10  0.03316238 -16907.93            14 
11  0.02868477 -16907.64            14 
12  0.02226626 -16907.14            14 
13  0.01834238 -16906.75            13 
14  0.01804442 -16906.72            14 
15  0.01800146 -16906.71            14 
16  0.01755544 -16906.66            11 
17  0.01725541 -16906.63            14 
18  0.01665255 -16906.56            14 
19  0.01609317 -16906.49            15 
20  0.01534805 -16906.39            13 
 

The next summary list information about which variables appear in 
which models.  For each variable, we get the probability that its 
coefficient is non-zero and an indication of in which of the top three 
models that the variable appears. (Variables may appear in later 
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models.  For example, below we see that Blg has a 14.2% probability 
of being nonzero, but it does not appear in the top three models.) 
 
Variables present in top 3 models: 
         probne0   1   2   3 
     Abl 100       X   X   X 
   Alluv 1.8 
     Blg 14.2 
    Ht90 100       X   X   X 
Rdedblk1 100       X   X   X 
Rdedcors 0 
Rdedpriv 100       X   X   X 
Rdisasbi 100       X   X   X 
 Rdiscon 100       X   X   X 
 Rdishdw 0 
Rdislkse 7.4 
 Rdismin 9.3 
  Rdisok 98.2      X   X   X 
Rdispibf 94.4      X   X   X 
  Rdispr 0 
  Rdisrb 0 
 Rdissug 9.2 
  Rel90a 0 
   Rgh90 0 
Rlk1size 21.6              X 
Rlkinout 100       X   X   X 
Rlkpinou 100       X   X   X 
Rmajarea 0 
Rplk1siz 100       X   X   X 
Rwtpinou 39.5          X 
     Slp 1.5 
 Soilcat 100       X   X   X 
    Terr 0 
 

Next comes the coefficients in the top three models, and the posterior 
mean coefficients (the weighted average mentioned above).  The 
“bmalogit” method uses the posterior mean coefficients, and the 
“biclogit” method uses the coefficients from model 1. 
 
Coefficients in top 3 models: 
             Post. mean            1             2             3 
Intercept  1.854609e+00  1.422326670  1.2141522745  1.5496547151 
      Abl -7.560788e-03 -0.008040118 -0.0068289419 -0.0080729536 
    Alluv -8.763240e-03  0.000000000  0.0000000000  0.0000000000 
      Blg -3.048708e-04  0.000000000  0.0000000000  0.0000000000 
     Ht90  5.918020e-02  0.059978366  0.0584924367  0.0601699716 
 Rdedblk1 -3.220591e-02 -0.032390598 -0.0322334545 -0.0329433940 
 Rdedcors  0.000000e+00  0.000000000  0.0000000000  0.0000000000 
 Rdedpriv -1.575067e-02 -0.015570510 -0.0166737554 -0.0143074235 
 Rdisasbi -5.371819e-02 -0.051261278 -0.0616858985 -0.0511421582 
  Rdiscon  3.720780e-02  0.030264146  0.0468975321  0.0304027313 
  Rdishdw  0.000000e+00  0.000000000  0.0000000000  0.0000000000 
 Rdislkse -3.765354e-04  0.000000000  0.0000000000  0.0000000000 
  Rdismin  8.668204e-04  0.000000000  0.0000000000  0.0000000000 
   Rdisok -6.923538e-03 -0.006627322 -0.0078798367 -0.0065628494 
 Rdispibf  3.393696e-02  0.037717899  0.0346270936  0.0374464515 
   Rdispr  0.000000e+00  0.000000000  0.0000000000  0.0000000000 
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   Rdisrb  0.000000e+00  0.000000000  0.0000000000  0.0000000000 
  Rdissug -6.909364e-04  0.000000000  0.0000000000  0.0000000000 
   Rel90a  0.000000e+00  0.000000000  0.0000000000  0.0000000000 
    Rgh90  0.000000e+00  0.000000000  0.0000000000  0.0000000000 
 Rlk1size -9.036624e-05  0.000000000  0.0000000000 -0.0004105098 
 Rlkinout -2.201561e-02 -0.021014656 -0.0237648855 -0.0207090667 
 Rlkpinou  1.333016e-02  0.012958104  0.0146946673  0.0114264030 
 Rmajarea  0.000000e+00  0.000000000  0.0000000000  0.0000000000 
 Rplk1siz  4.439313e-04  0.000364858  0.0003730413  0.0007049974 
 Rwtpinou -2.252879e-03  0.000000000 -0.0050202120  0.0000000000 
      Slp  6.081871e-04  0.000000000  0.0000000000  0.0000000000 
  Soilcat  9.387926e-02  0.091343506  0.0954787101  0.0939202058 
     Terr  0.000000e+00  0.000000000  0.0000000000  0.0000000000 
 

The final summary differs between the “bmalogit” and “biclogit” 
methods.  This summary lists the rank correlation between the 
predictors and the linear combination of predictors (the logit or linear 
predictor) used in the apparent model, the cross-validated model, and 
the spatial cross-validated model.  The logits differ for the two 
modeling approaches, so these correlations will differ between 
“bmalogit” and “biclogit”. 
 
