

CONSULTANTS · ENVIRONMENTAL · GEOTECHNICAL · MATERIALS · FORENSICS

March 19, 2020

Mr. Tony Rotchadl, PE Bolton & Menk, Inc. 1960 Premier Drive Mankato, MN 56001 <u>Anthony.Rotchadl@bolton-menk.com</u>

RE: Geotechnical Exploration and Review TH 60 Madison Lake to Waterville, Minnesota AET #08-20562

Dear Mr. Rotchadl:

This letter report presents the results of the seismic CPTu soundings, hand auger borings, and standard penetration test borings conducted between February 3, 2020 to March 5, 2020; along State Highway 60 between Madison Lake and Waterville, Minnesota. The work was performed under our proposal dated January 9, 2020 which your authorized-on January 13, 2020. The scope of work authorized included the following:

- Two (2) standard penetration test borings to a depth of 30 feet.
- Push fourteen (14) seismic CPTu sounding to a depth of 30 feet.
- Four (4) hand auger borings to a depth of 10 inches.
- Soil laboratory testing (Unconfined compressive strength, water content, moisture density).
- Preparation of this letter report

We have included one electronic and hard copies of our report.

1.0 Project Information

The CPTu soundings, SPT soil borings, and hand auger soil borings were advanced at the locations provided by MnDOT. Proposed locations 5, 14, and 15 were either eliminated or not accessible to our equipment. Location 13 had only the SPT soil boring performed. The CPT rig got stuck trying to access location 13 and had to be towed from the ditch.

2.0 Site Exploration

Logs of the test borings are attached. The logs contain information concerning soil layering, soil classification, geologic description, and moisture condition. Relatively density or consistency is also noted, which is based on the standard penetration resistance (N-value).

Bolton and Menk Page 2 of 5 March 19, 2020 AET #08-20562

We refer you to the standard sheet entitled "Exploration/Classification Methods" for details on the drilling and the sampling methods, and the water level measurement methods. Data sheets concerning the Unified Soils Classification System, the descriptive terminology, and the symbols used on the boring logs are also attached.

The hand auger test boring locations are shown on Figure 2. The CPTu and SPT boring locations and surface elevations were recorded by MnDOT and are included on the boring logs. The coordinates and elevations of the hand auger borings were not recorded.

3.0 Conditions Encountered

3.1 Hand Auger Boring Soils

The hand auger borings were advanced to document the existing aggregate base thickness on two gravel surfaced roads adjacent to Minnesota State Highway 60 near Elysian, Minnesota. Hand auger borings 1A and 1B were performed on Warner Lane and hand augers 2A and 2 B were performed on 516th Street as shown on Figure 2.

Hand auger borings 1A and 1B encountered 4¹/₄ inches of brown loamy sand with gravel at the surface underlain by dark brown and black, sandy clay. Hand auger borings 2A and 2B encountered 4¹/₂ inches of brown loamy sand with gravel at the surface underlain by slightly organic, brown and black, sandy clay. Based on our experience we estimate a conservative MnDOT Soil Factor value of 130 for the softer sandy clay subgrade soils encountered.

3.2 Groundwater

The depth or lack of subsurface water noted at the boring locations should not be taken as an accurate representation of the actual subsurface water levels. A long period of time is generally required for groundwater to stabilize in the impermeable soils generally present at the site; this period of time is generally not available during a typical subsurface exploration program.

4.0 Additional Exploration and Review

We have not been authorized at this time to provide specific pavement or earthwork recommendations. As additional project details become available, please contact us for specific design recommendations.

5.0 Limitations

Within the limitations of scope, budget, and schedule, our services have been conducted according to generally accepted geotechnical engineering practices at this time and location. Other than this, no warranty, either expressed or implied, is intended.

Bolton and Menk Page 3 of 5 March 19, 2020 AET #08-20562

Important information regarding risk management and proper use of this report is given in the attached sheet entitled "Geotechnical Report Limitations and Guidelines for Use".

6.0 Remarks

We appreciate being giving the opportunity to work with you on your project. If you have any questions regarding the work reported herein, please do not hesitate to contact us at (507) 387-2222 or gguyer@amengtest.com.

Sincerely, American Engineering Testing, Inc.

Gregory A Guver, PE

Manager – Mankato MN Reg. No. 44618 gguyer@amengtest.com

GAG/SJR/lmh

Attachments

Figure 1 – Site Location Figure 2 – Hand Auger Boring Locations Subsurface SPT Boring Logs Subsurface CPT Boring Logs Lab Test Results Exploration/Classification Methods Boring Log Notes Unified Soil Classification System Geotechnical Report Limitations and Guidelines For Use

Report Reviewed By: American Engineering Testing, Inc.

Steven J. Ruesink, PE Regional Manager MN Reg. No. 19431 sruesink@amengtest.com

ENGINEERING TESTING, INC.

AET JO	OB NO: 08-20562					LC)G OF	BORING 1	NO	1	A (j	p. 1 c	of 1)	
PROJE	CT: Trunk Highway	60; Mad	lison La	ke to V	Vaterville, N	MN								
DEPTH	SURFACE ELEVATION:				GEOLOGY	N	MC	SAMPLE	REC	FIELI) & LA	BORAT	ORY 1	ESTS
FËÈT	MATERIAL I	DESCRIPTIC	DN 1		EIL I			Түре	IN.	WC	DEN	LL	PL	qp
	dark brown (LS)	gravel, bro	wn and		FILL		M	HA						
	5 75" FILL sandy clay a 1	ittle gravel	dark											
	brown and black (SC)	ittle graver	, uark				м	Цил		17				
	END OF BORING													
19/20														
10 %														
VELL.C														
AEI+														
00.GFJ														
	TH: DRILLING METHOD			WAT	ER LEVEL MEA	SURE	EMEN'	TS DDUL	NC	117 4 77	1	NOTE:	REFEI	R TO
	10" 4" HA	DATE	TIME	DEPT	H DEPTH		PTH	FLUID LI	EVEL	LEVE	L	THE A	TTACI	HED
Center	line	3/5/20		10"	None	1	0"	Non	e	Non	е Б	SHEET	S FOR	AN NOF
BORIN	G 2/5/20											ERMIN	IOLOG	Y ON
	LETED: 3/5/20 S LC: BB Dim								-+			TH	IS LOC	3
	5 LU. DD NI <u>g</u> :													

AE	ET JOB	NO: 08-20562					LC	OG OF	BO	RING N	O	1	B (p). 1 a	of 1)	
PR	OJECT	Trunk Highway	60; Mad	lison Lal	ke to V	Vaterville, N	MN									
DEP	TH	SURFACE ELEVATION:				GEOLOGY	N	MC	SA	MPLE	REC	FIELI) & LA	BORAT	TORY T	ESTS
FEE	ÈT	MATERIAL D	DESCRIPTIO	DN			IN .	INIC		ГҮРЕ	IN.	WC	DEN	LL	PL	qp
	4	4.25" FILL, sand w/gravel,	brown (S))		FILL		м		НΔ						
								141		1123						
	4	5.75" FILL, sandy clay, br	own and b	lack (SC)												
								M		HA		20				
		FND OF BORING							Ħ							
	1	LIND OF DOKING														
0																
3/19/2																
GDT																
+WELL																
-+CPT																
U AET																
60.GF																
HWAY																
¥	DEPTH	1: DRILLING METHOD		_	WAT	ER LEVEL MEA	ASURE	EMEN'		אז דו קר	JG	W / V TI		NOTE:	REFEI	R TO
	0-10	" 4" HA	DATE	TIME	DEPT	H DEPTH		PTH	FL	UID LE	VEL	LEVE	Ľ	THE A	TTACH	HED
Shou Sige	lder P	ľ	3/5/20		10'	None	1	0"		None	•	Non	e E	SHEET	S FOR	AN
영 문 BO	DRING													APLAI		
ö <u> čŏ</u> ⊢	<u>DMPLE</u>	TED: 3/5/20												TH	ISLOG	i UN
₩ DR	₹: SS	LG: BB Rig:												111	10 100	,

ſ	AET JO	OB NO: 08-20562					LO	DG OF	BORI	ING NC)	2	A (p). 1 (of 1)	
	PROJE	CT: Trunk Highway	60; Mad	lison Lal	ke to V	Vaterville,	MN									
Ī	DEPTH	SURFACE ELEVATION:				GEOLOGY	N	MC	SAM	IPLE	REC	FIELI) & LA	BORA	FORY 1	ESTS
	FEET	MATERIAL I	DESCRIPTIO	DN	XXXXX		1	WIC	TY	(PE	IN.	WC	DEN	LL	PL	qp
		4.5" FILL, sand w/gravel, I	brown (S)			FILL		М		HA						
		5.5" FILL, sandy clay, slig and brown (SC)	htly organi	c, black								0.1				
								M		HA		21				
		END OF BORING														
20																
T 3/19,																
LL.GD																
T+WEI																
ET+CP																
GPJ A																
AY 60.																
HGHW	DEP	TH: DRILLING METHOD			WATI	ER LEVEL ME	ASURI	EMEN	TS			1	א א	NOTE:	REFE	R TO
SUNK	n -	10" 4" на	DATE	TIME	SAMPI DEPT	ED CASING H DEPTH	CAV	VE-IN PTH	DR FLU	RILLIN(ID LEV	G ÆL	WATH LEVF	ER ,	THE A	TTACI	HED
)562 TI	Center	line	3/5/20		10"	None	1	0"		None	_	Non	e	SHEET	S FOR	AN
08-20													E	XPLA	NATIO	N OF
CORP	BORIN COMP	G LETED: 3/5/20											T	ERMIN	IOLOG	Y ON
ÅET	DR: S	S LG: BB Rig:												TH	IS LOC	ť

