The Drainage Manual has been revised to add more information and show current Mn/DOT procedures and practices. This manual replaces the previous manual in its entirety.

INSTRUCTIONS:

1. Place the transmittal record sheet in the front of the manual and record the transmittal letter number, date, and subject.

2. Insert in the new manual: The index and the above listed chapters.

3. Any technical questions regarding this transmittal should be directed to John Boynton, State Hydraulic Engineer at (651) 747-2162.

4. Any questions concerning missing manual sheets or extra transmittal letters should be directed to Map and Manual Sales, Room G-19, M.S. 260, (651) 296-2216. Please furnish in writing any address changes to: Mail Room G-21 Transportation Building, M.S. 275, 395 John Ireland Blvd., St. Paul, MN 55155. Any questions concerning mailing of this material should be directed to the Mail Room G-21 (651) 296-2420.
DRAINAGE
MANUAL

MINNESOTA DEPARTMENT OF TRANSPORTATION
Developed by
Office of Bridges and Structures
DRAINAGE MANUAL INDEX

Chapter 1 INTRODUCTION
1.1 INTRODUCTION
1.1.1 Updates
1.1.2 Drainage Manual Organization
1.1.3 User Instruction
1.2 METRIFICATION
1.2.1 Hard and Soft Conversion
1.2.2 Conversion Procedure
1.2.3 Conversion Tables
1.3 DATA COLLECTION
1.3.1 Types and Sources of Data
1.3.2 Survey Information
1.3.3 Field Reviews
1.3.4 Data Evaluation
1.4 DOCUMENTATION
1.4.1 Documentation Procedures
1.4.2 Documentation Content
1.5 REFERENCES

Chapter 2 MATERIALS AND STRUCTURAL DESIGN
2.1 INTRODUCTION
2.2 FACTORS INFLUENCING SERVICE LIFE
2.2.1 Corrosion
2.2.2 Abrasion
2.3 PIPE DURABILITY
2.4 MATERIAL TYPES FOR DRAINAGE FACILITIES
2.4.1 Culvert Materials
2.4.2 Storm Drain Material
2.4.3 Tile Materials
2.5 PIPE INSTALLATION
2.5.1 Pipe Bedding
2.5.2 Concrete Pipe Load Tables
2.5.3 Metal Pipe Load Tables
2.6 REFERENCES

Chapter 3 HYDROLOGY
3.1 INTRODUCTION
3.1.1 Definition
3.1.2 Concept Definitions
3.1.3 Factors Affecting Flood Runoff
3.1.4 Sources of Information
3.2 DESIGN FREQUENCY
3.2.1 Design Frequency Policy
3.2.2 Rainfall vs. Flood Frequency
3.3 HYDROLOGIC PROCEDURE SELECTION
3.3.1 Peak Flow Rates or Hydrographs
3.3.2 Hydrologic Procedures Options
3.4 TIME OF CONCENTRATION
3.4.1 Total Time of Concentration
3.4.2 Travel Time
3.4.3 Selection of Method
3.4.4 Kinematic Wave Equation
3.4.5 Manning's Kinematic Solution
3.4.6 Manning's Equation
3.4.7 Overland Flow
3.4.8 Triangular Gutter Flow
3.4.9 Pipe Flow
3.4.10 Continuity Equation

3.5 RATIONAL METHOD
3.5.1 Application
3.5.2 Limitations
3.5.3 Runoff Coefficient
3.5.4 Rainfall Intensity

3.6 SCS METHOD
3.6.1 Application
3.6.2 Limitations
3.6.3 Rainfall
3.6.4 Hydrologic Soil Group
3.6.5 Curve Number
3.6.6 Peak Discharge Procedure
3.6.7 SCS Hydrograph Procedure

3.7 USGS REGRESSION EQUATIONS
3.7.1 Application
3.7.2 Limitations
3.7.3 Procedure

3.8 ANALYSIS OF STREAM GAGE DATA
3.8.1 Application
3.8.2 Transferring Gaged Data

3.9 REFERENCES

Chapter 4 CHANNELS
4.1 INTRODUCTION
4.1.1 Definition
4.1.2 Concept Definitions

4.2 DESIGN CRITERIA
4.2.1 Policy
4.2.2 Stream Channels
4.2.3 Roadside Channels

4.3 OPEN CHANNEL FLOW
4.3.1 Flow Classification
4.3.2 Equations
4.3.3 Cross Sections
4.3.4 Single-Section Analysis
4.3.5 Step-Backwater Analysis
4.3.6 Water and Sediment Routing

4.4 DESIGN PROCEDURE
4.4.1 Stream Channels
4.4.2 Roadside Channels

4.5 STREAM MORPHOLOGY
4.5.1 Levels of Assessment
4.5.2 Factors That Affect Stream Stability
4.5.3 Stream Response to Change
4.5.4 Countermeasures