Rank correlations between data and logits 
               logits    cvlogits   scvlogits 
   Alluv  0.230266867  0.22981774  0.23084153 
     Blg -0.074374290 -0.07711332 -0.07386792 
    Ht90  0.452984945  0.44949740  0.45874668 
Rdedblk1 -0.501243748 -0.50312317 -0.50093067 
Rdedcors -0.152337766 -0.15124266 -0.15897507 
Rdedpriv -0.320652511 -0.31537619 -0.31508663 
Rdisasbi -0.172859240 -0.17439194 -0.17912158 
 Rdiscon -0.184700500 -0.18545665 -0.18766181 
 Rdishdw -0.048516413 -0.05139217 -0.05244087 
Rdislkse -0.290043226 -0.29156415 -0.28080221 
 Rdismin  0.114881869  0.11460543  0.11858553 
  Rdisok -0.069104809 -0.05987480 -0.05352862 
Rdispibf -0.102472790 -0.10359924 -0.10793041 
  Rdispr -0.006630704  0.00102292  0.01403406 
  Rdisrb -0.265350004 -0.26699279 -0.25956227 
 Rdissug -0.129842966 -0.13469836 -0.14501984 
  Rel90a  0.472220221  0.46907741  0.48163937 
   Rgh90 -0.058003506 -0.06046620 -0.05061741 
Rlk1size  0.348888164  0.34916660  0.34219420 
Rlkinout -0.489080227 -0.48932536 -0.48921647 
Rlkpinou -0.371260503 -0.37728736 -0.39687056 
Rmajarea -0.056736081 -0.05762397 -0.05563201 
Rplk1siz  0.365974589  0.36701180  0.35511252 
Rwtpinou -0.165211381 -0.16761171 -0.17133908 
     Slp  0.363403454  0.36099889  0.37230756 
 Soilcat  0.139554376  0.13648177  0.13144280 
    Terr  0.075990737  0.07374489  0.07888598 
 

Both “bumping” and “tree” use a single S-Plus tree object to do 
prediction, and this tree object is summarized in the method-specific 
output file.  We first show the output and then explain it. 
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Summaries for region: BGWD4NEW  subset:  mod4.site  method:  tree 
 
Regression tree: 
snip.tree(tree = out, nodes = c(59., 233., 10., 198., 98., 199., 56., 23., 
        13., 931., 22., 117., 30., 9.)) 
Variables actually used in tree construction: 
 [1] "Rdedblk1" "Ht90"     "Rdiscon"  "Rdislkse" "Rdisasbi" "Abl" 
 [7] "Rdedpriv" "Rplk1siz" "Soilcat"  "Rwtpinou" "Rdispibf" "Slp" 
Number of terminal nodes:  24 
Residual mean deviance:  0.1354 = 332.1 / 2453 
Distribution of residuals: 
       Min.    1st Qu.     Median       Mean    3rd Qu.       Max. 
 -8.465e-01 -2.108e-01 -4.687e-02 -7.122e-17  1.667e-01  9.615e-01 
 

The output begins with some overall summary information.  The most 
useful bits of information are which variables are actually used in the 
making splits in the tree (in this example, only 12 of the 28 available 
variables were actually used), and the number of terminal nodes (24 
here).  One way of thinking of the terminal nodes is that each terminal 
node is one element of a partition of the predictor space.  In this 
example, there are 24 distinct but exhaustive regions of predictor 
space, each of these regions gets its own predicted value, and every 
location within those regions is predicted with the same value.  Each 
split adds one terminal node, so there must be 23 splits in this tree. 
 
The next part of the output is the tree itself.  The tree is labeled node 
by node, beginning with the root node (all data).  Each node is 
described by a node number, the split criterion that formed the node 
from its parent node, the number of data cases in the node, the 
deviance (here the sum of squares of the 0/1 data around the mean 
value of the node), and the mean value of the response for the data in 
the node.  When a node is a terminal node, it is marked by an 
asterisk, and any case that would fall into that node is predicted by the 
mean value for the node.  In the example below, node 8 includes 24 
cases and has a predicted value of .8333.  The locations that fall into 
this node have Rdedblk1 < 17.5 and Ht90 < 5.5 and Rdiscon < 
234.5. 
 