Γ	AET JO	OB NO: 08-20562					LC	OG OF	BO	RING N	O	2	B (p). 1 a	of 1)	
	PROJE	CT: Trunk Highway	60; Mad		ke to V	Vaterville, N	ΛN									
]	DEPTH	SURFACE ELEVATION:				GEOLOGY			SÆ	MPLE	REC	FIELI) & LA	BORAT	TORY T	ESTS
	FEET	MATERIAL I	DESCRIPTIO	ON			N	MC		ГҮРЕ	ĪN.	WC	DEN	LL	PL	qp
		4.5" FILL, sand w/gravel, l	brown (S)			FILL		м		ЦА						
								IVI		пА						
		5.5" FILL, sandy clay, slig	htly organi	c, black												
		and brown (SC)						M		HA		22				
		END OF BORING														
20																
3/19,																
L.GDT																
-+WEL																
F+CPT																
J AE																
60.GF																
HWAY							~	<u> </u>								
DH7	DEP	TH: DRILLING METHOD			WAT	ER LEVEL MEA	SURE	EMEN'	TS			117.4 77	۲ <u>م</u>	NOTE:	REFEI	R TO
TRUN	0-1	10" 4" HA	DATE	TIME	SAMPI DEPT	H CASING	DE	/E-IN PTH	FL	UID LE	VEL	LEVE	L ,	THE A	TTACI	HED
50562	houlder	PI	3/5/20		10"	None	1	0"		None		Non	e	SHEET	'S FOR	AN
P 08-	DODIN	C											E	XPLA	NATIO	N OF
COR	COMPI	LETED: 3/5/20												ERMIN	IOLOG	Y ON
AET	DR: S	S LG: BB Rig:												TH	IS LOC	I

AET JC	B NO:	08-20	562					LC	G OF	BOI	RING N	0.	B-	13 (p. 1 e	of 1)	
PROJE	CT:	Trunk	Highwa	ay 60; N	<u>Iadison</u>	Lake	to Water	ville,	MN								
SURFA	CE ELEV	ATION:	1018.850	0'	Co. Co	ordinates	:	N 1	0159	9.9	94		E363	633.9	78		
DEPTH	ELEV	м	ATEDIALI		NNT.		CEOLOCY	N	MC	SA	MPLE	REC	FIELI) & LA	BORA	FORY T	FESTS
FEET	FEET	IVI	AIEKIAL I	JESCRIPTIC)IN		GEOLOGY	IN	MC]]	FYPE	IN.	WC	DEN	LL	PL	qp
1		ORGAN	NIC CLAY	' LOAM, b	lack (C)	i i i	SWAMP DEPOSIT		w	ß	SU		80				
2 -		IUCIU	VODCAN				DEFOSIT			Ł	50						
3 -		black (C	Y ORGAN ()	NIC CLAY	LOAM,			WH	М	X	SS	14	211				
4 -		× ×	,							Þ							
5 —								WH	М	М	SS	0					
6 -										A							
8 -		ORGAN	JIC CLAY	LOAM, b	lack (C)			WH	м	M	22	10	74				
9 -								""	111	Д	55	17	/ 1				
10 -		LOAMY	Y SAND, §	gray (LS)			COARSE		W		TW						
11 -						· · · ·	ALLUVIUM				1 W	0					
12 -						· · · ·			₹	R							
13 -						· · · · · ·		2	W	M	SS	4					
		SAND.	gray (S)							P							
16 -		~~~,	Bray (2)					13	W	X	SS	18					
17 —										Þ							
18 -								8	W	X	SS	14					
19 —										Þ							
20 -								17	W	M	SS	16					
21 -										P							
22 -								11	w	М	SS	16					
b 24 −										\square	22	10					
25 -								12	w	M	55	0					
₹ 26 –								12	vv	Д	55	0					
27 —								14	w	K	22	18					
< 28 − G 20									vv	A	55	10					
29 - 29 - 30 - 30 - 30 - 30 - 30 - 30 - 30 - 3								1.2	***	P		1.7					
ам Ној 31 —			E DODIN	C				13	W	Й	88	1/				<u> </u>	
N H		END O	F BURIN	G													
2 TRU																	
3-2056																	
ଚ୍ଚ ନୁ DEP	TH: I	ORILLING N	/IETHOD			WATE	ER LEVEL ME	ASURE	EMEN	TS		1	1	1	NOTE:	REFE!	R TO
	01/1	2 7511 110 4		DATE	TIME	SAMPL	ED CASING	CAV	/E-IN PTH	FI		NG VEI	WATH	ER	THE A	TTAC	HED
U-2	272	<u>5.25° HSA</u>	L	2/25/20	2:30	31'	29.5'	2	9'		None		12.1	•	SHEET	IS FOR	R AN
				2/25/20	2:45	31'	29.5'	28	.5'		None	·	11.7	• E	XPLA	NATIO	N OF
BORIN	G LETED	2/25/20												T	ERMIN	10LOG	iY ON
DR: G	H LG:	SB Rig	: 27R												TH	IS LOC	ĩ

AET JC	B NO:	08-20562						LO	GOF	BOI	RING N	0.	B-	-4 (p). 1 o	f 1)	
PROJE	CT:	Trunk Highwa	ay 60; N	Iadison	Lake	e to	Waterv	ille,	MN								
SURFA	CE ELEV	VATION: 1023.97	6'	Co. Coo	rdinate	es:		N 1	0374	8.1	17		E 320	127.9	57		
DEPTH	FLEV									SA	MPLE	REC	FIELI) & LA	BORAT	ORY 1	TESTS
IN FEET	FEET	MATERIAL I	DESCRIPTIC	DN		G	EOLOGY	N	MC		YPE	IN.	WC	DEN	LL	PL	qp
1		FILL, organic clay	⁷ loam, darl	k brown an	d 🞆	FIL	L		W	ł	SU		94				
2 -						8				ł	50						
3 -		Fill, sandy clay loa	am, brown	and gray		X		2	W	M	SS	18	28				
4 -		(202)				8				Б							
5 -		PEAT, black (PT)				SW	/AMP	2	м	M	22	10	370				
6 -							10511		IVI	Д	55	10	570				
7 —					<u></u>	=				M							
8 -								WH	M	M	SS	8	205				
9 -						Ē				P							
10 .		MARL TEXTURA	AL CLASS	ICATION	: ////				М	Ø	TW	14	48	68			
12 -		CLAY, gray w/wh	ite shells (C)						¥							
13 -								WH	М	M	SS	24	61				
14 —										P							
15 —		CLAY, gray, lense	es of sand ((C)		FIN	NE LUVIUM		м	Ø	TW	20	35	86			
16 -							20 1000			K	1.11	•		00			
17 -									N	\square	00	10	21				
18 -								6	М	\square	88	10	31				
20 -		SANDY CLAY L	OAM, grav	(SCL)		TII	L	-		H							
21 -									M	Ø	TW	20	25	99			
22 -										Þ							
23 -								8	М	X	SS	24	22				
24 –										Þ							
25 —									М	И	TW	22	24	103			
² 26 −										H							
								7		\square	SS	18					
- 28 - GB 29 -									<u> </u>	ਸ		_					
									∇	B							
MHB 31 -									- M -	Ø	TW	24	24	102			
н ж 32 —								11	м	M	SS	18					
33 -		END OF BORIN	G			-				Ĥ		10					
-20562			0														
ଞ ନୁ DEP	TH: I	ORILLING METHOD			WAT	ER L	LEVEL MEA	SURE	MEN	TS		I	I		NOTE	REFE	R TO
	01/1		DATE	TIME	SAMP	LED	CASING	CAV	E-IN	I	RILLI	NG.	WATE	ER	THE A	TTAC	HED
	91/2'	5.25" HSA	2/25/20	12.50		, 111	29.5'	21	5'	FL	None	VEL	30 5	, ,	SHEET	TS FOR	AN
			2/25/20	12.30	33	•	29.5	31	.5'	-	None		283	• E	EXPLA	NATIO	N OF
	G	2/25/20		1.03			<u> </u>	51	•••	-	110110	,	20.3	T	ERMIN	IOLOC	Y ON
	$\mathbf{H} = \mathbf{I} \mathbf{C}$	<u>2/25/20</u> SR Dia: 27D													TH	IS LOC	ĩ
	II LU:	5D Kig. 2/K						1		1							

CONE PENETRATION TEST RESULTS

AMERICAN ENGINEERING TESTING, INC. This sounding was taken by American Engineering Testing.

State Proj 4006-3	iect 5	Bridge No. or	Job Desc.	Trunk Hight	way/Loo	cation				Sounding No. C-01	Ground Elevation 1021.3 (Surveyed)
Location	Le Sueur	County Coor	dinate System				CPT	Machine	21		SHEET 1 of 1
	X=31870) Y=95727	,				CPT	[·] Operator	Ada	ms	Date Completed
	Latitude (I	Vorth)=	Lor	ngitude (We	est)=		Hole	Type CP	T-STE)	2/3/20
Depth Elevation	Inte Bel UBC	erpreted Soil havior Type C 1990 FR	Sleeve Frid (psi)	ction		Tip Resis (psi	tance	9		Friction Ratio (%)	Pore Pressure (psi)
	0 2 4	4 6 8 10	50 40 30 20	10 0	800	1600	2400	3200	4000	0 2 4 6 8	10 0 40 80 120 160
$ \begin{array}{c} 0 \\ 1021.3 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$					800		2400	3200			$10 0 40 80 120 \\ 100 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $
	End ór a la	.		_;_i_\; Br	ottom of	f Hole 29 72	;			F : : : :	; <u>}; ; </u>
							X:\(JI-GEU\01-G	EUFOL	LUERSIGINI WII GINI PRO	JECIS 108-20002_RAPIDCPI.GPJ

CONE PENETRATION TEST RESULTS

AMERICAN ENGINEERING TESTING, INC.

This sounding was taken by a Testing.	American Engineering		U	NIQ			EK				
State Project 4006-35	Bridge No. or .	Job Desc.	Trunk High	way/Loo	cation				Sounding No.	Ground Ele	vation Surveyed)
Location Le Sueur	County Coord	linate System	1			CPT	Machine	21		SHEE	T 1 of 1
X=31900	50 Y=99390					CPT	Operator	Adar	ns	Date Com	leted
Latitude	(North)=	Lor	ngitude (W	'est)=		Hole	Туре СР	T-STD		2	/3/20
In Depth B	terpreted Soil ehavior Type	Sleeve Fri (psi)	ction		Tip Resi (ps	stance	•		Friction Ratio (%)	Pore	Pressure (psi)
Elevation 0 2	4 6 8 10	50 40 30 20	0 10 0	800	1600	, 2400	3200	4000	0 2 4 6 8	10 0 40	80 120 160
$ \begin{array}{c} 0 & 0 & 2 \\ 1042.7 & & & \\ -$				ottom o	1600 f Hole 29.74	1	3200				12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
						X:\()1-GEO\01-0	GEO FOL		DJECTS\08-20562	

CONE PENETRATION TEST RESULTS

AMERICAN ENGINEERING TESTING, INC.

