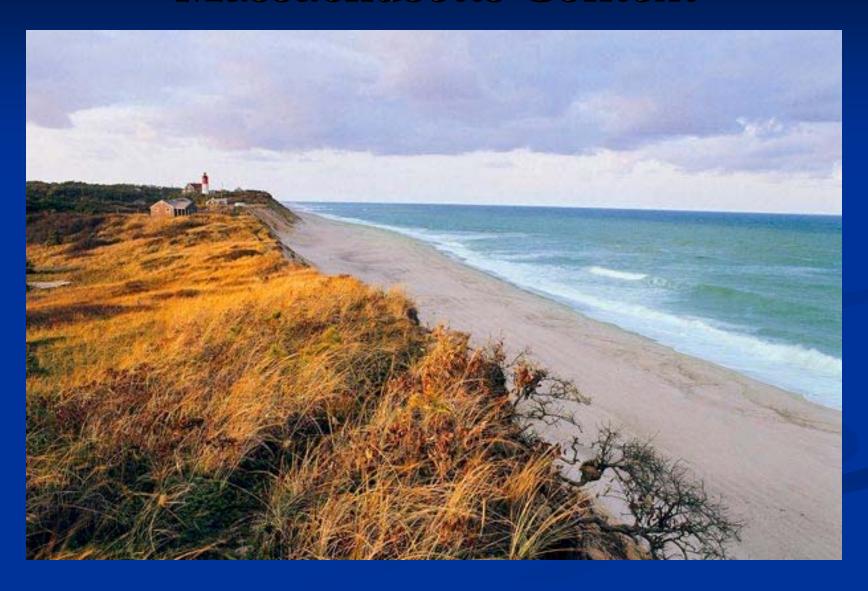

Design Flexibility in Massachusetts

MassHighway Project Development and Design Guide

Minnesota DOT

Flexible Design for 21st Century Challenges: Balancing Competing Objectives & Optimizing Return on Investments


February 23, 2009

Design Guide Task Force

"VH8 had no fewer than 28 'clients' on the Task Force, in addition to MassHighway."

-Luisa Palewonsky MassHighway Commissioner

Design Guide Task Force Members

George Allaire

Massachusetts Highway Association

Neil Andres

Barnstable Department of Public Works

John Blundo, P.E.

Chief Engineer MassHighway

Thomas F. Broderick, P.E.

Director of Research and Materials MassHighway

Hamer D. Clarke, P.E.

Southbridge Department of Public Works

Joseph J. Costanzo

Merrimack Valley Regional Transit Authority

Alexandra Dawson

Massachusetts Association of Conservation Commissions

John DeBenedictis

Boston Transportation Department

Rob Deblinger Division of Fisheries and Wildlife

Thomas DiPaolo, P.E. Assistant Chief Engineer

MassHighway

Jeffrey Dougan Massachusetts Office on Disability

Linda Dunlavy

Massachusetts Association of Regional Planning Agencies Franklin Regional Council of Governments

Bill Edgerton

Concord Department of Public Works

Judith Eiseman

Massachusetts Association of Conservation Commissions

Matthew Feher

Massachusetts Municipal Association

Margo Fenn

Cape Cod Commission

Stanley Gee

Division Administrator Federal Highway Administration

Joshua Grzegorzewski

Federal Highway Administration

Ann Hershfang

Walk Boston

Beth Larkin, P.E.

American Council of Engineering Companies of Massachusetts

David Loutzenheiser

Massachusetts Bicycle Coalition

Barbra Lucas

Metropolitan Area Planning Council

Cara Metz

Massachusetts Historical Commission

Kenneth S. Miller, P.E.

Executive Office of Transportation

Joseph Orfant

Department of Conservation and Recreation

John D. Pagini, A.I.C.P.

Massachusetts Association of Regional Planning Agencies

Luisa Paiewonsky

Commissioner MassHighway

The Honorable Anne Paulsen

House of Representatives

John Pourbaix

Dilli Foul Daix

Construction Industries of Massachusetts

Cara Seiderman

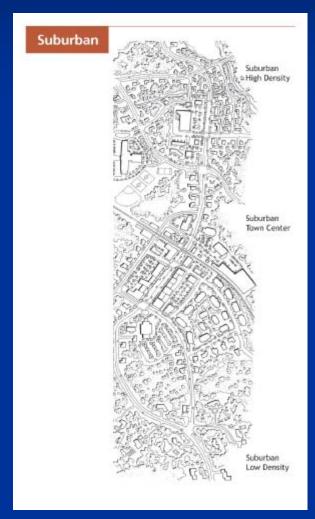
City of Cambridge

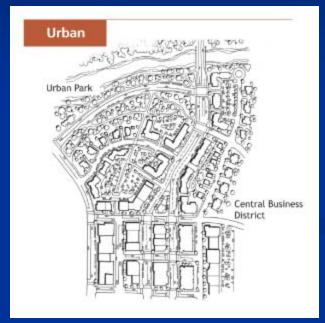
Albert Stegemann, P.E.