The general structure of the tree is that node 1 is the root node.  It is 
split into nodes 2 and 3.  Node 2 is split into nodes 4 and 5, while node 
3 is split into nodes 6 and 7.  Node 4 is split into 8 and 9, 5 is split into 
10 and 11, 6 is split into 12 and 13, and 7 is splint into 14 and 15.  
This continues until the nodes are too small to split (minimum of 40 
locations in order to split a node).  However, only some of the splits 
actually improve the predictive ability of the tree, and the unneeded 
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splits are pruned off.  The tree that remains contains only the useful 
splits and nodes. 
 
The split criterion tells how to split the parent node.  For example, the 
root node 1 splits into nodes 2 and 3 with criteria Rdedblk1 < 17.5 
and Rdedblk1 >= 17.5.  So the first node is split based just on the 
Rdedblk1 variable and whether or not it meets a threshold split value.  
Node 2 splits into nodes 4 and 5, which have criteria Ht90 < 5.5 and 
Ht90 >= 5.5.  So all the cases in node 2 (which are those with 
Rdedblk1 < 17.5) are split into two groups according to the value of 
the variable Ht90 and the threshold split value 5.5. 
 
node), split, n, deviance, yval 
      * denotes terminal node 
 
   1) root 2477 562.000 0.34800 
     2) Rdedblk1<17.5 501 113.000 0.65670 
       4) Ht90<5.5 152  37.050 0.42110 
         8) Rdiscon<234.5 24   3.333 0.83330 * 
         9) Rdiscon>234.5 128  28.870 0.34380 * 
       5) Ht90>5.5 349  63.780 0.75930 
        10) Rdislkse<205.5 215  27.930 0.84650 * 
        11) Rdislkse>205.5 134  31.590 0.61940 
          22) Rdisasbi<289 54  13.200 0.42590 * 
          23) Rdisasbi>289 80  15.000 0.75000 * 
     3) Rdedblk1>17.5 1976 389.200 0.26970 
       6) Abl<924 449 110.600 0.56120 
        12) Rdedpriv<31.5 356  81.400 0.64610 
          24) Rdedblk1<95.5 318  68.920 0.68240 
            48) Rdiscon<236 57  14.140 0.45610 
              96) Ht90<12 26   4.038 0.19230 * 
              97) Ht90>12 31   6.774 0.67740 * 
            49) Rdiscon>236 261  51.230 0.73180 
              98) Rdiscon<255.5 132  18.330 0.83330 * 
              99) Rdiscon>255.5 129  30.140 0.62790 
               198) Rdedblk1<80 63  15.560 0.44440 * 
               199) Rdedblk1>80 66  10.440 0.80300 * 
          25) Rdedblk1>95.5 38   8.553 0.34210 * 
        13) Rdedpriv>31.5 93  16.800 0.23660 * 
       7) Abl>924 1527 229.300 0.18400 
        14) Ht90<18.5 1283 152.600 0.13800 
          28) Rdislkse<98.5 110  26.760 0.41820 
            56) Rplk1siz<838.5 76  15.200 0.27630 * 
            57) Rplk1siz>838.5 34   6.618 0.73530 * 
          29) Rdislkse>98.5 1173 116.400 0.11170 
            58) Rdisasbi<329.5 597  85.880 0.17420 
             116) Soilcat<3 550  69.070 0.14730 
               232) Rwtpinou<206.5 262  46.800 0.23280 
                 464) Rdispibf<353.5 52   1.923 0.03846 * 
                 465) Rdispibf>353.5 210  42.420 0.28100 
                   930) Rdisasbi<276.5 44  10.910 0.54550 
                    1860) Slp<1.5 20   3.750 0.25000 * 
                    1861) Slp>1.5 24   3.958 0.79170 * 
                   931) Rdisasbi>276.5 166  27.620 0.21080 * 
               233) Rwtpinou>206.5 288  18.610 0.06944 * 
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             117) Soilcat>3 47  11.740 0.48940 * 
            59) Rdisasbi>329.5 576  25.730 0.04687 * 
        15) Ht90>18.5 244  59.670 0.42620 
          30) Abl<1015.5 155  38.480 0.54190 * 
          31) Abl>1015.5 89  15.510 0.22470 
            62) Rdedblk1<25.5 20   4.200 0.70000 * 
            63) Rdedblk1>25.5 69   5.478 0.08696 * 
 
The “bagging” method works by producing multiple trees (11 by 
default in our S-Plus functions) and then averaging the predictions 
from these multiple trees.  The method-specific output for “bagging” 
is simply the descriptions of the multiple trees, in the same format we 
just saw for “tree” and “bumping”.  The “double” method does 
bagging twice, so its output consists of two bagging structures. 
 