4.6 REFERENCES
Chapter 5 CULVERT
5.1 INTRODUCTION
 5.1.1 Definition
 5.1.2 Concept Definitions
5.2 DESIGN CRITERIA
 5.2.1 Policy
 5.2.2 Site Criteria
 5.2.3 Design Limitations
 5.2.4 Design Features
 5.2.5 Related Designs
 5.2.6 Design Methods
5.3 CULVERT ANALYSIS
 5.3.1 Inlet Control
 5.3.2 Outlet Control
 5.3.3 Outlet Velocity
 5.3.4 Roadway Overtopping
 5.3.5 Performance Curves
5.4 DESIGN PROCEDURE
5.5 REFERENCES

Chapter 6 ENERGY DISSIPATOR
6.1 INTRODUCTION
 6.1.1 Definition
 6.1.2 Concept Definitions
6.2 DESIGN CRITERIA
 6.2.1 Natural Scour Holes
 6.2.2 Riprap Apron
 6.2.3 Internal Ring Dissipator
 6.2.4 Increased Resistance Box Culverts
 6.2.5 Riprap Basins
 6.2.6 Impact Dissipater
 6.2.7 Stilling Basins
6.3 ENERGY DISSIPATOR ANALYSIS
 6.3.1 Design Parameters
 6.3.2 Culvert Outlet Conditions
 6.3.3 Erosion Assessment
6.4 INTERNAL RING DISSIPATORS
 6.4.1 Increased Resistance Round Pipes
 6.4.2 Tumbling Flow Circular Pipes
6.5 RIPRAP BASIN
 6.5.1 Riprap Basin Design Procedures
6.6 REFERENCES
Chapter 7 STORAGE FACILITIES
7.1 INTRODUCTION
 7.1.1 Detention and Retention Facilities Definition
 7.1.2 Concept Definitions
7.2 DESIGN CRITERIA
 7.2.1 Location
 7.2.2 Storage
 7.2.3 Flow Rate
7.3 STORAGE FACILITY ANALYSIS
 7.3.1 Stage-Storage Curve
 7.3.2 Stage-Discharge Curve
 7.3.3 Generalized Routing Procedure
7.4 OUTLET HYDRAULICS
 7.4.1 Sharp Crested Weirs
 7.4.2 Broad Crested Weirs
 7.4.3 V-notch Weirs
 7.4.4 Orifices
7.5 DESIGN PROCEDURE
 7.5.1 Preliminary Detention Calculation of Storage Volume
 7.5.2 Storage Indicator Method
 7.5.3 Routing Example
7.6 REFERENCES

Chapter 8 STORM DRAINAGE SYSTEMS
8.1 INTRODUCTION
 8.1.1 Definition
 8.1.2 Concept Definitions
8.2 DESIGN CRITERIA
 8.2.1 Policy
 8.2.2 Design Frequency and Allowable Spread
8.3 SYSTEM PLANNING
 8.3.1 Required Data
 8.3.2 Cooperative Projects
 8.3.3 Special Considerations
8.4 HYDROLOGY
 8.4.1 Rational Method
 8.4.2 Detention
8.5 PAVEMENT DRAINAGE
 8.5.1 Longitudinal Slope
 8.5.2 Cross Slope
 8.5.3 Pavement Texture
 8.5.4 Curb and Gutter
 8.5.5 Roadside and Median Ditches
 8.5.6 Bridge Decks
 8.5.7 Median and Median Barriers
 8.5.8 Impact Attenuators
8.6 GUTTER FLOW
 8.6.1 Uniform Cross Slope Procedure
 8.6.2 Composite Gutter Sections Procedure
 8.6.3 V Type Gutter Sections Procedure
8.7 INLETS
 8.7.1 Inlet Types
 8.7.2 Inlet Locations
 8.7.3 Inlet Spacing
 8.7.4 Grate Inlets on Grade
8.7.5 Grate Inlets in Sag
8.7.6 Curb Inlets in Sag
8.7.7 Slotted Inlets on Grade
8.7.8 Slotted Inlets in Sag
8.7.9 Combination Inlet
8.7.10 Flanking Inlets
8.7.11 Inlet Spacing Computation Procedures

8.8 MANHOLES AND INLET STRUCTURES
8.8.1 Height
8.8.2 Spacing
8.8.3 Sizing

8.9 STORM DRAINS
8.9.1 Design Procedures
8.9.2 50 Year Sag Point
8.9.3 Hydraulic Capacity
8.9.4 Minimum Grades
8.9.5 Curved Alignment

8.10 HYDRAULIC GRADE LINE
8.10.1 Tailwater
8.10.2 Exit Loss
8.10.3 Bend Loss
8.10.4 Pipe Friction Losses
8.10.5 Manhole Losses
8.10.6 Hydraulic Grade Line (HGL) Design Procedure

8.11 REFERENCES

Appendix A RISK ASSESSMENT

Appendix B TP-40 RAINFALL INTENSITY CURVES

Appendix C PIPE FLOW DESIGN CHARTS

Appendix D OPEN CHANNEL FLOW CHARTS

Appendix E COMPUTER PROGRAMS AND REFERENCE MATERIALS