District 2 Highway Director MassHighway

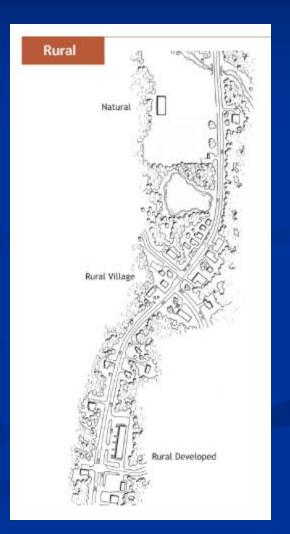
Stanley Wood, P.E.

Highway Design Engineer MassHighway


Guiding Principles


- Provide for the safety and mobility of all users
- Incorporate the principles of Context Sensitive Design throughout the planning, design, and construction processes
- Provide a clear Project Development Process

Basic Design Controls


Traditional AASHTC New Mass Highway Functional Roadway Context Classification Roadway Users Design Vehicles Transportation Traffic Characteristics Demand Design Speed Measuresof Effectiveness Highway Capacity esign Speed Access Control

Area Types

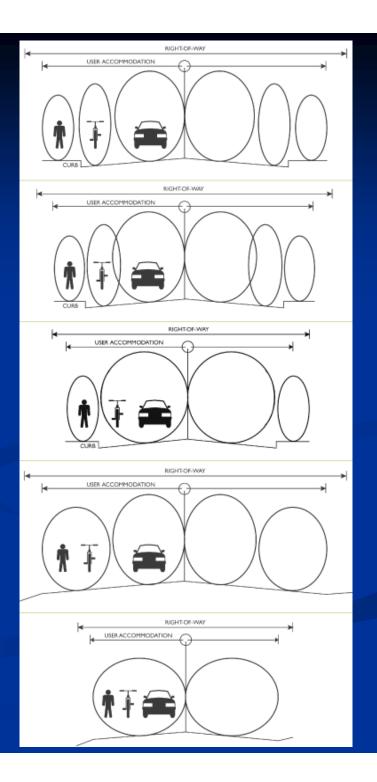
9 Area Types defined to compliment RoadwayTypes to aid with Context Sensitive Design

Roadway Users

Measures of Effectiveness

Transportation Measures

(for all users)


- Condition of facilities
- Safety and comfort
- Mode choice
- Network connectivity
- User population
- Traditional LOS
 - Travel time
 - Congestion
 - Specific measures elsewhere

Other Measures

- Environment preservation
- Cultural resource preservation
- Community enhancement
- Economic development
- Aesthetics
- Environmental justice/equity
- Impact mitigation
 - Noise
 - Air Quality
 - Wildlife Habitat

Flexible Multimodal Accommodation Framework

- Type 1: Independent Accommodation
- Type 2: Partial Bicycle/MV Sharing
- Type 3: Bicycle/MV Sharing
- Type 4: Pedestrian/Bicycle Sharing
- Type 5: Shared by All Users

Examples of Flexibility in the Design Guide

Design Speeds

Exhibit 3-7
Design Speed Ranges (Miles per Hour)

	Roadway Type					
		Arterials		Collectors		Local
Area Type	Freeway	Major*	Minor	Major	Minor	Roads
Rural Natural	50 to 75	40 to 60*	35 to 60	30 to 60	30 to 55	20 to 45
Rural Developed	50 to 75	40 to 60*	35 to 60	30 to 60	30 to 55	20 to 45
Rural Village	N/A	30 to 45	30 to 40	25 to 40	25 to 35	20 to 35
Suburban Low Intensity Development	50 to 75	30 to 60*	30 to 55	30 to 55	30 to 55	20 to 45
Suburban High Intensity Development	50 to 75	30 to 50*	30 to 50	25 to 50	25 to 40	20 to 40
Suburban Town Center	N/A	25 to 40	25 to 40	25 to 40	25 to 35	20 to 35
Urban	50 to 75	25 to 50	25 to 40	25 to 40	25 to 35	20 to 35