The “naive” method works by estimating a completely arbitrary 
function of each variable, and then summing the function values seen 
at the observed data across all the variables.  For any given variable 
value x, we are trying to estimate the log likelihood ratio for sites to 
non-sites at that x value.  Very roughly speaking, the log likelihood 
ratio is the (natural) logarithm of the ratio of the probabilities that 
sites and non-sites take the value x on the variable of interest.  The 
output specific to the “naive” method is an attempt to represent this 
arbitrary function.  For each variable, there is a 50x2 matrix, with the 
first column a list of potential x values, and the second column the 
estimated values of the log likelihood ratio (labeled the log den 
ratio) at those x values.  For example, 
 
, , abl 
           x log den ratio 
 1  695.0000  -0.653172475 
 2  704.7959  -0.803247266 
 3  714.5918  -0.853943074 
 4  724.3878  -0.792476422 
 5  734.1837  -0.617606304 
 6  743.9796  -0.352090085 
 7  753.7755  -0.050855577 
 8  763.5714   0.214850070 
 9  773.3673   0.409039253 
10  783.1633   0.536368787 
11  792.9592   0.569937575 
12  802.7551   0.475112115 
13  812.5510   0.294739469 
14  822.3469   0.120170351 
15  832.1429   0.026262449 
16  841.9388   0.061139381 
17  851.7347   0.241157875 
18  861.5306   0.510851606 
19  871.3265   0.733966386 
20  881.1224   0.792048500 
21  890.9184   0.674939495 
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22  900.7143   0.451860794 
23  910.5102   0.211938867 
24  920.3061   0.028683358 
25  930.1020  -0.062972114 
26  939.8980  -0.070104545 
27  949.6939  -0.029318601 
28  959.4898   0.009082630 
29  969.2857   0.003393434 
30  979.0816  -0.050176201 
31  988.8776  -0.114837043 
32  998.6735  -0.151914837 
33 1008.4694  -0.149773450 
34 1018.2653  -0.119922528 
35 1028.0612  -0.082204208 
36 1037.8571  -0.050041824 
37 1047.6531  -0.018681516 
38 1057.4490   0.032289248 
39 1067.2449   0.118647107 
40 1077.0408   0.228888720 
41 1086.8367   0.319928695 
42 1096.6327   0.350747887 
43 1106.4286   0.321169952 
44 1116.2245   0.253784266 
45 1126.0204   0.153283364 
46 1135.8163   0.012746823 
47 1145.6122  -0.162386400 
          x log den ratio 
48 1155.408    -0.3627156 
49 1165.204    -0.5940992 
50 1175.000    -0.8785598 
 

In these data, the log likelihood ratio is negative for an abl value of 
695, indicating that 695 is more likely to arise from a non-site.  On the 
other hand, the log likelihood ratio is positive when abl is 871, 
indicating that 871 is more likely to arise from a site. 
  
5.7 Export to GIS 
 
Mn/Model predictions are done on a production scale through GIS. 
ArcGIS can now do scripting through Python, and the S-Plus functions 
have a limited ability to prepare Python scripts that may be of use. The 
S-Plus function is mnmodel.make.python().  This function can produce 
Python implementations for the “tree” and “bagging” methods.  The 
required arguments to mnmodel.make.python() are a region 
abbreviation, a label, and a method.  So, for example, 
 
mnmodel.make.python(“BGWD”,”mod4.site”,”bagging”) 
 
This will create a file method.py (here, bagging.py) in the directory 
region.label.summaries (here BGWD.mod4.site.summaries).  In this 
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file are a sequence of Python commands that should implement the 
prediction method. 
 
By default, mnmodel.make.python() will make predictions with cross-
validated true positive rate .85.  You may select another cross-
validated true positive rate with the tpr argument by adding, for 
example, tpr=.70 to the arguments of the function, as in 
 
mnmodel.make.python(“BGWD”,”mod4.site”,”bagging”,tpr=.70) 
 
Alternatively, you may directly set the threshold for declaring a 
location to be a site by using the threshold argument, as in 
 
mnmodel.make.python(“BGWD4NEW”,”mod4.site”,”tree”, 
threshold=.21) 
 
