DRAFT SECTION 4(F) EVALUATION
LIFT BRIDGE

I. DESCRIPTION OF SECTION 4(F) RESOURCE

The Section 4(f) resource affected by the proposed action is the Lift Bridge, a property listed on the National Register of Historic Places. The Lift Bridge is also known as Minnesota Bridge No. 4654 and Wisconsin Bridge No. B-55-919.

A. DETAILED MAP

Figure E-3 shows the relationship of the Build Alternatives to the Lift Bridge.

B. SIZE AND LOCATION

The Lift Bridge is a two-lane highway bridge with no shoulders and a 5-foot sidewalk on the south side. At the location of the bridge, the St. Croix River is approximately 1,800 feet wide. The bridge itself spans approximately 1,050 feet of the river with the remaining distance an earthen causeway (750 feet). (The causeway was built out from the Wisconsin shore to reduce the grade difference between the opposing banks, as well as to lower the costs of the bridge.)

The Lift Bridge crosses the St. Croix River and connects Stillwater, Minnesota, with the Town of St. Joseph, Wisconsin. Minnesota Trunk Highway (TH) 36 and Wisconsin State Trunk Highway (STH) 64 converge at the bridge (see Figure E-3).

The Lift Bridge is a 10-span bridge including a counterweighted, tower-and-cable, vertical-lift span (see Figures E-4 and E-4A) resting on reinforced concrete piers and abutments. Starting at the Minnesota side with Span 1 as illustrated in Figure C-4A, the Lift Bridge superstructure is made up of the following span sequence: two concrete-slab approach spans; one fixed steel truss; one vertical-lift span; five fixed steel trusses; and one concrete-slab approach span.

The vertical-lift span is 140 feet in length with a seven-panel, Parker through truss. The style of this vertical-lift span was originally developed by J.A.L. Waddell in 1892 and subsequently refined in partnership with John Lyle Harrington. This style of lift bridge is commonly known as a “Waddell and Harrington vertical lift.” The span is raised and lowered by steel cables passing over sheaths at the top of steel towers mounted on the span’s piers. To ensure easy movement, the span is counterweighted by concrete blocks that travel up and down within the tower.
Figure E-3 – Lift Bridge and Build Alternatives (8.5x11 – b/w)
Figure E-4 – Lift Bridge Photo (8.5x11 – b/w)
framework. Originally, the motive force was supplied by a gasoline engine, which was replaced by a 25-horsepower electric motor in 1980. The control machinery is sheltered in a welded framework at mid-span on the north (upstream) side. Reduction gears and winding drums for the cables are located beneath the house. With the span in a raised position, vertical navigation clearance is 57 feet above normal pool elevation (674.86 feet). The span itself is engineered for a rise of 58 feet, although an additional three feet of lift is available for emergency situations.

Measuring 23 feet in width, the bridge’s concrete deck is bordered on the north by an angle-iron railing and on the south by a concrete sidewalk with an ornamental metal railing. The sidewalk is cantilevered on metal brackets. The concrete deck was rebuilt in 1973, as was the east-shore, concrete-slab approach span in 1979. The sidewalk was replaced in 1998. Lower chords repairs were made in three locations in 2003. None of these alterations has substantially affected the Lift Bridge’s historic integrity. The vertical-lift span remains in operation during the May-October navigation season.

C. OWNERSHIP AND TYPE

The Lift Bridge is jointly owned by Mn/DOT and Wis/DOT. Maintenance and operation of the Lift Bridge is the responsibility of Mn/DOT.

The Lift Bridge is an historically-significant resource that was listed on the National Register of Historic Places in 1989 in recognition of its importance as a rare type of engineering construction. Only six vertical-lift highway bridges were built in Minnesota and Wisconsin prior to World War II, and the Lift Bridge is one of two that remain. The other remaining lift bridge is located in Duluth, Minnesota. See Section I.H. for more detail on the Lift Bridge’s historical importance.

