Non-Destructive Testing in Civil Engineering

Herbert Wiggenhauser
BAM- Federal Institute for Materials Research and Testing
Berlin, Germany
Bridge Testing

In Germany according to DIN 1076

- Regular inspection 3 y
- In depth inspection 3 y after Regular inspection
- Special inspection (e.g. after accident or climatic hazard)

NDT:

- Special Inspection
- Procedure
Bridge Damages

Ungrouted Tendon Ducts

Not uncommon problem in bridges built 1960-80
Non-Destructive Testing Problems

• Measuring the thickness and geometry
• Tendon ducts
 • Position
 • Concrete cover
 • Grouting
 • Honeycombs (around them)
 • Corrosion of strands
 • Cracks and fissures in strands
• Concrete
 • Reinforcement (position, cover, diameter)
 • Localisation of honeycombs
 • Delaminations
 • Cracks (position, depth)
• Quality assurance of construction
 • ….
The Methods
Impulse Echo Principle

(1) Electro-Magnetic Method Radar

- Reflections at interfaces of materials with different dielectric properties
- Antenna of 900 MHz and 1.5 GHz

Radar gram with hyperbola

Position of antennas

Rebar

Radar gram with hyperbola
(2) **Acoustic Methods Ultrasonic Echo/ Impact-Echo**

- Reflections at interfaces of materials with different acoustical properties

Ultrasonic Measurement Device

- **Shear waves**
 - center frequency of 50 kHz
- **Measurement head**
 - 24 point-contact transducers
 - without coupling agent

Impact-Echo Measurement Device

- **Frequency range**
 - from 1Hz to 40 kHz
- **Frequency spectrum analysis**
 - multiple reflections (recorded in the time domain)
Automation and Scanning
Scanner Systems

Scanning Area Speed:

- **Ultrasonic Echo/Impact Echo**
 1m²/h, 0.02 m point grid

- **Radar**
 15m²/h, 0.05 m line grid
Multipurpose Scanner System mounted on LCS

Ultrasonic- / Impact-Echo (Combined sensor head)

Radar (1.5 GHz antenna)
Scanner Systems
Scanner Systems

- Small lightweight scanner with vacuum attachment
- Two ultrasound sensors (dry coupled) to reduce measurement time
Data Fusion and Visualization
Radar – Data fusion and imaging

Section a-a without reconstruction calculation

Reinforced concrete slab

Section a-a with reconstruction calculation

3-D imaging of the results
2-dimensional measurement on the surface of structures

- **B-Scan**
 plots perpendicular to the measurement surface (x-y plane)

- **C-Scan**
 plots parallel to the measurement surface (x-y plane)

Projections and Animations of consecutive scans

3D-Reconstruction

Focusing of reflected signals using SAFT
(Synthetic Aperture Focusing Technique)

Data Fusion

Superposition of data
Validation
Validation

Large Concrete Slab (LCS) at BAM

Facility for various tests and measurements for the improvement of NDT-CE methods

Reference specimen for comparison of different methods (=>validation)

1. Section - Tendon ducts

11 Tendon ducts with strands (length 4 m, diameter 40 ... 100 mm)

Grouting defects, Grouting by DSI
Validation

2. Section - Voids and auxiliary devices

Voids:

- Compaction faults (gravel pockets)

Auxiliary elements:

- Inlet for water and salt-solution through a tube from the bottom side into high porosity structure
- Thermoelements (for Thermography)
- Stainless steel-plate for backside reflection calibration
- Plastic tubes (for Radiography)
Impact-Echo: Imaging of apparent thickness of slab (C-scan)

Indirect indication of grouting defects
Validation

Impact-Echo: D-Scan across Ducts

Shifting of back wall echo caused by the tendon ducts
Validation

Raw data of GBP (3D)
Validation

RADAR: Raw radargram of a long trace

Transit time in ns

Depth in mm

reduced depths

ducts
rebars
Validation

Raw C-scan (depth slice) at a depth of 10 cm

![Diagram showing a raw C-scan at a depth of 10 cm, indicating the presence of a duct and a corrosion mat.]
Bridge Examples
Bridge investigations applying NDT-CE

Bridge deck: Full field investigation 8 Measuring field for detailed investigation with Radar, Ultrasonic echo, impact-echo, (magnetic stray field) (1999)

Girder and Bridge deck: Scanning Echo methods for tendon ducts and honeycombing (2001)

New: Large field investigation with automated scanning system for echo methods (2003)
Application at post-tensioned concrete bridge
Large Area Investigation (Scanner)

Construction
Cantilever unicellular box bridge
Length: 480 m
Prestressed in longitudinal and transversal direction
Constructed 1966, deconstruction 2004

- Radar
- Impact-Echo
- Ultrasonic Echo
Results

Measurements on a post-tensioned bridge deck

- Test Area on the top: 4.0 m x 10.0 m
- Test Area on the bottom: 3.0 m x 10.0 m

- tendon ducts with diameters of 45 mm, each with 6 wires
- thickness of the deck 23 - 38 cm
Bridge deck: of radar data from the top side and bottom side Superposition (Polarization in x- und y-direction, maximum of magnitude is represented)
Movie of slices parallel to the surface:
2 Data Sets
recorded with the 1.5 GHz-antenna
with polarization in x and y-direction

3D-Reconstruction with SAFT
(Synthetic Aperture Focusing Technique)