The python produced by this command would be in the file tree.py in 
the directory BGWD4NEW.mod4.site.summaries.  One possible python 
script is shown here: 
if Rdedblk1<17.5: 
  if Ht90<5.5: 
    if Rdiscon<234.5: 
      thisout = 0.833333333333333 
     else: 
      thisout = 0.34375 
   else: 
    if Rdislkse<205.5: 
      thisout = 0.846511627906977 
     else: 
      if Rdisasbi<289: 
        thisout = 0.425925925925926 
       else: 
        thisout = 0.75 
 else: 
  if Abl<924: 
    if Rdedpriv<31.5: 
      if Rdedblk1<95.5: 
        if Rdiscon<236: 
          if Ht90<12: 
            thisout = 0.192307692307692 
           else: 
            thisout = 0.67741935483871 
         else: 
          if Rdiscon<255.5: 
            thisout = 0.833333333333333 
           else: 
            if Rdedblk1<80: 
              thisout = 0.444444444444444 
             else: 
              thisout = 0.803030303030303 
       else: 
        thisout = 0.342105263157895 
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     else: 
      thisout = 0.236559139784946 
   else: 
    if Ht90<18.5: 
      if Rdislkse<98.5: 
        if Rplk1siz<838.5: 
          thisout = 0.276315789473684 
         else: 
          thisout = 0.735294117647059 
       else: 
        if Rdisasbi<329.5: 
          if Soilcat<3: 
            if Rwtpinou<206.5: 
              if Rdispibf<353.5: 
                thisout = 0.0384615384615385 
               else: 
                if Rdisasbi<276.5: 
                  if Slp<1.5: 
                    thisout = 0.25 
                   else: 
                    thisout = 0.791666666666667 
                 else: 
                  thisout = 0.210843373493976 
             else: 
              thisout = 0.0694444444444445 
           else: 
            thisout = 0.48936170212766 
         else: 
          thisout = 0.046875 
     else: 
      if Abl<1015.5: 
        thisout = 0.541935483870968 
       else: 
        if Rdedblk1<25.5: 
          thisout = 0.7 
         else: 
          thisout = 0.0869565217391305 
prediction = 0 
if thisout >= 0.21: 
  prediction = 1 

 
The structure of this output is a set of nested if, then, else constructs 
representing the tree, which results in setting the variable thisout.  
After thisout is set, it is compared with the threshold (here .21).  
Locations above the threshold are set to 1 (a site), while other 
locations are set to 0 (a non-site). 
 
If you specify both a threshold and a tpr, the threshold will overrule 
the tpr. 
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5.8 Making Predictions 
 
Once you have fit a model, you can make predictions using the fitted 
model via the mnmodel.predict() function.  This function has four 
required arguments: a region, a label, a method, and new data in an 
S-Plus data frame.   
 
mnmodel.predict(“BGWD”,”mod4.site”,”bagging”,new.data) 
 
The variables in the new data frame must include all of the variables 
originally used to fit the model.  The output is a data frame with two 
variables: score, which is the numerical prediction, and prediction, 
which is either “Site” or “Non-site”.  By default, a threshold is 
chosen to provide a true positive rate of .85.  You may select your own 
threshold or your own true positive rate by adding, for example, 
tpr=.70 or threshold=.21 to the argument list.  Again, if you specify 
both, the threshold will overrule the tpr. 
 
Just for amusement, let's apply the Anoka site model to the Mille Lacs 
data.  Then we'll look at a few of the results. 
 
> tmp <- mnmodel.predict("anok4ex","mod4.site","bagging",mlac4ex.data.all) 
> tmp[11:20,] 
        score prediction 
11 0.01837041   Non-site 
12 0.41278223       Site 
13 0.35958376   Non-site 
14 0.22432380   Non-site 
15 0.04041375   Non-site 
16 0.35825936   Non-site 
17 0.10856103   Non-site 
18 0.57498622       Site 
19 0.05165805   Non-site 
20 0.46228055       Site 
 
For these ten locations (all random locations), two were predicted to 
be sites and the other eight were predicted to be non-sites. 
 

6. Appendix 
 
In this appendix, we describe again in more compact form the 
standard functions that users call.  We also describe some of the 
internal structure of those functions and some additional functions that 
they call internally. In the discussion below, we will see lines of the 
form 
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function.name <- function(arg1, arg2=defval, ...) 

 
This is the the first line of the formal S-Plus definition of a function.  
We have the function function.name(). It has a first argument arg1, 
and a second argument arg2 with the default value of defval.  That 
is, if arg2 is not specified when the function is called, defval will be 
used.  Default values are specified via the arg=value construction. The 
"..." allows additional arguments.  These arguments are not used 
explicitly in this function, but they can be passed on to other functions 
that are called internally. 
 