D. FUNCTION OF AND/OR AVAILABLE ACTIVITIES

The primary function of the Lift Bridge is to allow boat traffic to move along the St. Croix River while providing a connection for vehicles, pedestrians, and bicyclists across the St. Croix River. The bridge serves local traffic between Stillwater, Minnesota, and the Town of St. Joseph, Wisconsin, as well as regional traffic between the two states. Mn/DOT has identified Trunk Highway 36 (including the Lift Bridge) as an Inter-Regional Corridor (IRC) connecting regional trade centers, reinforcing its role in regional traffic movement. Wisconsin has recognized the role State Trunk Highway 64 plays in its state transportation system by designating STH 64 a Multilane Connector in their Corridors 2020 plan, a long-range highway and economic development plan. Trunk Highway 36/State Trunk Highway 64 is also part of the National Highway System (NHS) in both states. The Lift Bridge also provides a connection between two recreational areas – Lowell Park (located in Stillwater, Minnesota) and Kolliner Park (located in Wisconsin). Finally, the Lift Bridge provides a connection between Minnesota and Wisconsin for pedestrians and bicyclists via a 5-foot wide sidewalk on the south side of the bridge.
Figure E-4a – Lift Bridge – General Plan, Elevation, and Section (11x17 – b/w)
In addition to the Lift Bridge’s “practical” function as a regional transportation connection between Minnesota and Wisconsin, it is valued as an historical and cultural asset by many tourists visiting the area and residents of Stillwater. It is considered to be one of the most prominent landmarks along the St. Croix River and identified as a symbol of Stillwater.

E. DESCRIPTION OF EXISTING AND PLANNED USES

The linkage of Stillwater, Minnesota, and the Town of St. Joseph, Wisconsin, was first made in 1876 with the construction of a wood bridge across the St. Croix River. This bridge caught fire in 1904 and burned down. A timber and pontoon swing bridge was built in its place in 1910. This bridge was owned and maintained by Stillwater until 1925, when the bridge was taken over by the Minnesota Highway Department. The structure was deteriorating and had become a safety concern. In 1928, the Minnesota Highway Department closed the bridge to heavy traffic and prepared preliminary plans for its replacement. The plans called for a series of fixed concrete-slab and steel-truss spans, which were to be designed by the Minnesota Highway Department, and a single vertical-lift span, which was to be designed by an engineering firm specializing in this work. In November 1929, a design contract was awarded to the engineering firm of Ash, Howard, Needles and Tammen (a successor company of Harrington’s). Construction of the bridge began in the summer of 1930, with the Minneapolis firm of Peppard and Fulton serving as general contractor. The bridge was completed in August of 1931. The total cost of the structure was $460,174, which was shared on an approximately equal basis by the states of Minnesota and Wisconsin.

Role of Lift Bridge in Local Plans

The Stillwater Downtown Plan (December 1988) is a comprehensive plan that examined the economics, land use, urban design, traffic, parking, and utilities of the downtown area. The goals and objectives of the plan called for preserving the image and identity of Stillwater as an historic rivertown. These goals included the preservation of historically-important downtown structures, including the Lift Bridge.

The 1995 City of Stillwater Comprehensive Plan (1995-2020) reinforces the goals and objectives set forth in the Stillwater Downtown Plan. This plan also stressed the importance of preserving Stillwater’s historic character. Specific to the Lift Bridge, the comprehensive plan identified it as an important connection in the city park system, which should be saved in order to continue providing vehicle and pedestrian access to Kolliner Park. The plan also stated that the Lift Bridge should be preserved as an historic resource. In addition, the plan identified the need for a new St. Croix River bridge crossing to reduce through-traffic congestion in downtown Stillwater.

$5 Million Lift Bridge Repair Project

In fall of 2002, the 106th United States Congress provided $4,989,000 in funding from the Labor, Health, and Human Services bill for the repair of the Lift Bridge (“$5 Million Lift Bridge Repair Project”), to be completed as a separate but related project. An extensive list of repair needs were identified through inspection and evaluation of the Lift Bridge, including steel repairs, deck replacement, lift span motors, drive gears, cables, tender’s house repair, pier caps,
abutments, along with the pedestrian walk and railing. The list was then prioritized, identifying repairs that could be completed with the available funds. These repairs are scheduled to occur in spring 2005 through spring 2006. Refer to Section II.A for additional discussion of the $5 Million Lift Bridge Repair Project.

F. ACCESS AND USAGE

Access

Vehicle access to the Lift Bridge is provided by Minnesota TH 36 and Wisconsin STH 64. All motor vehicle traffic to and from the bridge must drive through the Stillwater Commercial Historic District.

The Lift Bridge includes a 5-foot sidewalk on its south side, providing pedestrian and bicycle access across the bridge. Stillwater-owned Lowell Park, adjacent to the Lift Bridge on the Minnesota side, also provides pedestrian access from the park to the bridge.