UNIQUE NUMBER

	-												
State Proj 4006-3	nject 85	Bridge No. o	r Job Desc.	Trunk Highwa	ay/Location				Sounda	ing No.	Ground E	levation (from Pla	n)
Location		County Coo	rdinate System	•		CPT	Machine	21	• • • •		SHE	FT 1 of	1
Loodilon	V-21010	5 V-0027				CPT	Operator	2 I Ada	me				,
		J 1-3337	<u> </u>	anituda (11/aa	.+)	Hala			115		Date Con	npleted	
	Laliluue (NOI(II)=		igitude (wes	<i>u)</i> =	HOIE	Type CP1	-310			<u> </u>	213120	
Depth	Be	havior Type	Sleeve Frid (psi)	ction	Tip Res (ps	istance si)			Fric	tion Ratio (%)	Poi	re Press (psi)	ure
Elevation 0	0 2	4 6 8 10	50 40 30 20	10 0	800 1600	2400	3200	4000	0 2	4 6 8	10 0 40	80 120 1	60
5 5										mmm			
			L	Bott	om of Hole 8.88						F		

X:\01-GEO\01-GEO FOLDERS\GINTW\1 GINT PROJECTS\08-20562_RAPIDCPT.GPJ

AMERICAN ENGINEERING TESTING, INC. This sounding was taken by American Engineering Testing.

CONE PENETRATION TEST RESULTS

State Proj 4006-3	iect 5	Bridge No. or	Job Desc.	Trunk Highway/L 60	ocation			Sounding No. C-03A	Ground Elevation 1038.6 (Surveyed)
Location	Le Sueur (County Coor	dinate System			CPT Mach	nine 21		SHEET 1 of 1
	X=319194	4 Y=99365	5			CPT Oper	ator Ada	ims	Date Completed
	Latitude (I	North)=	Lor	ngitude (West)=		Hole Type	CPT-ST	D	2/6/20
Depth	Inte Bel	rpreted Soil havior Type	Sleeve Frid	ction	Tip Resis	tance		Friction Ratio	Pore Pressure
Elevation	UBC	2 1990 FR	(psi)		(psi)		100	(%)	(psi)
0 1038.6		4 6 8 10	50 40 30 20) 1600 2	2400 320	0 4000	$\begin{array}{c} 0 & 2 & 4 & 6 & 8 \\ \hline \\$	
 								M M M	
10 1028.6 								W month	- 1 / volume
15 1023.6 									
20 1018.6 							-		
 25 1013.6 			- <					- XXX - XX 	
_ 30 1008 .6	ind of pat	a					_	<u> </u>	
				Bottom	of Hole 30.2				
						X:\01-GEC	0\01-GEO FO	LDERS\GINTW\1 GINT PRO	DJECTS\08-20562_RAPIDCPT.GPJ

CONE PENETRATION TEST RESULTS

AMERICAN

ENGINEERING TESTING, INC.

This sounding Testing.	g was taken by Ar	merican Engineerin	g	U	NIQU			EK				
State Proj 4006-3	ect 5	Bridge No. or	Job Desc.	Trunk Hig 60	hway/Loc	ation				Sounding No. C-04	Ground 1024	d Elevation . 0 (Surveyed)
Location	Le Sueur	County Coor	dinate System	1			CPT	Machine	21		SF	IEET 1 of 1
	X=32012	8 Y=10374	48				CPT	Operato	^r Ada	ms	Date C	Completed
	Latitude (I	North)=	Lo	ngitude (V	Vest)=		Hole	Type CF	PT-STD]	2/3/20
Depth Elevation	Inte Bei UBC	erpreted Soil havior Type C 1990 FR	Sleeve Fri (psi)	iction		Tip Resi (ps	stance i)	9		Friction Ratio (%)	F	Pore Pressure (psi)
0	0 2 4	4 6 8 10	50 40 30 20	0 10 0	800	1600	2400	3200	4000	0 2 4 6 8	10 0	40 80 120 160
1024.0 					Bottom of	Hole 29.7	2					
							X:\(01-GEO\01-	GEO FOL	.DERS\GINTW\1 GINT PRO	UECTS\08-	 20562_RAPIDCPT.GPJ

CONE PENETRATION TEST RESULTS

AMERICAN ENGINEERING TESTING, INC. This sounding was taken by American Engineering Testing.

State Project		Bridge No. or	Job Desc.	Trunk Higl	hway/Loo	cation				Sounding	No.	Groui 102	nd Elevation	ved)
	Sucur	County Coor	dinata Svetom				6	PT Machine	24	0-00		102		$rac{1}{rac}{1}{rac}{1}{rac}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$
Y=	320470	V=1038/	uinale System 17					CPT Operato	Z1	ms				
	titude (N	$\sqrt{orth} =$	• I or	naitude (M	/est)=		F)		Date	2/3/20	
Lui	Inte	rpreted Soil	LOI	igitade (H	(001)-				1011				2/0/20	
Depth	Bel	havior Type C 1990 FR	Sleeve Frie (psi)	ction		Tip Res (ps	istar si)	nce		Friction ?)	n Ratio %)		Pore Pre: (psi)	ssure
	024	4 6 8 10	50 40 30 20	10 0	800	1600	240	0 3200	4000	0 2 4	68	10 0	40 80 12	0 160
$ \begin{array}{c} 0\\ 1025.7\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\$					800		240	0 3200		$ \begin{bmatrix} 2 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$	°	10 0 1 1 1 1 1 1 1 1		
	End of Bat	a		ļ			:					1		
				E	3ottom o	f Hole 29.7	3	X:\01-GEO\01-	GEO FO			JECTS\0		DCPT.GPJ

AMERICAN ENGINEERING TESTING, INC.

CONE PENETRATION TEST RESULTS

This sounding Testing.	g was taken by An	nerican Engineerin	g	UN				EK			
State Proje	ate ProjectBridge No. or Job Desc.Trunk Highway/Location006-3560									Sounding No. C-07	Ground Elevation 1041.4 (Surveyed)
Location	Le Sueur (County Coor	dinate System				CPT	Machine	21	SHEET 1 of 1	
	X=331286	6 Y=1049 [,]	16				CPT	Operator	Date Completed		
	Latitude (I	Vorth)=	Lor	ngitude (W	est)=		Hole	Type CF	PT-STD	2/4/20	
Depth Elevation	Inte Bel UBC	erpreted Soil havior Type C 1990 FR	Sleeve Fri (psi)	ction		Tip Resi (ps	stance i)	9		Friction Ratio (%)	Pore Pressure (psi)
	0 2 4	4 6 8 10	50 40 30 20	10 0	800	1600	2400	3200	4000	0 2 4 6 8	10 0 40 80 120 160
-1041.4						Hole 29.7	3				$ \left[\begin{array}{cccccccccccccccccccccccccccccccccccc$
							 X:W				

CONE PENETRATION TEST RESULTS

AMERICAN ENGINEERING TESTING, INC. This sounding was taken by American Engineering Testing.

State Project 4006-35	Bridge No. or Job Desc.	Trunk Highway/Location 60				Sounding No. C-08	Ground Elevation (from Plan)
Location Le Sueur	County Coordinate System			CPT Machine	21		SHEET 1 of 1
X=34408	6 Y=103686		F	CPT Operator	Ada	ms	Date Completed
Latitude (North)= Lor	ngitude (West)=	_	Hole Type CP1	I-STE)	2/4/20
Inte Depth Be	erpreted Soil havior Type Sleeve Frid	ction Tip Re	esista	ance		Friction Ratio	Pore Pressure
Elevation UB	C 1990 FR (PSI)	()	DSI)		4000	(%)	(psi)
			24	00 3200	4000		
$ \begin{array}{c} \\ \\ \\ $						Model and the second se	
-					-	- {	
] [}]
	ata i i i i i i i i i i i i i i i i i i	41					
		Bottom of Hole 29	9.98	X:\01-GEO\01-GI			

AMERICAN ENGINEERING TESTING, INC. This sounding was taken by American Engineering Testing.

CONE PENETRATION TEST RESULTS

State Proje	tate ProjectBridge No. or Job Desc.Trunk Highway/Location006-3560										Sounding No. C-09		Ground Ele	evation (Surveyed)
Location	Le Sueur	County Coor	dinate System				CPT Machine 21				SHEE	T 1 of 1		
	X=34438	8 Y=10366	50					CPT (Operator	Ada	ims		Date Completed	
	Latitude (I	Vorth)=	Lor	ngitude (We	est)=		Hole Type CPT-STD				2/4/20			
Depth	Inte Bei UBC	erpreted Soil havior Type C 1990 FR	Sleeve Frid (psi)	ction Tip Resista (psi)					tance Friction Ra (%)			tio	Pore Pressure (psi)	
Elevation 0	02	4 6 8 10	50 40 30 20	10 0	800	1600	24	400	3200	4000	0 2 4 6	8 1	0 0 40	80 120 160
					> > >	f Hole 29.7					$\left \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$			
								X:\01	1-GEO\01-G	EO FOL	LDERS\GINTW\1 GINT	PROJI	ECTS\08-2056	2_RAPIDCPT.GP

AMERICAN ENGINEERING TESTING, INC.

CONE PENETRATION TEST RESULTS

UNIQUE NUMBER

This sounding was taken by American Engineering Testing.