6.1 Reading Data 
 
The mnmodel.readdata() function reads data from an external file into 
S-Plus and constructs several S-Plus data objects. 
 
mnmodel.readdata <- function(region,rootvars=NULL,cmult=40) 

 
region is a character scalar giving a region name. 
 
rootvars determines which variables are transformed to square roots.  
If it is NULL, then a default list of variables is transformed; otherwise, 
the variables given in rootvars will be transformed.  (Order of 
variable names in rootvars does not matter.) To transform no 
variables, use something like rootvars="no.such.variable". 
 
cmult may determine the number of spatial clusters.  If the data set 
contains a variable named Clusters, then that variable will determine 
the spatial clusters.  If Clusters is not present in the data (but X and 
Y are), the function will generate 10*cmult spatial clusters and 
randomly group them into 10 groups for spatial cross-validation. 
 
mnmodel.readdata() and several other functions internally call 
the function mnmodel.find.var(), which is used for extracting a 
named variable from an S-Plus data frame. 
 
mnmodel.find.var <- function(varname,thisframe) 

 
varname is a character string giving the variable name, and thisframe 
is an S-Plus data frame.   
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mnmodel.find.var() first tries the variable name given in varname.  If 
that is not found, it then tries tries varname converted to all lower 
case.  If that is not found, it tries removing periods '.', underscores 
'_', and spaces ' ' from varname.   
 
If at any stage it gets a match, it returns that variable from the 
data frame.  If there is no match, it returns a NULL. 
 
6.2 Summarizing Variables 
 
After reading in data you can summarize the variables in a data set 
using the mnmodel.var.summaries() function.  This function computes 
several numerical summaries (means and standard deviations, rank 
correlations, Wilcoxon rank sum tests between random locations and 
sites or negative surveys) for each variable.  It also plots histograms 
comparing the sites, negative survey, and random points. 
 
mnmodel.var.summaries <- function(region,subset=mod4.surv,label="mod4.surv") 

 
region is a character scalar giving the name of a region. 
 
subset is an expression using variables in the subsetting frame that 
selects the data to be used. Note, subset should normally be a survey 
subset, so that there are data included from sites, negative surveys, 
and random locations. 
 
label is a character scalar used to label the output directory and 
name the analysis. 
 
When plotting, histograms are labeled with "long labels" based on the 
short variable names in the data set.  The function 
mnmodel.get.var.label() attempts to find a long label for each 
variable name.  The variable name and long label pairs are stored in 
the  matrix mnmodel.var.names.and.labels, which you may need to 
update with new names and labels. 
 
mnmodel.get.var.label <- function(shortlab,underscore=FALSE,exact=FALSE) 

 
shortlab is a short label variable name, for example, "Blg".  The 
function tries to find its long name:  "Prevailing orientation". 
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underscore is a logical flag.  If TRUE, spaces in the long name are 
replaced by underscores (for example, "Prevailing_orientation") 
 
exact is a logical flag. If exact is TRUE, we try to match the short label 
exactly.  Otherwise, we also try the short label converted to all lower 
case, then the lower case short label with spaces, periods, and 
underscores removed.   
 
If the function cannot match shortlab, then shortlab will be 
returned as the value. 
 
6.3 Fitting Models 
 
The meat of the exercise is fitting a prediction model.  This is done in 
mnmodel.fit().  The basic structure of this function is that it uses the 
method argument to determine a method-specific fitting function, 
which it then calls, passing all of its arguments to the method-specific 
function. 
 
mnmodel.fit <- function(region,subset,label,method="bagging", 
 site.prob=NULL, sampling.wts=NULL,verbose=TRUE,response=no.rand,...) 

 
region is a character scalar giving the name of a region. 
 
subset is an expression using variables in the subsetting frame to 
select the subset of data for analysis.  
 
label is a character string giving a descriptive label for the results of 
this analysis. 
 
method is a character string giving the method to be used.  Current 
choices include 'bmalogit', 'biclogit', 'tree', 'naive', 
'bagging', 'double', and 'bumping'.  We recommend 'bagging'. 
 
site.prob is NULL, or a numeric value strictly between 0 and 1 that 
represents the a priori probability of a site.  If numeric, weights for 
non-site locations are rescaled so that the total weight for sites is 
site.prob fraction of total weight for all locations. 
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sampling.wts  is NULL or a numeric vector of positive numbers (with 
length equal to the number of non-random locations in the analysis).  
If NULL, equal sampling weights are used.  If non-NULL, sampling.wts 
should contain sampling weights for the non-random locations in the 
selected subset.  These should be reciprocals of the sampling 
probability for non-random locations. This only makes sense for site 
models.   
 
verbose is a logical flag.  If TRUE, informative output is printed. 
 
response is an expression using variables in the subsetting frame for 
selecting the non-zero (target or site) responses.  All variables in the 
subsetting frame can be used.  The default is no.rand, so anything 
non-random is a 1 (a site) and anything random is a 0 (a non-site). 
 