The St. Croix River flows underneath the Lift Bridge. The federal regulation governing the Lift Bridge states that the lift span needs to open during certain hours of the day. Without the lift mechanism, larger boats would not be able to access areas north or south of the Lift Bridge due to the bridge’s low navigation clearance. Failure of the lift span would create a navigational impediment on the river and would be in violation of 33 C.F.R., Part 117.667(b)(1)(2). A majority of boats (depending on size) wishing to access the river north or south of Stillwater currently experience the inconvenience of delay due to the Lift Bridge’s lift schedule. The lift schedule is in place during the navigation season. Based on the current negotiated schedule with the U.S. Coast Guard, the bridge is scheduled to be raised 21 times each day (Monday-Friday) with additional night opening provided with a two-hour notice. On weekends and federal holidays, the bridge is scheduled to be raised 23 times per day. On average, the lift was raised 14 times per day for approximately 95 minutes per day in July 1998.

According to a Minnesota-Wisconsin Boundary Area Commission (MWBAC) study, the St. Croix River is one of the most heavily used recreational boating areas in the Midwest. While there is no data for the number of boats that require the use of the Lift Bridge to access the river north or south of the bridge, levels of boat traffic on the St. Croix has been recorded. This data gives some insight into the potential use of the Lift Bridge for boat passage. A 1997 Recreational Boating Study was conducted to identify trends in recreational boating along the St. Croix River over the past 14 years. General trends from the study suggest that peak-day boating levels in 1997 were higher than the average of the previous four study years, while weekday boating levels in 1997 were lower than the 1989-1995 study year average. The study estimated that in 1997, a total of 8,644 boats (active and beached) used the river between Memorial Day (May 26) and Labor Day (August 31) for recreational purposes.

3 The MWBAC was a commission created in 1965 by the states of Minnesota and Wisconsin to coordinate studies and management activities along the states’ common boundaries (St. Croix and Mississippi rivers). Both states funded the MWBAC equally. The MWBAC was a former member of the Lower St. Croix Management Commission, providing administrative support. Operations for the MWBAC were terminated in 2001.
Usage

The Lift Bridge and its approach highways, Minnesota TH 36 and Wisconsin STH 64, serve long-distance interregional trips between the two states as well as short- to medium-distance trips between local communities in both states. Existing (2002) average daily traffic (ADT) on the Lift Bridge is 16,300 vehicles per day. The Lift Bridge carries almost 1,450 vehicles (950 vehicles in the eastbound direction) during the weekday peak hour from 5:15 p.m. – 6:15 p.m. Projected volumes for the Lift Bridge increase to 21,700 vehicles per day under the No-Build Alternative. Refer to Chapter 4 of the SDEIS for a detailed discussion of traffic on the Lift Bridge.

G. RELATIONSHIP TO OTHER SIMILAR RESOURCES

The Lift Bridge represents a rare surviving example of the vertical-lift highway bridge construction of the Waddell and Harrington type. The modern, long-span, high-rise vertical-lift bridge dates back to the last decade of the nineteenth century. Waddell’s innovative design devised a practical solution to the drawbridge problems — the vertical-lift span did not obstruct navigation and dockage like a swing span, nor did it clutter up the shore approaches like a sliding-draw span. Waddell formed a partnership with John Lyle Harrington in 1907, a civil and mechanical engineer who helped Waddell rework his concept into a workable design. Before their partnership dissolved in 1941, Waddell and Harrington designed 30 vertical-lift spans for highways and railroad crossings. Five of the six vertical-lift highway bridges constructed in Minnesota and Wisconsin before World War II were designed by Waddell and Harrington or successor firms. The Lift Bridge was the last of its kind to be constructed in Minnesota or Wisconsin and is one of two surviving vertical-lift highway bridges in Minnesota and Wisconsin built prior to World War II. The other surviving vertical-lift bridge is located in Duluth, Minnesota. The Lift Bridge was listed on the National Register of Historic Places in 1989.

H. APPLICABLE CLAUSES AFFECTING OWNERSHIP

The Lift Bridge is jointly owned by Mn/DOT and Wis/DOT, and is maintained and operated by Mn/DOT. There are no applicable clauses affecting the ownership of the Lift Bridge; however, the bridge owner has to meet permitting requirements of the U.S. Coast Guard. In addition, the Lift Bridge is a property listed on the National Register of Historic Places, and as such, is subject to the provisions of Section 4(f) of the Transportation Act of 1966 and Section 106 of the National Historic Preservation Act, as amended. In addition to this Section 4(f) Evaluation, a Section 106 Evaluation is also being completed for the Lift Bridge as part of the SDEIS.
I. UNUSUAL CHARACTERISTICS

In addition to being individually listed on the National Register, the Lift Bridge also plays an important role in two National Register eligible historic districts – the Stillwater Commercial Historic District and the Stillwater Cultural Landscape District.