CONE PENETRATION TEST RESULTS

UNIQUE NUMBER

This sounding was taken by American Engineering

AMERICAN

ENGINEERING TESTING, INC.

resung.										1	
State Proj	ect	Bridge No. or	Job Desc.	Trunk Highway	//Location				Sounding No.	Ground Ele	vation
4006-3	5			60					C-11	1054.1 (Surveyed)
Location	Le Sueur (County Coor	dinate System			CPT	Machine	21		SHEE	T 1 of 1
	X=349682	2 Y=10290)4			CPT Operator Ada			ms	Date Completed	
	Latitude (I	Vorth)=	Lor	ngitude (West)=	Hole	Type CP	T-STD)	2/4/20	
	Inte	rpreted Soil	Sloovo Eri	otion	Tin Do	viotonoo			Eriction Datio	Para	Broggurg
Depth	Bel	havior Type	(psi)	CIION	נא קוז מ)	sisiance si)				FUIE	(psi)
Elevation	0 2 4	4 6 8 10	50 40 30 20	10 0 8	00 1600	2400	3200	4000	0 2 4 6 8	10 0 40 8	30 120 160
1054.1					-		: :				
-				\mathcal{T}				-			-
-								-			-
_			-	()				-			-
-			-					-	- 5		-
1049.1								-	+ >	┥╫┊	
- 2)(· · · ·		-	- 2		
-								-	- 5		-
-				}				-			-
- 10			-	<i>\</i>				-			-
1044.1			-					-		┥┝┊	-
-			-	\ {				-	- <u>}</u>	+ $+$ $+$	-
-			_					-	- x	`	-
			-	S				-			
-			-	$\left\{ \right\}$				-) –
15 1039.1								-		- - \	
-								-	- (= = = = =		
_					· · · ·	· · · ·		-			} : : -
_			-			· · · ·		-			
- 1			-			· · · ·		-			
20 1034.1						· · · ·		_			
_			- : : :					-] : : -
-			-			· · · ·		-	}		\$
-								-			-
-			-					-		5	-
25			_	{ }				_	⊢} .		_
-			-					4			-
_			_					_			-
_			-					_			-
_ 6				<pre>{ }</pre>				_	} }		
	End of Bat	a : : :		<u> </u>	<u> </u>		: :				
				Botto	m of Hole 29.	17					
						X:10	01-GEO\01-G	EO FOL	.DERS\GINTW\1 GINT PRC	JECTS\08-20562	_RAPIDCPT.GPJ

AMERICAN ENGINEERING TESTING, INC. This sounding was taken by American Engineering Testing.

CONE PENETRATION TEST RESULTS

State Proje	lighway/Loo	cation					Sounding No.	Gro 10	und Elevation 38.5 (Survey	red)				
Location	Le Sueur	County Coor	dinate System					CPT Machine 21				SHEET 1 of 1		
	X=35763	6 Y=10153	30				CPT Operator			Ada	ms	Dat	e Completed	
	Latitude (I	Vorth)=	Lor	ngitude ((West)=			Hole 1	Гуре СР	T-STD)		2/4/20	
Depth	Interpreted Soil Behavior Type Sleeve Friction Tip Re						ista	nce			Friction Ratio	Pore Pressure		
Elevation	0 2 4	C1990FR 4 6 8 10	50 40 30 20	10 0	800	1600	24(00	3200	4000	0 2 4 6 8	10 (0 40 80 120	160
Elevation 1038.5 5 1033.5 - 5 1033.5 - - 1028.5 - - - - - - - - - - - - -		2 1990 FR 4 6 8 10			Bottom o	(ps 1600 >	51) 240 	00	3200		(9)			
								X:\01	-GEO\01-G	EO FOL	LDERS\GINTW\1 GINT PRO	JECTS	:\08-20562_RAPID	CPT.GPJ

CC

CONE PENETRATION TEST RESULTS

This sounding was taken by American Engineering

AMERICAN

ENGINEERING TESTING, INC.

State Proj 4006-3	iect 5	Bridge No. or	Job Desc.	Trunk Highwa 60	y/Location				Sounding No.	Ground Elevation 1053.9 (Surveyed)
Location	Le Sueur	County Coord	linate System			C	CPT Machin	e 21	1	SHEET 1 of 1
	X=373039	9 Y=10083	3			C	CPT Operat	or Ada	ms	Date Completed
	Latitude (I	Vorth)=	Lor	ngitude (West	;)=	ŀ	lole Type C	PT-ST)	2/5/20
Depth Elevation	Inte Bei UBC	rpreted Soil havior Type C 1990 FR	Sleeve Frid (psi)	ction	Tip Re (I	sistai osi)	nce		Friction Ratio (%)	Pore Pressure (psi)
0 1053.9		4 6 8 10	50 40 30 20	$10 0 \epsilon$	300 1600	240	0 3200	4000	$\begin{array}{c} 0 2 4 6 8 \\ \hline \hline \hline \hline \hline \end{array}$	
$ \begin{array}{c} 1053.9\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\$									May My Mary Mary Mary Mary Mary Mary Mar	= - + + + + + + + + + + + + + + + + + +
		₽		$ \square $				1		ξ
				Botto	om of Hole 29	.75	X:\01-GEO\0			

CONE PENETRATION TEST RESULTS

AMERICAN ENGINEERING TESTING, INC. This sounding was taken by American Engineering Testing.

State Project 4006-35	t	Bridge No. or	Job Desc.	Trunk Highway/Location 60						Sounding No. C-18			Ground Elevation 1033.5 (Surveyed)	
Location L	e Sueur (County Coor			CPT	Machine	21				SHEE	T 1 of 1		
X	(=385476	6 Y=10589	2				CPT	Operator	Ada	ms			Date Comp	leted
L	atitude (N	le (North)= Longitude (West)=					Hole	Туре СР	T-STD				2	/5/20
Depth	Inte Bel UBC	rpreted Soil havior Type 1990 FR	Sleeve Fri (psi)	ction		Tip Resi (ps	stance i)			Fric	tion Ra (%)	atio	Pore	Pressure (psi)
Elevation 0	0 2 4	4 6 8 10	50 40 30 20	10 0	800	1600	2400	3200	4000	0 2	4 6	8 1	10 0 40	80 120 160
				2 Month of the second s	Bottom of	Hole 29.7	5				- A M m m M m M m M m M m m m m m m m m m		The second of th	
							7.10	, 020107-0			GIN GIN		_070100-20002	

SAMPLING METHODS

Split-Spoon Samples (SS)

Standard penetration (split-spoon) samples were collected in general accordance with ASTM:D1586. This method consists of driving a 2" O.D. split barrel sampler into the in-situ soil with a 140-pound hammer dropped from a height of 30". The sampler is driven a total of 18" into the soil. After an initial set of 6", the number of hammer blows to drive the sampler the final 12" is known as the standard penetration resistance or N-value.

Disturbed Samples (DS)/Spin-up Samples (SU)

Sample types described as "DS" or "SU" on the boring logs are disturbed samples, which are taken from the flights of the auger. Because the auger disturbs the samples, possible soil layering and contact depths should be considered approximate.

Sampling Limitations

Unless actually observed in a sample, contacts between soil layers are estimated based on the spacing of samples and the action of drilling tools. Cobbles, boulders, and other large objects generally cannot be recovered from test borings, and they may be present in the ground even if they are not noted on the boring logs.

CLASSIFICATION METHODS

Soil classifications shown on the boring logs are based on the Unified Soil Classification (USC) system. The USC system is described in ASTM:D2487 and D2488. Where laboratory classification tests (sieve analysis or Atterberg Limits) have been performed, accurate classifications per ASTM: D2487 are possible. Otherwise, soil classifications shown on the boring logs are visual-manual judgments. Charts are attached which provide information on the USC system, the descriptive terminology, and the symbols used on the boring logs.

The boring logs include descriptions of apparent geology. The geologic depositional origin of each soil layer is interpreted primarily by observation of the soil samples, which can be limited. Observations of the surrounding topography, vegetation, and development can sometimes aid this judgment.

WATER LEVEL MEASUREMENTS

The ground water level measurements are shown at the bottom of the boring logs. The following information appears under "Water Level Measurements" on the logs:

- Date and Time of measurement
- Sampled Depth: lowest depth of soil sampling at the time of measurement
- Casing Depth: depth to bottom of casing or hollow-stem auger at time of measurement
- Cave-in Depth: depth at which measuring tape stops in the borehole
- Water Level: depth in the borehole where free water is encountered
- Drilling Fluid Level: same as Water Level, except that the liquid in the borehole is drilling fluid

The true location of the water table at the boring locations may be different than the water levels measured in the boreholes. This is possible because there are several factors that can affect the water level measurements in the borehole. Some of these factors include: permeability of each soil layer in profile, presence of perched water, amount of time between water level readings, presence of drilling fluid, weather conditions, and use of borehole casing.

SAMPLE STORAGE

Unless notified to do otherwise, we routinely retain representative samples of the soils recovered from the borings for a period of 30 days.