The method-specific functions take the same arguments (except for 
method).  The functions for bagging, double, and bumping take 
additional arguments bagK or bumpK.  When bagging or bumping, we 
fit with the original data and with several additional bootstrap samples. 
bagK and bumpK determine the number of additional bootstrap 
samples. 
 
mnmodel.bagging.fit <- function(region,subset,label,site.prob=NULL, 
 sampling.wts=NULL,verbose=TRUE,response=no.rand,bagK=10,...) 
 
mnmodel.double.fit <- function(region,subset,label,site.prob=NULL, 
 sampling.wts=NULL,verbose=TRUE,response=no.rand,bagK=10,...) 
 
mnmodel.bumping.fit <- function(region,subset,label,site.prob=NULL, 
 sampling.wts=NULL,verbose=TRUE,response=no.rand,bumpK=10,...) 
 
mnmodel.tree.fit <- function(region,subset,label,site.prob=NULL, 
 sampling.wts=NULL,verbose=TRUE,response=no.rand,...) 
 
mnmodel.biclogit.fit <- function(region,subset,label,site.prob=NULL, 
 sampling.wts=NULL,verbose=TRUE,response=no.rand,...) 
 
mnmodel.bmalogit.fit <- function(region,subset,label,site.prob=NULL, 
 sampling.wts=NULL,verbose=TRUE,response=no.rand,...) 
 
mnmodel.naive.fit <- function(region,subset,label,site.prob=NULL, 
 sampling.wts=NULL,verbose=TRUE,response=no.rand,...) 

 
The method-specific fitting functions all do the same basic thing. Each 
of them calls mnmodel.prepare.for.fit() first.  This checks 
arguments, prints some information, and selects the appropriate 
subset of data.  After selecting the data, the method-specific functions 
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call the actual fitting functions to do model fitting and prediction 
(including cross-validation). 
 
mnmodel.prepare.for.fit <- function(region,subset,label,site.prob, 
 sampling.wts=NULL,verbose=TRUE, eliminate.linear=TRUE,response=no.rand) 

 
The arguments to mnmodel.prepare.for.fit() are mostly the same 
as those of the method-specific functions.  The only new one is 
eliminate.linear, which is a logical flag saying whether variables 
that are linearly dependent or nearly constant should be removed prior 
to fitting.  This is done by default. 
 
The functions that actually do the fitting (mostly) have a simple 
interface.  In these functions, x is a matrix of predictors for the subset 
of interest, y is a 0/1 vector of responses for the subset, and wts is a 
vector of case weights for fitting.  Some functions have an additional 
argument to declare the number of bootstrap samples to use. 
 
mnmodel.bagging <- function(x,y,wts,bagK) 
mnmodel.double <- function(x,y,wts,bagK) 
mnmodel.bumping <- function(x,y,wts,bumpK) 
mnmodel.tree <- function(x,y,wts) 
mnmodel.naive <- function(x,y,wts) 

 
The one exception is that bic.glm() is used for biclogit and bmalogit. 
 
bic.glm <- function (x, y, glm.family, wt=rep(1,nrow(x)),strict=F, 
 prior.param=c(rep(0.5,ncol(x))),OR=20, OR.fix=2, nbest=150, 
 dispersion=NULL, factor.type=T, factor.prior.adjust=F) 

 
This function was written by Chris Volinsky at the University of 
Washington and is licensed for free distribution and use for non-
commercial purposes.  Copyright 1996, 1997 by Chris T. Volinsky. 
 
6.4 Summarizing Model Fits 
 
After making a fit, we summarize the fit with the 
mnmodel.fit.summaries() function.  This function prints details of 
the fitting method (coefficients, and so on), prints thresholds and false 
positive rates at 70% and 85% true positive rates for the complete 
data set, prints thresholds and attained true and false positive rates 
for nominal 70% and 85% true positive rates for all cross-validation 
subsets as well as cross-validated thresholds for 70% and 85% true 
positive rates.  After the numerical summaries, it generates a number 
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of diagnostic plots, including cumulative prediction, ROC curves, and 
gain curves. 
 
mnmodel.fit.summaries<-function(region,label,method="bagging",site.prob=.01) 

 
region, label, and method have their usual meanings. 
 
site.prob is the a priori probability of a location being a site, used in 
computing gain curves. 
 
mnmodel.fit.summaries() calls method-specific functions to print the 
method-specific prediction information.  For each of these functions, 
results is an internal S-Plus variable with an arcane format.  These 
functions print that information out in a somewhat readable form. For 
bumping and tree, the functions also make a plot of the tree which is 
put in a file tree.pdf in the directory named dirname.  dirname is 
otherwise ignored. 
 