The Stillwater Commercial Historic District, centered on Main Street in Stillwater, lies immediately to the west of the Lift Bridge and includes the adjacent portion of the St. Croix River’s western shore. The district is a collection of late nineteenth century commercial structures representing the economic development of Stillwater. The Lift Bridge is not included in this district, but provides a visual background element to the historic buildings.

As a result of the cultural resource investigations for this project, the Stillwater Cultural Landscape District was identified as a National Register eligible resource. This landscape, defined by the original town plat of Stillwater (street system running parallel and perpendicular to the river), includes downtown Stillwater, adjacent neighborhoods, Lowell Park, the Lift Bridge, and Kolliner Park area. Residential structures, commercial structures, historic archaeological sites, landscape elements such as public stairs and retaining walls, as well as the form of the landscape itself and its physical relationship to the river, are all contributing elements of this landscape. The Stillwater Cultural Landscape District includes portions of both the Minnesota and Wisconsin banks of the St. Croix River. The Lift Bridge provides a physical connection between these two areas of the landscape, and although not constructed until 1931, it symbolizes the connection between the two banks that has existed since the 1870s. For a further description of the Stillwater Cultural Landscape District, see Chapter 11 of the SDEIS and the Draft Section 4(f) Evaluation on the Stillwater Cultural Landscape District.

II. IMPACTS ON SECTION 4(F) RESOURCE

A. NO-BUILD

The No-Build Alternative includes continued operation and maintenance of the Lift Bridge and approach roadways. Impacts of this alternative would be the same as those under existing conditions. The No-Build Alternative would not result in adverse impacts on the Lift Bridge. However, as described in Chapter 2 of the SDEIS, the No-Build Alternative would not meet the proposed project’s transportation purpose and need.

The No-Build Alternative also would not resolve the issue of the Lift Bridge’s deteriorating condition. In 1999, a bridge consultant was retained to examine the condition of the Lift Bridge and estimate its life expectancy under several alternatives. Results of the study indicate that with ongoing maintenance, the bridge’s lift mechanism is expected to fail by 2009, making the lift span inoperable. Failure of the lift mechanism would require replacement of the lift span’s electrical and mechanical systems. Other repairs that eventually will be required on the Lift Bridge include extensive steel repairs, a new paint system and a new concrete bridge deck. Details on the life expectancy of the bridge and estimated repair costs are provided in the document, “Alternates Study of Bridge Life Expectancy for the Stillwater Lift Bridge over the
The studies completed in 2002 and reported in 2003 for the $5 Million Lift Bridge Repair Project address some of the repairs identified in the 1999 report. A prioritized list of repairs that could be completed with available funds was identified for the $5 Million Lift Bridge Repair Project. These repairs are summarized below:

- Repair in-kind of the existing tender’s house. A supplemental electrical house will be constructed on the north side of the lift span east of the existing tender’s house;
- Replacement of a majority of the electrical components and selected mechanical components;
- Structural repairs to the substructure, superstructure, sidewalk support system, deck, and railing; and,
- Repairs and replacement of selected portions of the pedestrian railing.

Results of the studies also indicate that, upon completion of the $5 Million Lift Bridge Repair Project, the Lift Bridge will be structurally adequate to Mn/DOT’s standards through 2010. The studies completed for the $5 Million Lift Bridge Repair Project also evaluated projected maintenance and preservation in 15 year increments between 2010 and 2055. The anticipated level of work to maintain use of the Lift Bridge during this first 15-year period (2010-2024) includes significant structural preservation efforts, increased repair efforts during the second 15 year period (2025-2039), and continued preservation efforts during the final 15-year period (2040-2055). The lift mechanism is projected to provide reliable operations through 2055, assuming routine maintenance is also provided. Beyond 2055, the Lift Bridge “will require substantial structural preservation efforts to extend its useful life”.

As a regular part of routine inspections, a sufficiency rating was determined for the Lift Bridge. The sufficiency rating of a structure indicates its ability to remain in service for its intended function. This rating is arrived at by evaluating factors assigned to various components of the structure. The formula takes into account structural adequacy, serviceability, and safety concerns, and how essential the structure is for public use. As of September 2003, the sufficiency rating of the Stillwater Lift Bridge was 4.8. A rating of 100 indicates an entirely sufficient structure; a rating of zero indicates an entirely deficient structure. A sufficiency rating of 50 is the threshold criteria for eligibility for replacement funding.