DRILLING AND SAMPLING SYMBOLS

 AR: Sample of material obtained from cuttings blown out the top of the borehole during air rotary procedure. B, H, N: Size of flush-joint casing CAS: Pipe casing, number indicates nominal diameter in inches COT: Clean-out tube DC: Drive casing; number indicates diameter in inches DM: Drilling mud or bentonite slurry DR: Driller (initials) DS: Disturbed sample from auger flights DP: Direct push drilling; a 2.125 inch OD outer casing with an inner 1½ inch ID plastic tube is driven continuously into the ground. FA: Flight auger; number indicates outside diameter in inches HA: Hand auger; number indicates outside diameter HSA: Hollow stem auger; number indicates inside diameter in inches LG: Field logger (initials) MC: Column used to describe moisture condition of samples and for the ground water level symbols N (BPF): Standard penetration resistance (N-value) in blows per foot (see notes) NQ: NQ wireline core barrel PQ: PQ wireline core barrel RDA: Rotary drilling with drilling fluid and roller or drag bit. RDF: Rotary drilling with drilling fluid and roller or drag bit. RDF: Rotary drilling with drilling fluid and roller or drag bit. RDF: In split-spoon (see notes), direct push and thin-walled tube sampling, the recovered length (in inches) of sample. In rock coring, the length of core recovered (expressed as percent of the total core run). Zero indicates no sample recovered. SS: Standard split-spoon sampler (steel; 1.5" is inside diameter; 2" outside diameter); unless indicated 	
 the top of the borehole during air rotary procedure. B, H, N: Size of flush-joint casing CAS: Pipe casing, number indicates nominal diameter in inches COT: Clean-out tube DC: Drive casing; number indicates diameter in inches DM: Drilling mud or bentonite slurry DR: Driller (initials) DS: Disturbed sample from auger flights DP: Direct push drilling; a 2.125 inch OD outer casing with an inner 1½ inch ID plastic tube is driven continuously into the ground. FA: Flight auger; number indicates outside diameter in inches HA: Hand auger; number indicates outside diameter HSA: Hollow stem auger; number indicates inside diameter in inches LG: Field logger (initials) MC: Column used to describe moisture condition of samples and for the ground water level symbols N (BPF): Standard penetration resistance (N-value) in blows per foot (see notes) NQ: NQ wireline core barrel PQ: PQ wireline core barrel RDA: Rotary drilling with drilling fluid and roller or drag bit. RDF: Rotary drilling with drilling fluid and roller or drag bit. RDF: Rotary drilling with drilling fluid and roller or drag bit. RDF: Rotary drilling with drilling fluid and roller or drag bit. RDF: Rotary drilling with compressed air and thin-walled tube sampling, the recovered length (in inches) of sample. In rock coring, the length of core recovered (expressed as percent of the total core run). Zero indicates no sample recovered. SS: Standard split-spoon sampler (steel; 1.5" is inside diameter; 2" outside diameter); unless indicated 	
 B, H, N: Size of flush-joint casing CAS: Pipe casing, number indicates nominal diameter in inches COT: Clean-out tube DC: Drive casing; number indicates diameter in inches DM: Drilling mud or bentonite slurry DR: Driller (initials) DS: Disturbed sample from auger flights DP: Direct push drilling; a 2.125 inch OD outer casing with an inner 1½ inch ID plastic tube is driven continuously into the ground. FA: Flight auger; number indicates outside diameter in inches HA: Hand auger; number indicates outside diameter HSA: Hollow stem auger; number indicates inside diameter in inches LG: Field logger (initials) MC: Column used to describe moisture condition of samples and for the ground water level symbols N (BPF): Standard penetration resistance (N-value) in blows per foot (see notes) NQ: NQ wireline core barrel PQ: PQ wireline core barrel RDA: Rotary drilling with drilling fluid and roller or drag bit. RDF: Rotary drilling with drilling fluid and roller or drag bit. RDF: Rotary drilling with drilling fluid and roller or drag bit. RDF: Rotary drilling with drilling fluid and roller or drag bit. RDF: Rotary drilling with drilling fluid and roller or drag bit. RDF: Rotary drilling with drilling fluid and roller or drag bit. RDF: Rotary drilling with drilling fluid and roller or drag bit. RDF: Rotary drilling with drilling fluid and roller or drag bit. RDF: Rotary drilling with drilling fluid and roller or drag bit. RDF: Rotary drilling with drilling fluid and roller or drag bit. RDF: Rotary drilling with drilling fluid and roller or drag bit. RDF: Rotary drilling with drilling fluid and roller or drag bit. RDF: Rotary drilling with drilling fluid and roller or drag bit. RDF: Rotary drilling with drilling fluid and roller or drag bit. RDF: Rotary	
 CAS: Pipe casing, number indicates nominal diameter in inches COT: Clean-out tube DC: Drive casing; number indicates diameter in inches DM: Drilling mud or bentonite slurry DR: Driller (initials) DS: Disturbed sample from auger flights DP: Direct push drilling; a 2.125 inch OD outer casing with an inner 1½ inch ID plastic tube is driven continuously into the ground. FA: Flight auger; number indicates outside diameter in inches HA: Hand auger; number indicates outside diameter HSA: Hollow stem auger; number indicates inside diameter in inches LG: Field logger (initials) MC: Column used to describe moisture condition of samples and for the ground water level symbols N (BPF): Standard penetration resistance (N-value) in blows per foot (see notes) NQ: NQ wireline core barrel PQ: PQ wireline core barrel RDA: Rotary drilling with drilling fluid and roller or drag bit. RDF: Rotary drilling with drilling fluid and roller or drag bit. RDF: Rotary drilling with drilling fluid and roller or drag bit. RDF: Rotary drilling with drilling fluid and roller or drag bit. RDF: Rotary drilling with drilling fluid and roller or drag bit. RDF: Rotary drilling with drilling fluid and roller or drag bit. REC: In split-spoon (see notes), direct push and thin-walled tube sampling, the recovered length (in inches) of sample. In rock coring, the length of core recovered (expressed as percent of the total core run). Zero indicates no sample recovered. SS: Standard split-spoon sampler (steel; 1.5" is inside diameter; 2" outside diameter); unless indicated 	
 inches COT: Clean-out tube DC: Drive casing; number indicates diameter in inches DM: Drilling mud or bentonite slurry DR: Driller (initials) DS: Disturbed sample from auger flights DP: Direct push drilling; a 2.125 inch OD outer casing with an inner 1½ inch ID plastic tube is driven continuously into the ground. FA: Flight auger; number indicates outside diameter in inches HA: Hand auger; number indicates outside diameter HSA: Hollow stem auger; number indicates inside diameter in inches LG: Field logger (initials) MC: Column used to describe moisture condition of samples and for the ground water level symbols N (BPF): Standard penetration resistance (N-value) in blows per foot (see notes) NQ: NQ wireline core barrel PQ: PQ wireline core barrel RDA: Rotary drilling with drilling fluid and roller or drag bit. RDF: Rotary drilling with drilling fluid and roller or drag bit. RDF: Rotary drilling with drilling fluid and thin-walled tube sampling, the recovered length (in inches) of sample. In rock coring, the length of core recovered (expressed as percent of the total core run). Zero indicates no sample recovered. SS: Standard split-spoon sampler (steel; 1.5" is inside diameter; 2" outside diameter); unless indicated 	
 COT: Clean-out tube DC: Drive casing; number indicates diameter in inches DM: Drilling mud or bentonite slurry DR: Driller (initials) DS: Disturbed sample from auger flights DP: Direct push drilling; a 2.125 inch OD outer casing with an inner 1½ inch ID plastic tube is driven continuously into the ground. FA: Flight auger; number indicates outside diameter in inches HA: Hand auger; number indicates outside diameter HSA: Hollow stem auger; number indicates inside diameter in inches LG: Field logger (initials) MC: Column used to describe moisture condition of samples and for the ground water level symbols N (BPF): Standard penetration resistance (N-value) in blows per foot (see notes) NQ: NQ wireline core barrel PQ: PQ wireline core barrel RDA: Rotary drilling with drilling fluid and roller or drag bit. RDF: Rotary drilling with drilling fluid and roller or drag bit. RDF: Rotary drilling with drilling fluid and thin-walled tube sampling, the recovered length (in inches) of sample. In rock coring, the length of core recovered (expressed as percent of the total core run). Zero indicates no sample recovered. SS: Standard split-spoon sampler (steel; 1.5" is inside diameter; 2" outside diameter); unless indicated 	
 DC: Drive casing; number indicates diameter in inches DM: Drilling mud or bentonite slurry DR: Driller (initials) DS: Disturbed sample from auger flights DP: Direct push drilling; a 2.125 inch OD outer casing with an inner 1½ inch ID plastic tube is driven continuously into the ground. FA: Flight auger; number indicates outside diameter in inches HA: Hand auger; number indicates outside diameter HSA: Hollow stem auger; number indicates inside diameter in inches LG: Field logger (initials) MC: Column used to describe moisture condition of samples and for the ground water level symbols N (BPF): Standard penetration resistance (N-value) in blows per foot (see notes) NQ: NQ wireline core barrel PQ: PQ wireline core barrel RDA: Rotary drilling with drilling fluid and roller or drag bit. RDF: Rotary drilling with drilling fluid and roller or drag bit. RDF: Rotary drilling with drilling fluid and thin-walled tube sampling, the recovered length (in inches) of sample. In rock coring, the length of core recovered (expressed as percent of the total core run). Zero indicates no sample recovered. SS: Standard split-spoon sampler (steel; 1.5" is inside diameter; 2" outside diameter); unless indicated 	
 DM: Drilling mud or bentonite slurry DR: Driller (initials) DS: Disturbed sample from auger flights DP: Direct push drilling; a 2.125 inch OD outer casing with an inner 1½ inch ID plastic tube is driven continuously into the ground. FA: Flight auger; number indicates outside diameter in inches HA: Hand auger; number indicates outside diameter HSA: Hollow stem auger; number indicates inside diameter in inches LG: Field logger (initials) MC: Column used to describe moisture condition of samples and for the ground water level symbols N (BPF): Standard penetration resistance (N-value) in blows per foot (see notes) NQ: NQ wireline core barrel PQ: PQ wireline core barrel RDA: Rotary drilling with compressed air and roller or drag bit. RDF: Rotary drilling with drilling fluid and roller or drag bit. RDF: Rotary drilling with drilling fluid and thin-walled tube sampling, the recovered length (in inches) of sample. In rock coring, the length of core recovered (expressed as percent of the total core run). Zero indicates no sample recovered. SS: Standard split-spoon sampler (steel; 1.5" is inside diameter; 2" outside diameter); unless indicated 	
 DR: Driller (initials) DS: Disturbed sample from auger flights DP: Direct push drilling; a 2.125 inch OD outer casing with an inner 1½ inch ID plastic tube is driven continuously into the ground. FA: Flight auger; number indicates outside diameter in inches HA: Hand auger; number indicates outside diameter HSA: Hollow stem auger; number indicates inside diameter in inches LG: Field logger (initials) MC: Column used to describe moisture condition of samples and for the ground water level symbols N (BPF): Standard penetration resistance (N-value) in blows per foot (see notes) NQ: NQ wireline core barrel PQ: PQ wireline core barrel RDA: Rotary drilling with drilling fluid and roller or drag bit. RDF: Rotary drilling with drilling fluid and roller or drag bit. RDF: In split-spoon (see notes), direct push and thin-walled tube sampling, the recovered length (in inches) of sample. In rock coring, the length of core recovered (expressed as percent of the total core run). Zero indicates no sample recovered. SS: Standard split-spoon sampler (steel; 1.5" is inside diameter; 2" outside diameter); unless indicated 	
 DS: Disturbed sample from auger flights DP: Direct push drilling; a 2.125 inch OD outer casing with an inner 1½ inch ID plastic tube is driven continuously into the ground. FA: Flight auger; number indicates outside diameter in inches HA: Hand auger; number indicates outside diameter HSA: Hollow stem auger; number indicates inside diameter in inches LG: Field logger (initials) MC: Column used to describe moisture condition of samples and for the ground water level symbols N (BPF): Standard penetration resistance (N-value) in blows per foot (see notes) NQ: NQ wireline core barrel PQ: PQ wireline core barrel RDA: Rotary drilling with compressed air and roller or drag bit. RDF: Rotary drilling with drilling fluid and roller or drag bit. RDF: Rotary drilling with drilling fluid and roller or drag bit. RDF: In split-spoon (see notes), direct push and thin-walled tube sampling, the recovered length (in inches) of sample. In rock coring, the length of core recovered (expressed as percent of the total core run). Zero indicates no sample recovered. SS: Standard split-spoon sampler (steel; 1.5" is inside diameter; 2" outside diameter); unless indicated 	