Data Fusion

Test Area 4.0 m x 10.0 m
Duct investigation (Impact-Echo)

Bridge deck top side: C-Projection close behind the back wall

B-Projection
(for a certain y-range)

D-Projection
(perpendicular to the bridge axis)
Ultrasound: Duct investigation

Bridge deck bottom side

Left:
SAFT-C-Projection
depth 11.7 cm … 12.1 cm
step width 2.5 cm

High reflection
intensity at
both sides

Right:
C-scan depth about 8 cm
step width 5 cm
Verification

Bridge-deck: Destructive testing: 35 cores, endoscopy

Bridge deck (transverse tendon ducts):
Very good grouting condition

Box girder wall (longitudinal tendon ducts)
Measurements on webs of box girder bridges

- thickness of the web 50 cm
 (83 cm in the area of anchoring of the pre-stressing)
- bridge under unaffected traffic
- simultaneous mounting of the impact-echo and ultrasonic sensors on the scanner

Test Area: 10 m (length) x 1.5 m (height)
3D-reconstructed and fused radar data sets (1.5 GHz-antenna) and 3D-reconstructed ultrasonic echo data set

Animated sections parallel to the surface through the measurement depths from 0 cm to 60 cm
SAFT-C-Scan parallel to the surface in a measurement depth of 7.5 cm
SAFT-C-Projection parallel to the measurement surface at the range of depth from 22 cm to 28 cm
Ultrasonic Echo

Box girder web
Thickness: 50 cm
Height of test area: 1.40 m

Box girder web
Thickness: 75 cm
Height of test area: 1.60 m

SAFT-B-Scan

Inside of the web

SAFT-B-Projection

Depth of test area: 1.20 m

Outside of the web
Measurements on a bridge deck, pre-stressed in longitudinal direction

Test Area on the bottom side of the deck, 0.96 m x 18.40 m:
ultrasonic echo measurements were done in 23 scanning areas length of 2 m x 0.40 m
Ultrasonic Echo

SAFT-C-Projection in the depth range of $z = 200 - 400$ mm

Right: SAFT-B-Projection about the whole length of 18.40 m
Evaluation of the Intensity of Ultrasonic Echo-Signals

SAFT-B-Projection about the range with the tendon duct 2

Reinforcement bars
Tendon duct
Back wall of the structure in a depth of 1.75 m
Pulse Behaviour of Ultrasonic Echo-Signals

Reflections on steel in concrete
→ No transfers of phase

Reflection on air-inclusions in concrete
→ Transfer of phase

Transmitted pulse

Reflected pulse
Reflection on the back wall of the structures (topside in a depth of 1.75 m): transfer of phase (red-green-red)

Reflection on the upper side of a tendon duct: no transfer of phase (green-red-green)

SAFT-B-Projection (Phase)
Top: about y=1940-2100 mm, Down: about y=1828-1926 mm (tendon duct 2)
Locating tendon cracks in PT Concrete

Scheel, Hillemeier, TUB
Flohrer, HochTief
Conclusions
Conclusion

Automated Measuring system (scanner): Successful application at large concrete slab (LCS) and on bridges
- LCS is very well suited for comparison of test methods
- RADAR can localize tendons with high accuracy
- Ultrasonic echo (dry contact) can localize ducts and identify grouting defects
- Impact-echo gives indirect indication of grouting defects

Successful application at a post-tensioned concrete bridge:

<table>
<thead>
<tr>
<th>Localization, Concrete Cover reinforcing rebars, tendon ducts</th>
<th>RADAR:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condition of tendon ducts</td>
<td>Fast accurate 3D-imaging (Visualization)</td>
</tr>
<tr>
<td></td>
<td>• Measuring with high precision</td>
</tr>
<tr>
<td>Verification</td>
<td>Impact-echo: Large area imaging</td>
</tr>
<tr>
<td>43 cores, endoscopy</td>
<td>and back wall echo shift</td>
</tr>
<tr>
<td></td>
<td>Ultrasonic echo: Direct imaging</td>
</tr>
<tr>
<td></td>
<td>• No clear indication of grouting faults</td>
</tr>
<tr>
<td></td>
<td>Confirmation: No grouting fault</td>
</tr>
</tbody>
</table>
What’s next?
• Crack documentation on Metropolitan (1995) Highways Tokyo (View area 2 x 2 m²)
Self navigating Robot for horizontal surfaces (Park decks)

Video on YouTube: BestoScan
Robot: Possible sensors
Development of the **On-Site SCAnneR (OSSCAR)**

- **Requirements:**
 Robust, transportable, on-site results, controller, data collection, data analysis and presentation in *one* software

- **Consortium:** Integrated project OSSCAR founded by BMWi, Coordinator: BAM
Method combination in OSSCAR

- Synergy by combination of radar, ultrasonic echo and eddy current

Radar
- Suitable for metallic reflectors
- Limited penetration depth (young concrete)

Ultrasonic echo
- Larger penetration depth also in areas with high reinforcement ratio
- Limited resolution of single rebars

Eddy current
- Measurement of reinforcement diameter
- Information only about upper layer
- Calibration of radar (ε: dielectric constant)
First on-site application

- Bridge close to Frankfurt over the river *Main* (2009-Sep)
Robot

- Climbing machine equipped with
 - camera
 - radar
 - impact-echo
 - ...

ROSY climbing machine (Yberle)
Robot

EC Project: Robosense

BAM VIII.2 MinDOT 2010
Thank you for attention!