mnmodel.bagging.summaries <- function(results,dirname) 
mnmodel.double.summaries <- function(results,dirname) 
mnmodel.bumping.summaries <- function(results,dirname) 
mnmodel.tree.summaries <- function(results,dirname) 
mnmodel.bmalogit.summaries <- function(results,dirname) 
mnmodel.biclogit.summaries <- function(results,dirname) 
mnmodel.naive.summaries <- function(results,dirname) 

 
mnmodel.fit.summaries() uses the function mnmodel.getrates()to 
compute apparent, cross-validated, and spatially cross-validated false 
positive rates. 
 
mnmodel.getrates <- function(preds,groups,subsets=NULL,nonrandzero) 

 
preds contains the predictions.  For apparent rates, preds is a vector 
of predictions.  For cross-validated data, preds is a matrix with 11 
columns.  The first 10 columns are complete-sample predictions based 
on the 10 cross-validation models; the last column collects the out-of-
sample predictions. 
 
groups is the 0/1 vector of responses (1 is a site). 
 
If subsets is non-NULL, it is a vector containing elements 1 through 10 
indicating the cross-validation subsets. 
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nonrandomzero is a vector of logical values.  A TRUE represents a non-
random location that has a 0 response (zeros are usually random 
locations).  If there are any non-random zeros, the false positive rates 
are also computed separately for the random and non-random zeros. 
 
After computing numerical summaries, mnmodel.fit.summaries() 
calls two functions repeatedly to generate cumulative predicted, ROC, 
and gain plots for apparent, cross-validated, and spatially cross-
validated data. 
 
mnmodel.eval.plots <- function(predicted,groups,cumfilename,cumtitle, 
  rocfilename,roctitle,gainfilename,gaintitle,site.prob=.01) 

 
predicted is the vector of "predicted" values from some method (this 
could actually be cross validated).  Larger values should go with sites. 
 
groups is the 0/1 response variable with 1 for sites and 0 for non-
sites. 
 
cumfilename, rocfilename, and gainfilename are names of files to 
contain the pdf output.   
 
cumtitle, roctitle, and gaintitle are character strings for labeling 
the plots. 
 
site.prob is the a priori probability of a site.  This is used to compute 
the gain plots. 
 
There is also a "multi" form of this function that plots curves for each 
cross-validation subset.  The arguments are analogous, with the 
additional argument subsets, which is a vector containing 1 through 
10 indicating the cross-validation subsets. 
 
mnmodel.eval.plots.multi <- function(predicted,groups,subsets, 
  cumfilename,cumtitle,rocfilename,roctitle) 

 
6.5 Making Predictions 
 
While our goal is to do prediction from within GIS, we can also do 
prediction from within S-Plus.  Indeed, we must be able to do this to 
do cross-validation.  The function mnmodel.predict() applies a fitted 
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model to new data to do prediction.  It has the now familiar form of a 
function that calls method-specific functions internally. 
 
mnmodel.predict <- function(region,label,method="bagging", 
 newdata,threshold=NULL,tpr=.85) 

 
region, label, and method have their usual meanings. 
 
newdata is an S-Plus data frame containing the data values for which 
we wish to make predictions.  newdata should contain all of the 
variables that were used to fit the original model (including any 
transformed variables), although order of the variables does not 
matter. 
 
tpr is a desired true positive rate. 
 
threshold  is NULL or a cutoff used for splitting predictions into sites 
(above the cutoff) and non-sites (others). 
 
If a threshold is given, it will override any tpr value.  If threshold is 
NULL, then a threshold will be computed to obtain the desired true 
positive rate based on cross-validated data. 
 
The method-specific functions called internally are: 
 
mnmodel.bagging.predict <- function(baggingresults,newx) 
mnmodel.double.predict <- function(doubleresults,newx) 
mnmodel.bmalogit.predict <- function(bmaresults,thisdata) 
mnmodel.biclogit.predict <- function(bicresults,thisdata) 
mnmodel.naive.predict <- function(naiveresults,newx) 
predict.tree(tree,newx) 

 
predict.tree() is a built-in S-Plus function. 
 
The output of mnmodel.predict() is a data frame with two variables: 
score, which is the numerical prediction, and prediction, which is 
either “Site” or “Non-site” based on the selected threshold or tpr.  
For example, 
        score prediction 
 1 0.01837041   Non-site 
 2 0.41278223       Site 
 3 0.35958376   Non-site 
 4 0.22432380   Non-site 
 5 0.04041375   Non-site 
 6 0.35825936   Non-site 
 7 0.10856103   Non-site 
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 8 0.57498622       Site 
 9 0.05165805   Non-site 
10 0.46228055       Site 
 

shows three locations predicted as sites (scores above .4) and seven 
predicted as non-sites (scores below .4). 
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