 DP: Direct push drilling; a 2.125 inch OD outer casing with an inner 1½ inch ID plastic tube is driven continuously into the ground. FA: Flight auger; number indicates outside diameter in inches HA: Hand auger; number indicates outside diameter HSA: Hollow stem auger; number indicates inside diameter in inches LG: Field logger (initials) MC: Column used to describe moisture condition of samples and for the ground water level symbols N (BPF): Standard penetration resistance (N-value) in blows per foot (see notes) NQ: NQ wireline core barrel PQ: PQ wireline core barrel RDA: Rotary drilling with compressed air and roller or drag bit. RDF: Rotary drilling with drilling fluid and roller or drag bit REC: In split-spoon (see notes), direct push and thin-walled tube sampling, the recovered length (in inches) of sample. In rock coring, the length of core recovered (expressed as percent of the total core run). Zero indicates no sample recovered. SS: Standard split-spoon sampler (steel; 1.5" is inside diameter; 2" outside diameter); unless indicated 	
 with an inner 1½ inch ID plastic tube is driven continuously into the ground. FA: Flight auger; number indicates outside diameter in inches HA: Hand auger; number indicates outside diameter HSA: Hollow stem auger; number indicates inside diameter in inches LG: Field logger (initials) MC: Column used to describe moisture condition of samples and for the ground water level symbols N (BPF): Standard penetration resistance (N-value) in blows per foot (see notes) NQ: NQ wireline core barrel PQ: PQ wireline core barrel RDA: Rotary drilling with compressed air and roller or drag bit. RDF: Rotary drilling with drilling fluid and roller or drag bit. REC: In split-spoon (see notes), direct push and thin-walled tube sampling, the recovered length (in inches) of sample. In rock coring, the length of core recovered (expressed as percent of the total core run). Zero indicates no sample recovered. SS: Standard split-spoon sampler (steel; 1.5" is inside diameter; 2" outside diameter); unless indicated 	
 continuously into the ground. FA: Flight auger; number indicates outside diameter in inches HA: Hand auger; number indicates outside diameter HSA: Hollow stem auger; number indicates inside diameter in inches LG: Field logger (initials) MC: Column used to describe moisture condition of samples and for the ground water level symbols N (BPF): Standard penetration resistance (N-value) in blows per foot (see notes) NQ: NQ wireline core barrel PQ: PQ wireline core barrel RDA: Rotary drilling with compressed air and roller or drag bit. RDF: Rotary drilling with drilling fluid and roller or drag bit. REC: In split-spoon (see notes), direct push and thin-walled tube sampling, the recovered length (in inches) of sample. In rock coring, the length of core recovered (expressed as percent of the total core run). Zero indicates no sample recovered. SS: Standard split-spoon sampler (steel; 1.5" is inside diameter; 2" outside diameter); unless indicated 	
 FA: Flight auger; number indicates outside diameter in inches HA: Hand auger; number indicates outside diameter HSA: Hollow stem auger; number indicates inside diameter in inches LG: Field logger (initials) MC: Column used to describe moisture condition of samples and for the ground water level symbols N (BPF): Standard penetration resistance (N-value) in blows per foot (see notes) NQ: NQ wireline core barrel PQ: PQ wireline core barrel RDA: Rotary drilling with compressed air and roller or drag bit. RDF: Rotary drilling with drilling fluid and roller or drag bit. REC: In split-spoon (see notes), direct push and thin-walled tube sampling, the recovered length (in inches) of sample. In rock coring, the length of core recovered (expressed as percent of the total core run). Zero indicates no sample recovered. SS: Standard split-spoon sampler (steel; 1.5" is inside diameter; 2" outside diameter); unless indicated 	
 inches HA: Hand auger; number indicates outside diameter HSA: Hollow stem auger; number indicates inside diameter in inches LG: Field logger (initials) MC: Column used to describe moisture condition of samples and for the ground water level symbols N (BPF): Standard penetration resistance (N-value) in blows per foot (see notes) NQ: NQ wireline core barrel PQ: PQ wireline core barrel RDA: Rotary drilling with compressed air and roller or drag bit. RDF: Rotary drilling with drilling fluid and roller or drag bit REC: In split-spoon (see notes), direct push and thin-walled tube sampling, the recovered length (in inches) of sample. In rock coring, the length of core recovered (expressed as percent of the total core run). Zero indicates no sample recovered. SS: Standard split-spoon sampler (steel; 1.5" is inside diameter; 2" outside diameter); unless indicated 	
 HA: Hand auger; number indicates outside diameter Hollow stem auger; number indicates inside diameter in inches LG: Field logger (initials) MC: Column used to describe moisture condition of samples and for the ground water level symbols N (BPF): Standard penetration resistance (N-value) in blows per foot (see notes) NQ: NQ wireline core barrel PQ: PQ wireline core barrel RDA: Rotary drilling with compressed air and roller or drag bit. RDF: Rotary drilling with drilling fluid and roller or drag bit. RDF: In split-spoon (see notes), direct push and thin-walled tube sampling, the recovered length (in inches) of sample. In rock coring, the length of core recovered (expressed as percent of the total core run). Zero indicates no sample recovered. SS: Standard split-spoon sampler (steel; 1.5" is inside diameter; 2" outside diameter); unless indicated 	
 HSA: Hollow stem auger; number indicates inside diameter in inches LG: Field logger (initials) MC: Column used to describe moisture condition of samples and for the ground water level symbols N (BPF): Standard penetration resistance (N-value) in blows per foot (see notes) NQ: NQ wireline core barrel PQ: PQ wireline core barrel RDA: Rotary drilling with compressed air and roller or drag bit. RDF: Rotary drilling with drilling fluid and roller or drag bit REC: In split-spoon (see notes), direct push and thin-walled tube sampling, the recovered length (in inches) of sample. In rock coring, the length of core recovered (expressed as percent of the total core run). Zero indicates no sample recovered. SS: Standard split-spoon sampler (steel; 1.5" is inside diameter; 2" outside diameter); unless indicated 	
 in inches LG: Field logger (initials) MC: Column used to describe moisture condition of samples and for the ground water level symbols N (BPF): Standard penetration resistance (N-value) in blows per foot (see notes) NQ: NQ wireline core barrel PQ: PQ wireline core barrel RDA: Rotary drilling with compressed air and roller or drag bit. RDF: Rotary drilling with drilling fluid and roller or drag bit REC: In split-spoon (see notes), direct push and thin-walled tube sampling, the recovered length (in inches) of sample. In rock coring, the length of core recovered (expressed as percent of the total core run). Zero indicates no sample recovered. SS: Standard split-spoon sampler (steel; 1.5" is inside diameter; 2" outside diameter); unless indicated 	
 LG: Field logger (initials) MC: Column used to describe moisture condition of samples and for the ground water level symbols N (BPF): Standard penetration resistance (N-value) in blows per foot (see notes) NQ: NQ wireline core barrel PQ: PQ wireline core barrel RDA: Rotary drilling with compressed air and roller or drag bit. RDF: Rotary drilling with drilling fluid and roller or drag bit REC: In split-spoon (see notes), direct push and thin-walled tube sampling, the recovered length (in inches) of sample. In rock coring, the length of core recovered (expressed as percent of the total core run). Zero indicates no sample recovered. SS: Standard split-spoon sampler (steel; 1.5" is inside diameter; 2" outside diameter); unless indicated 	
 MC: Column used to describe moisture condition of samples and for the ground water level symbols N (BPF): Standard penetration resistance (N-value) in blows per foot (see notes) NQ: NQ wireline core barrel PQ: PQ wireline core barrel RDA: Rotary drilling with compressed air and roller or drag bit. RDF: Rotary drilling with drilling fluid and roller or drag bit REC: In split-spoon (see notes), direct push and thin-walled tube sampling, the recovered length (in inches) of sample. In rock coring, the length of core recovered (expressed as percent of the total core run). Zero indicates no sample recovered. SS: Standard split-spoon sampler (steel; 1.5" is inside diameter; 2" outside diameter); unless indicated 	
 samples and for the ground water level symbols N (BPF): Standard penetration resistance (N-value) in blows per foot (see notes) NQ: NQ wireline core barrel PQ: PQ wireline core barrel RDA: Rotary drilling with compressed air and roller or drag bit. RDF: Rotary drilling with drilling fluid and roller or drag bit REC: In split-spoon (see notes), direct push and thin-walled tube sampling, the recovered length (in inches) of sample. In rock coring, the length of core recovered (expressed as percent of the total core run). Zero indicates no sample recovered. SS: Standard split-spoon sampler (steel; 1.5" is inside diameter; 2" outside diameter); unless indicated 	
 N (BPF): Standard penetration resistance (N-value) in blows per foot (see notes) NQ: NQ wireline core barrel PQ: PQ wireline core barrel RDA: Rotary drilling with compressed air and roller or drag bit. RDF: Rotary drilling with drilling fluid and roller or drag bit REC: In split-spoon (see notes), direct push and thin-walled tube sampling, the recovered length (in inches) of sample. In rock coring, the length of core recovered (expressed as percent of the total core run). Zero indicates no sample recovered. SS: Standard split-spoon sampler (steel; 1.5" is inside diameter; 2" outside diameter); unless indicated 	
 foot (see notes) NQ: NQ wireline core barrel PQ: PQ wireline core barrel RDA: Rotary drilling with compressed air and roller or drag bit. RDF: Rotary drilling with drilling fluid and roller or drag bit REC: In split-spoon (see notes), direct push and thin-walled tube sampling, the recovered length (in inches) of sample. In rock coring, the length of core recovered (expressed as percent of the total core run). Zero indicates no sample recovered. SS: Standard split-spoon sampler (steel; 1.5" is inside diameter; 2" outside diameter); unless indicated 	
 NQ: NQ wireline core barrel PQ: PQ wireline core barrel RDA: Rotary drilling with compressed air and roller or drag bit. RDF: Rotary drilling with drilling fluid and roller or drag bit REC: In split-spoon (see notes), direct push and thin-walled tube sampling, the recovered length (in inches) of sample. In rock coring, the length of core recovered (expressed as percent of the total core run). Zero indicates no sample recovered. SS: Standard split-spoon sampler (steel; 1.5" is inside diameter; 2" outside diameter); unless indicated 	
 PQ: PQ wireline core barrel RDA: Rotary drilling with compressed air and roller or drag bit. RDF: Rotary drilling with drilling fluid and roller or drag bit REC: In split-spoon (see notes), direct push and thin-walled tube sampling, the recovered length (in inches) of sample. In rock coring, the length of core recovered (expressed as percent of the total core run). Zero indicates no sample recovered. SS: Standard split-spoon sampler (steel; 1.5" is inside diameter; 2" outside diameter); unless indicated 	
 RDA: Rotary drilling with compressed air and roller or drag bit. RDF: Rotary drilling with drilling fluid and roller or drag bit REC: In split-spoon (see notes), direct push and thin-walled tube sampling, the recovered length (in inches) of sample. In rock coring, the length of core recovered (expressed as percent of the total core run). Zero indicates no sample recovered. SS: Standard split-spoon sampler (steel; 1.5" is inside diameter; 2" outside diameter); unless indicated 	
 RDF: Rotary drilling with drilling fluid and roller or drag bit REC: In split-spoon (see notes), direct push and thin-walled tube sampling, the recovered length (in inches) of sample. In rock coring, the length of core recovered (expressed as percent of the total core run). Zero indicates no sample recovered. SS: Standard split-spoon sampler (steel; 1.5" is inside diameter; 2" outside diameter); unless indicated 	
 REC: In split-spoon (see notes), direct push and thin-walled tube sampling, the recovered length (in inches) of sample. In rock coring, the length of core recovered (expressed as percent of the total core run). Zero indicates no sample recovered. SS: Standard split-spoon sampler (steel; 1.5" is inside diameter; 2" outside diameter); unless indicated 	
 tube sampling, the recovered length (in inches) of sample. In rock coring, the length of core recovered (expressed as percent of the total core run). Zero indicates no sample recovered. SS: Standard split-spoon sampler (steel; 1.5" is inside diameter; 2" outside diameter); unless indicated 	
 sample. In rock coring, the length of core recovered (expressed as percent of the total core run). Zero indicates no sample recovered. SS: Standard split-spoon sampler (steel; 1.5" is inside diameter; 2" outside diameter); unless indicated 	
 (expressed as percent of the total core run). Zero indicates no sample recovered. SS: Standard split-spoon sampler (steel; 1.5" is inside diameter; 2" outside diameter); unless indicated 	
 indicates no sample recovered. SS: Standard split-spoon sampler (steel; 1.5" is inside diameter; 2" outside diameter); unless indicated 	
SS: Standard split-spoon sampler (steel; 1.5" is inside diameter; 2" outside diameter); unless indicated	
diameter; 2" outside diameter); unless indicated	
otherwise	
SU Spin-up sample from hollow stem auger	
TW: Thin-walled tube; number indicates inside diameter in	
inches	
WASH: Sample of material obtained by screening returning	
rotary drilling fluid or by which has collected inside	
the borehole after "falling" through drilling fluid	
WH: Sampler advanced by static weight of drill rod and hammer	
WR: Sampler advanced by static weight of drill rod	
94mm: 94 millimeter wireline core barrel	
▼: Water level directly measured in boring	