5 Details on maintenance projections are provided in the document “Maintenance Projections and Annualized Costs – Report of Findings” (HNTB Corporation, August 6, 2003).
B. BUILD ALTERNATIVES

Construction of the Build Alternative bridges (Alternatives B-1, C, D, and E) would not physically impact the Lift Bridge nor would they directly require the Lift Bridge’s removal.

Chapter 11 of the SDEIS discusses the preliminary assessment of effects of the Build Alternatives under Section 106 of the National Historic Preservation Act of 1966 (as amended). A summary of the preliminary assessment of effects on the Lift Bridge for each Build Alternative is included below. Formal determination of effects will be made by FHWA following completion of remaining information, public input received throughout the comment period, and further discussion with consulting parties. Refer to Chapter 11 of the SDEIS for additional information.

Alternative B-1 and Alternative C

Both Alternative B-1 and Alternative C include the construction of a new, four-lane river crossing. One of two options in regards to the Lift Bridge would apply to Alternatives B-1 and C: conversion of the Lift Bridge to a pedestrian/bicycle facility or continued use of the Lift Bridge for local vehicular use.

Preservation of the Lift Bridge as a pedestrian/bicycle facility would require a new owner (since the Lift Bridge would no longer be on the state trunk highway system) willing to take responsibility for the Lift Bridge, and additional funding would be necessary to provide for its restoration and long term maintenance. The Lift Bridge raising schedule would likely change as there would no longer be the transportation need to minimize bridge openings during periods of heavy vehicular use. The U.S. Coast Guard has indicated a preference for a lift schedule that reflects boat demand. The new owner would negotiate a new permit with the Coast Guard. Minor changes to the bridge approach would also be required to prevent vehicle use. Conversion of the Lift Bridge to a pedestrian/bicycle facility would result in less wear on the bridge due to a lighter use, and would also allow for a reduction in de-icing chemicals which may prolong the life of steel elements. Continued operation of the Lift Bridge for local vehicular traffic would also require a new owner willing to take responsibility for the Lift Bridge and additional funding to provide for its restoration and long-term maintenance as the bridge would be removed from the state trunk highway system.

The Section 106 preliminary assessment of effects for the Lift Bridge has indicated that the changing traffic use under Alternatives B-1 and C, with a conversion from commuter to local traffic, will alter the current use of the Lift Bridge and its role in the transportation system. The change in ownership from Mn/DOT and Wis/DOT to another owner could have an effect on long-term maintenance and/or rehabilitation. Without a specific plan to identify actions and funding, the Lift Bridge’s long-term management could be at risk. The change in ownership, change in traffic use, and lack of assurances for long-term management would have an adverse effect on the Lift Bridge.
Alternative D

Construction of the Alternative D bridge would include complete preservation of the Lift Bridge as a pedestrian/bicycle facility. As described for Alternatives B-1 and C, preservation of the Lift Bridge as a pedestrian/bicycle facility would require a new owner, a new lift schedule, and a source of funding to provide for restoration and long-term maintenance.

The Section 106 preliminary assessment of effects has indicated that the close proximity of Alternative D and the bridge angle across the river would both exert an adverse effect on views of the Lift Bridge from both sides of the river. With its touchdown point on the Lift Bridge causeway, Alternative D would also change the setting of the Lift Bridge and perceptions of travelers as they experience the Lift Bridge crossing. As described for Alternatives B-1 and C, under Alternative D, the change in ownership, change in transportation use, and lack of assurances for long-term management would have an adverse effect on the Lift Bridge. In addition, the location of Alternative D and changes to setting caused by the Alternative D bridge would have an adverse effect on the Lift Bridge.

Alternative E

Alternative E includes continued operation and maintenance of the Lift Bridge and approach roadways. Under Alternative E, the Lift Bridge would operate as a substandard two-lane, one-way facility for westbound STH 64 and TH 36 traffic from Wisconsin to Minnesota. Impacts of this alternative would be the same as those under existing conditions. Construction of the new two-lane bridge for eastbound traffic under Alternative E would not result in adverse physical impacts on the Lift Bridge.