N/A Not Applicable

A higher design speed may be appropriate for arterials with full access control
 Source: Adapted from A Policy on Geometric Design of Highways and Streets, AASHTO, 2004 – Chapter 3 Elements of Design

Comparison of Design Speeds

Roadway Type (Based on 1997)	1997 Manual	2006 Guidebook
Rural Arterial (Level Terrain)	60 to 75 mph	40 to 60 mph
Urban Arterial	30 to 60 mph	25 to 50 mph
Rural Collector (Level Terrain)	60 mph	30 to 60 mph
Urban Collector	30 mph (minimum)	25 to 40 mph

• Additional flexibility provided in the Guidebook by further definition of Roadway and Area Types to reduce the ambiguity of "urban vs. rural" and terrain type

Ranges of Acceptable Lane and Shoulder Widths

Exhibit 5-12 Widths of Usable Shoulders (in Feet)

		Rondony Type			
		Francy of	Arterials**	Collectors**	Local Roada
	Rural Natural	10 to 12	4 to 12	4 to 10	2to8
	Rural Daveloped	10 to 12	4 to 12	4 to 10	2to8
8	Rural Village	NBA	4 to 12	4 to 10	2to8
5	Suburban Low Density	10 to 12	4 to 12	4 to 10	2to8
£	Suburban High Canalty	10 to 12	4 to 12	4 to 10	2to8
	Suburban Village/Fown Canter	NFA	4 to 12	4 to 10	2to8
	Uthan	10 to 12	4 to 12	4 to 10	2to8

Let shouldes are required on Freeways and other divided readways. See the AASHTO Green Book for left-shoulder guidence.

Exhibit 5-14 Range of Travel Lane Widths (in Feet)

		Rossinsy Type			
		Freenage	Arterials*	Collectors**	Local Roads
	Hurd Valued	12	11 to 12	IJ to 12	9 to 12
	Rural Developed	12	11 to 12	10 to 12	9 to 12
L	Rural Village	NA	11 to 12	10 to 12	9 to 12
5	Subtract Low Denday	12	11 to 12	10 to 12	9 to 12
ŧ	Suburson High Compily	12	11 to 12	10 to 12	9 to 12
	Subursen Village Fown Center	NA	11 to 12	10 to 12	9 to 12
	Ubm	12	11 to 12	10 to 12	9 to 12

Lauretheisen hante et see de see gebruik bei de de georgien belaheit (Secheph 2 breche af beste de see de se de see de se de see de se de see de se de se

Shoulder widths less than the values shown above may be used if a design exception is obtained (See Chapter 2 for a description of the design exception procedure). Situations where remover shouldes may be considered are described below:

deignocapierpecaus). Studens has natura in semay to contidued an decibed blow.

* Mrissan H. Eddens on region i fordering special Maries perhap argues.

NR. Nt Assists

Comparison of Minimum Width for Two-Lane Roadways

Roadway Type	1997 Manual	2006 Guidebook
Arterial	40 ft	30 ft
Collector	40 ft	28 ft

Addenda provided some flexibility at the low end of the speed and volume range - minimum width of 30 feet for arterials (<55 mph and <400 vpd), and 20 feet for collector roads (<35 mph and <400 vpd), but these conditions rarely exist.

Intersections Multimodal LOS Balance

Exhibit 6-11 Level-of-Service Targets

	Target Level-of-Service Ranges		
	Pedestrian	Bicycle	Motor Vehicle
Urban Center	A-C	C-E	D-F or NA
Urban Residential	A-C	B-D	C-E
Suburban Commercial	C-E	C-E	C-F or NA
Suburban Residential	B-B	A-C	C-D
Small Town, Village Center	A-C	A-C	C-D
Small Town, Village Residential	A-C	A-C	B-C
Rural Settlement (Crossroads, Residential)	A-B	A-C	A-C
Rural Open Space	A-B	A-C	A-C

NA: Level-of-service criteria may not apply in dense urban or suburban commercial centers.

Design Exceptions

Results

Thomas A. DiPaolo, P.E.

Assistant Chief Engineer

Massachusetts Highway Department

thomas.dipaolo@mhd.state.ma.us (617) 973-7516