 $\overline{\nabla}$: Estimated water level based solely on sample appearance

TEST SYMBOLS

Symbol	Definition
CONS:	One-dimensional consolidation test
DEN:	Dry density, pcf
DST:	Direct shear test
E:	Pressuremeter Modulus, tsf
HYD:	Hydrometer analysis
LL:	Liquid Limit, %
LP:	Pressuremeter Limit Pressure, tsf
OC:	Organic Content, %
PERM:	Coefficient of permeability (K) test; F - Field;
	L - Laboratory
PL:	Plastic Limit, %
q _p :	Pocket Penetrometer strength, tsf (approximate)
q_c :	Static cone bearing pressure, tsf
q_u :	Unconfined compressive strength, psf
R:	Electrical Resistivity, ohm-cms
RQD:	Rock Quality Designation of Rock Core, in percent
	(aggregate length of core pieces 4" or more in length
	as a percent of total core run)
SA:	Sieve analysis
TRX:	Triaxial compression test
VSR:	Vane shear strength, remolded (field), psf
VSU:	Vane shear strength, undisturbed (field), psf
WC:	Water content, as percent of dry weight
%-200:	Percent of material finer than #200 sieve

STANDARD PENETRATION TEST NOTES

(Calibrated Hammer Weight)

The standard penetration test consists of driving a split-spoon sampler with a drop hammer (calibrated weight varies to provide N_{60} values) and counting the number of blows applied in each of three 6" increments of penetration. If the sampler is driven less than 18" (usually in highly resistant material), permitted in ASTM: D1586, the blows for each complete 6" increment and for each partial increment is on the boring log. For partial increments, the number of blows is shown to the nearest 0.1' below the slash.

The length of sample recovered, as shown on the "REC" column, may be greater than the distance indicated in the N column. The disparity is because the N-value is recorded below the initial 6" set (unless partial penetration defined in ASTM: D1586 is encountered) whereas the length of sample recovered is for the entire sampler drive (which may even extend more than 18").

UNIFIED SOIL CLASSIFICATION SYSTEM ASTM Designations: D 2487, D2488

AMERICAN ENGINEERING NC.

significantly affect soil properties.