Alternative E also would not resolve the issue of the Lift Bridge’s deteriorating condition without a dedicated source of funding for continuing maintenance and repair activities. The funds allocated for the $5 Million Lift Bridge Repair Project address some of the immediate repair needs, but does not address all necessary repair needs, future maintenance activities, and operation costs for the Lift Bridge to remain a viable transportation facility.

The proximity effects of the Alternative E bridge would be similar to those described for Alternative D because the two river crossings follow similar alignments. Without a specific plan to identify actions and funding, the Lift Bridge’s long-term management could be at risk. Under Alternative E, lack of assurances for long-term management and the location and changes to setting caused by the Alternative E bridge would have an adverse effect on the Lift Bridge.

C. POTENTIAL MITIGATION ITEMS

Potential mitigation items for the Build Alternatives are summarized in the introduction to the draft Section 4(f) evaluations and are described in detail in Chapter 14 of the SDEIS. Upon identification of a Preferred Alternative, a mitigation package, appropriate to the level of impacts, will be identified by the lead agencies from the list of mitigation items as well as any
additional mitigation items identified by agencies or the public during the SDEIS comment period. The potential impacts of this mitigation package on the Lift Bridge will be discussed in the Supplemental Final EIS.

III. AVOIDANCE ALTERNATIVES

Use of the Lift Bridge is difficult to avoid as the project purpose is to address the river crossing function currently provided by the bridge. Three of the Build Alternatives (Alternatives B-1, C and D) would remove the Lift Bridge from the state trunk highway system raising issues regarding ownership and future funding sources. Use of the Lift Bridge would only be avoided with Alternative E, which keeps the Lift Bridge on the state trunk highway system. Preserving the Lift Bridge as a pedestrian/bicycle facility or maintaining vehicular traffic with the Build Alternatives would require the identification of additional funds to provide for mitigation for impacts on the Lower St. Croix National Scenic Riverway and for the restoration and long-term maintenance of the Lift Bridge. Conversion to a pedestrian/bicycle facility or continued use for local vehicular traffic would also require a new owner to assume responsibility for the Lift Bridge (see Chapter 14 for further discussion.) If these conditions cannot be met, use of, and adverse impacts on, the Lift Bridge cannot be avoided.

IV. MEASURES TO MINIMIZE HARM

FHWA, Mn/DOT and Wis/DOT have identified potential mitigation items for the project which address impacts on cultural resources (see Chapter 14 for further discussion); however, at the time of this writing, the consultation phase of the Section 106 process has not been concluded. Two potential mitigation items have been identified to address the uncertainty in future Lift Bridge operations and maintenance and to address long-range management:

• An endowment would be established by Mn/DOT and Wis/DOT to provide funds for future Lift Bridge operations and maintenance should ownership of the Lift Bridge be transferred to a local government or non-profit entity; and

• A Lift Bridge Management Plan would provide guidance regarding governance, operation, maintenance and long-term preservation strategies for the Lift Bridge. As a mitigation item, funds would be provided for consultant fees to assist in completion of the management plan; the DOTs or a new owner would be responsible for implementation of the plan.

The Build Alternatives recognize the historic significance of the Lift Bridge by allowing the bridge to remain in place as a pedestrian/bicycle bridge (Alternatives B-1, C, and D) or as a transportation facility for local vehicular use, where an appropriate owner is found (Alternatives B-1 and C). With Alternative E, the historic significance of the Lift Bridge is recognized by maintaining the Lift Bridge as a substandard transportation system link on the state trunk highway system for two lanes of one-way, westbound traffic.
Conversion of the Lift Bridge to a pedestrian/bicycle facility or continued use of the Lift Bridge for local vehicular traffic would require the identification of a new owner and the identification of funds for maintenance and/or restoration of the Lift Bridge.

V. COORDINATION

Extensive agency coordination has occurred throughout the SDEIS process, as described in the Introduction to the Draft Section 4(f) Evaluations and in the SDEIS. With respect to the Lift Bridge, preliminary coordination related to discussion of impacts and proposed mitigation items has occurred with federal, state, and local government agencies as well as non-governmental groups as part of the Stakeholder Resolution Process. In addition, agency coordination is underway to develop a Section 106 Amended (or a new) Memorandum of Agreement. The City of Stillwater, the Stillwater Heritage Preservation Commission, Rivertown Restoration, and the National Trust for Historic Preservation, in addition to the Minnesota and Wisconsin State Historic Preservation Offices, Advisory Council on Historic Preservation, and the Minnesota Preservation Alliance have been invited to participate as cooperating and concurring parties.