							TESTING, INC.	
Critorio for	Assisting Course Sta	rhala and Cause	Name II.			Soil Classification	Notes	
Criteria for	Assigning Group Syn	nools and Group	Names Using	Laboratory Tests	Group Symbo	o Group Name	(75-mm) sieve.	
Coarse-Grained	Gravels More	Clean Gravels	Cu≥4 an	d 1≤Cc≤3 ^E	GW	Well graded gravel ^F	^F If field sample contained cobbles or boulders or both add "with cobbles or	
than 50%	fraction retained on No. 4 sieve	fines ^C	Cu<4 ar	d/or 1>Cc>3 ^E	GP	Poorly graded grave	el ^F boulders, or both, and whit could of boulders, or both, to group name.	ıl
No. 200 sieve		Gravels with	Fines cla	assify as ML or MH	GM	Silty gravel ^{F.G.H}	symbols:	
		than 12% fines	c Fines cla	assify as CL or CH	GC	Clayey gravel ^{F.G.H}	GW-GC well-graded gravel with clay GP-GM poorly graded gravel with sil	t
-	Sands 50% or more of coarse	Clean Sands	Cu≥6 an	ld 1≤Cc≤3 ^E	SW	Well-graded sand	GP-GC poorly graded gravel with cla DSands with 5 to 12% fines require dual	y
	fraction passes	fines ^D	Cu<6 ar	d/or 1>Cc>3 ^E	SP	Poorly-graded sand	symbols: SW-SM well-graded sand with silt	
		Sands with Fines more	Fines cl	assify as ML or MH	SM	Silty sand ^{G.H.I}	SW-SC well-graded sand with clay SP-SM poorly graded sand with silt	
		than 12% fines	D Fines classical	assify as CL or CH	SC	Clayey sand ^{G.H.1}	SP-SC poorly graded sand with clay	
Fine-Grained Soils 50% or	Silts and Clays Liquid limit less	inorganic	PI>7 an "A" line	d plots on or above	CL	Lean clay ^{K.L.M}	$(D_{30})^2$	
more passes the No. 200	than 50		PI<4 or "A" line	plots below	ML	Silt ^{KLM}	$E_{Cu} = D_{60} / D_{10}, Cc = \frac{D_{10} - D_{10}}{D_{10} \times D_{6}}$	
sieve		organic	Liquid I	imit-oven dried <0.75	OL	Organic clay ^{K.L.M.N}	$^{\rm F}$ If soil contains >15% sand, add "with	
(see Plasticity Chart below)			Liquid l	imit – not dried		Organic silt ^{K.L.M.O}	sand" to group name.	
	Silts and Clays	inorganic	PI plots	on or above "A" line	СН	Fat clay ^{K.L.M}	symbol GC-GM, or SC-SM.	
	or more		PI plots	below "A" line	MH	Elastic silt ^{K.L.M}	fines" to group name. If soil contains \geq 15% gravel, add "with	
		organic	Liquid 1	imit-oven dried <0.75	OH	Organic clay ^{K.L.M.P}	gravel" to group name.	
			Liquid l	imit - not dried		Organic silt ^{K.L.M.Q}	soils is a CL-ML silty clay.	
Highly organic			Primari	v organic matter, o	lark PT	Peat ^R	^K If soil contains 15 to 29% plus No. 200	
soil			in color	, and organic in odo	r		add "with sand" or "with gravel",	
							L If soil contains \geq 30% plus No. 200,	
SI	EVE ANALYSIS		60 For da	estification of fine-orgined soils and			predominantly sand, add "sandy" to	
- Screen Opening (in 3 2 1% 1 3% 5%	4 10 20 40 60 140 20	0	fine or	ained fraction of coarse-grained soil	<u>ن</u> ا /		group name. MIf soil contains >30% plus No. 200	
100		0	Equat	on of "A"-line			predominantly gravel, add "gravelly"	,
80		20	X 40 then	PI = 0.73 (LL-20)	13.11 OX	A BUNE	to group name.	
2 N		Ð	Z Equati	on of "U"-line at at LL = 16 to PI = 7.	1		^N Pl \geq 4 and plots on or above "A" line.	
v + + + + + + + + + + + + + + + + + + +	<u>De * 15mm</u>	_ A Li	년 30 - then	PI = 0.9 (LL-8)			PPI plots on or above "A" line.	
			ISAU				^Q Pl plots below "A" line.	
ю Б	Da = 2.5mm	° G	6 20-	1 . 0			^R Fiber Content description shown below.	
×		~~		0		H or OH		
		D ₁₀ = 0.075mm	10- 7					
₀└┴┴┴└──		100	4					
50 10 PARTICLE	SIZE IN MILLIMETERS		00	10 16 20 30 40	50 60	70 80 90 100	110	
$C_{1} = \frac{D_{10}}{D_{10}} = \frac{15}{10} = 2$	$C_{a} = \frac{(D_{20})^2}{2.5^2} = \frac{2.5^2}{2.5^2} = 1$				Plasticity Cha	-		
Die 0.075	Diex Dec 0.075 x 15				Flasheny Cha			
	ADDIT	IONAL TERMI	NOLOGY NO	TES USED BY AET	r FOR SOIL I	DENTIFICATION AN	D DESCRIPTION	
Term	<u>Orain Size</u> <u>Particle S</u>	ize	<u>Term</u>	Percentages Percent	Term	<u>N-Value, BPF</u>	Term <u>N-Value, BPF</u>	
Boulders	Over 1	2"	A Little Grave	el 3% - 14%	Very Soft	less than 2	Very Loose 0 - 4	
Cobbles	3" to 12	2"	With Gravel	15% - 29%	Soft	2 - 4	Loose 5 - 10	
Gravel	#4 sieve	to 3"	Gravelly	30% - 50%	Firm	5 - 8	Medium Dense 11 - 30	
Sand Fines (silt & cla	#200 to #4	sieve			Stiff Vory Stiff	9 - 15	Dense 51 - 50 Very Dense Greater than 50	
Thes (shi de cla	(y) 1 ass #200	sieve			Hard	Greater than 30	Very Dense Grouter man 20	
Mois	sture/Frost Condition		Laye	ring Notes	Pea	at Description	Organic Description (if no lab tests)	
	(MC Column)						Soils are described as <u>organic</u> , if soil is not pe	at
D (Dry):	Absense of moisture	, dusty, dry to	Laminations:	Layers less than		Fiber Content	and is judged to have sufficient organic lim	les es
M (Moist):	Damp, although free	water not		'/s" thick of	Term	(Visual Estimate)	Slightly organic used for borderline cases.	
	visible. Soil may sti	Il have a high		differing material		0	Root Inclusions	
	water content (over	'optimum").		or color.	Fibric Peat:	Greater than 67%	With roots: Judged to have sufficient quantity	у
W (Wet/	Free water visible in	tended to	Lenses:	Pockets or lavers	Sapric Peat:	Less than 33%	of roots to influence the soil	
waterbearing):	describe non-plastic	SOIIS.		greater than 1/2"	Suprior out		Trace roots: Small roots present but not judg	ed
	sands and sand with	silt.		thick of differing			to be in sufficient quantity to	~

material or color.

01CLS021 (07/08)

Soil frozen

F (Frozen):

AMERICAN ENGINEERING TESTING, INC.

B.1 REFERENCE

This appendix provides information to help you manage your risks relating to subsurface problems which are caused by construction delays, cost overruns, claims, and disputes. This information was developed and provided by ASFE¹, of which, we are a member firm.

B.2 RISK MANAGEMENT INFORMATION

B.2.1 Geotechnical Services are Performed for Specific Purposes, Persons, and Projects

Geotechnical engineers structure their services to meet the specific needs of their clients. A geotechnical engineering study conducted for a civil engineer may not fulfill the needs of a construction contractor or even another civil engineer. Because each geotechnical engineering study is unique, each geotechnical engineering report is unique, prepared solely for the client. No one except you should rely on your geotechnical engineering report without first conferring with the geotechnical engineer who prepared it. And no one, not even you, should apply the report for any purpose or project except the one originally contemplated.

B.2.2 Read the Full Report

Serious problems have occurred because those relying on a geotechnical engineering report did not read it all. Do not rely on an executive summary. Do not read selected elements only.

B.2.3 A Geotechnical Engineering Report is Based on A Unique Set of Project-Specific Factors

Geotechnical engineers consider a number of unique, project-specific factors when establishing the scope of a study. Typically factors include: the client's goals, objectives, and risk management preferences; the general nature of the structure involved, its size, and configuration; the location of the structure on the site; and other planned or existing site improvements, such as access roads, parking lots, and underground utilities. Unless the geotechnical engineer who conducted the study specifically indicates otherwise, do not rely on a geotechnical engineering report that was:

- not prepared for you,
- not prepared for your project,
- not prepared for the specific site explored, or
- completed before important project changes were made.

Typical changes that can erode the reliability of an existing geotechnical engineering report include those that affect:

- the function of the proposed structure, as when it's changed from a parking garage to an office building, or from a light industrial plant to a refrigerated warehouse,
- elevation, configuration, location, orientation, or weight of the proposed structure,
- composition of the design team, or
- project ownership.

As a general rule, always inform your geotechnical engineer of project changes, even minor ones, and request an assessment of their impact. Geotechnical engineers cannot accept responsibility or liability for problems that occur because their reports do not consider developments of which they were not informed.

B.2.4 Subsurface Conditions Can Change

A geotechnical engineering report is based on conditions that existed at the time the study was performed. Do not rely on a geotechnical engineering report whose adequacy may have been affected by: the passage of time; by man-made events, such as construction on or adjacent to the site; or by natural events, such as floods, earthquakes, or groundwater fluctuations. Always contact the geotechnical engineer before applying the report to determine if it is still reliable. A minor amount of additional testing or analysis could prevent major problems.

ASFE, 8811 Colesville Road/Suite G106, Silver Spring, MD 20910 Telephone: 301/565-2733: www.asfe.org

B.2.5 Most Geotechnical Findings Are Professional Opinions

Site exploration identified subsurface conditions only at those points where subsurface tests are conducted or samples are taken. Geotechnical engineers review field and laboratory data and then apply their professional judgment to render an opinion about subsurface conditions throughout the site. Actual subsurface conditions may differ, sometimes significantly, from those indicated in your report. Retaining the geotechnical engineer who developed your report to provide construction observation is the most effective method of managing the risks associated with unanticipated conditions.

B.2.6 A Report's Recommendations Are Not Final

Do not overrely on the construction recommendations included in your report. Those recommendations are not final, because geotechnical engineers develop them principally from judgment and opinion. Geotechnical engineers can finalize their recommendations only by observing actual subsurface conditions revealed during construction. The geotechnical engineer who developed your report cannot assume responsibility or liability for the report's recommendations if that engineer does not perform construction observation.

B.2.7 A Geotechnical Engineering Report Is Subject to Misinterpretation

Other design team members' misinterpretation of geotechnical engineering reports has resulted in costly problems. Lower that risk by having your geotechnical engineer confer with appropriate members of the design team after submitting the report. Also retain your geotechnical engineer to review pertinent elements of the design team's plans and specifications. Contractors can also misinterpret a geotechnical engineering report. Reduce that risk by having your geotechnical engineer participate in prebid and preconstruction conferences, and by providing construction observation.

B.2.8 Do Not Redraw the Engineer's Logs

Geotechnical engineers prepare final boring and testing logs based upon their interpretation of field logs and laboratory data. To prevent errors or omissions, the logs included in a geotechnical engineering report should never be redrawn for inclusion in architectural or other design drawings. Only photographic or electronic reproduction is acceptable, but recognizes that separating logs from the report can elevate risk.

B.2.9 Give Contractors a Complete Report and Guidance

Some owners and design professionals mistakenly believe they can make contractors liable for unanticipated subsurface conditions by limiting what they provide for bid preparation. To help prevent costly problems, give contractors the complete geotechnical engineering report, but preface it with a clearly written letter of transmittal. In the letter, advise contractors that the report was not prepared for purposes of bid development and that the report's accuracy is limited; encourage them to confer with the geotechnical engineer who prepared the report (a modest fee may be required) and/or to conduct additional study to obtain the specific types of information they need or prefer. A prebid conference can also be valuable. Be sure contractors have sufficient time to perform additional study. Only then might you be in a position to give contractors the best information available to you, while requiring them to at least share some of the financial responsibilities stemming from unanticipated conditions.

B.2.10 Read Responsibility Provisions Closely

Some clients, design professionals, and contractors do not recognize that geotechnical engineering is far less exact than other engineering disciplines. This lack of understanding has created unrealistic expectations that have led to disappointments, claims, and disputes. To help reduce the risk of such outcomes, geotechnical engineers commonly include a variety of explanatory provisions in their report. Sometimes labeled "limitations" many of these provisions indicate where geotechnical engineers' responsibilities begin and end, to help others recognize their own responsibilities and risks. Read these provisions closely. Ask questions. Your geotechnical engineer should respond fully and frankly.

B.2.11 Geoenvironmental Concerns Are Not Covered

The equipment, techniques, and personnel used to perform a geoenvironmental study differ significantly from those used to perform a geotechnical study. For that reason, a geotechnical engineering report does not usually relate any geoenvironmental findings, conclusions, or recommendations; e.g., about the likelihood of encountering underground storage tanks or regulated contaminants. Unanticipated environmental problems have led to numerous project failures. If you have not yet obtained your own geoenvironmental information, ask your geotechnical consultant for risk management guidance. Do not rely on an environmental report prepared for someone else